
npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01617-2

High throughput computational screening
and interpretable machine learning for
iodine capture of metal-organic
frameworks
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The removal of leaked radioactive iodine isotopes in humid air environments holds significant
importance in nuclear waste management and nuclear accident mitigation. In this study, high-
throughput computational screening and machine learning were combined to reveal the iodine
capture performance of 1816 metal-organic framework (MOF) materials under humid air conditions.
Initially, the relationship between the structural characteristics of MOF materials (including density,
surface area and pore features) and their adsorption properties was explored, with the aim of
identifying the optimal structural parameters for iodine capture. Subsequently, two machine learning
regression algorithms—Random Forest and CatBoost, were employed to predict the iodine
adsorption capabilities of MOF materials. In addition to 6 structural features, 25 molecular features
(encompassing the types of metal and ligand atoms as well as bonding modes) and 8 chemical
features (including heat of adsorption and Henry’s coefficient) were incorporated to enhance the
prediction accuracy of the machine learning algorithms. Feature importance was assessed to
determine the relative influence of various features on iodine adsorption performance, in which the
Henry’s coefficient and heat of adsorption to iodine were found the twomost crucial chemical factors.
Furthermore, four types of molecular fingerprints were introduced for providing comprehensive and
detailed structural information of MOFmaterials. The 20 most significant Molecular ACCess Systems
(MACCS) bits were picked out, revealing that the presence of six-membered ring structures and
nitrogenatoms in theMOF frameworkwere the key structural factors that enhanced iodine adsorption,
followed by the presence of oxygen atoms. This work combined high-throughput computation,
machine learning, and molecular fingerprints to comprehensively and systematically elucidate the
multifaceted factors governing the iodine adsorption performance of MOFs in humid environments,
establishing a robust and profound guideline framework for accelerating the screening and targeted
design of high-performance MOF materials.

As an efficient and low-carbon energy source, nuclear energy plays a sig-
nificant role in the global energy landscape, particularly in the context of
global climate change, where it provides significant support for achieving
carbon neutrality goals1,2. However, the rapid expansion of nuclear energy
industry is accompanied by potential environmental and safety risks3,
especially in the handling of nuclear waste and during nuclear accidents,

where the leakage of radioactive substances poses a severe threat to both the
environment and human health. Among the radioactive isotopes involved
in spent nuclear fuel reprocessing or nuclear accidents, iodine isotopes,
particularly 131I and 129I, are of particular concern due to their volatility and
strong bioaccumulation, which result in significant long-term impacts on
the environment and human health4. The half-life of 131I is only 8 days;
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although its radiation is intense, the associated risks are generally short-
term, primarily entering the human body via inhalation or the food chain,
leading to acute health issues such as thyroid cancer. In contrast, 129I has an
exceptionally long half-life (~ 1.57 × 107 years), enabling it to persist in the
biosphere and cause sustained threats to ecosystems. Consequently, the
efficient removal of radioactive iodine isotopes has become an urgent
requirement for ensuring nuclear safety and reducing environmental
contamination5–8.

Metal-organic frameworks (MOFs), as novel porous materials formed
by metal clusters coordinated with organic ligands, have gained consider-
able attention as potential iodine adsorbents due to their highly tunable
structures, large surface areas, and excellent porosity9,10. However, in the real
nuclear industry and spent nuclear fuel reprocessing, high-humidity air
environments are prevalent, thus demanding more robust iodine adsorp-
tion properties fromMOFmaterials6,11,12. In recent years, many researchers
have investigated the iodine adsorption behavior of variousMOFs in humid
environments: Nenoff and her co-workers explored the competitive I2
sorption by Cu-BTC from humid gas streams (about 3.5% relative
humidity) at 75 °C and ambient pressure, revealing a remarkable iodine
capacity of ~175 wt% with a derived I2/H2O adsorption selectivity of 1.513.
Thallapally’s group reported I2 adsorption capacities and mechanisms in
two microporous MOFs in the presence of 33% and 43% relative humidity
(RH), in which SBMOF-1 and SBMOF-2 exhibited the 15 wt% and 35 wt%
uptake, respectively14. Zhang et al. systematically studied the influence of
H2O molecules on the iodine adsorption properties of different zeolitic
imidazolate frameworks (ZIFs) using grand canonical Monte Carlo
(GCMC) simulations, highlighting the competitive adsorption behavior
between H2O and I2, particularly for hydrophilic materials15. Other MOF
materials including MIL-101-Cr-TED, MIL-101-Cr-HMTA and ECUT-
300, also were used to explore the iodine capture performance in a water-
containing system16–19. In our previous work, grand canonical Monte Carlo
(GCMC) and density functional theory methods were employed to inves-
tigate the iodine adsorption performance of 21 chemically stable MOF
materials in high-humidity environments, and influence of different
structural factors were revealed20. However, despite these advances,
researches on the iodine adsorption behavior of MOFs under humid con-
ditions remains limited, and a comprehensive insight of the key factors
influencing iodine adsorption basedon a larger number ofMOFmaterials is
still needed.

Nowadys, high-throughput computational screening based on mole-
cular simulations offers a rapid approach to evaluating the iodine adsorption
performance ofMOFs under humid conditions21–23. Furthermore, the rapid
development of artificial intelligence has ushered in a new research para-
digm that combines data science with chemistry24,25. Machine learning has
proven to be an efficient tool for analyzing computational data related to gas
adsorption behaviors of MOFs, for revealing structure-property relation-
ships, identifying promising MOF adsorbents and even guiding MOF
structures design and modification26–29. In this work, we first selected 1816
I2-accessible MOF materials (with pore limiting diameter > 3.34 Å - the
kinetic diameter of I2) from the well-established CoREMOF 2014 database
established by Chuang et al.30, and employed GCMC simulations via using
RASPA software to study their I2 adsorption performance under humid air
conditions31. Subsequently, three different types of descriptors (structural,
molecular, and chemical features) were explored, and machine learning
algorithms were utilized to predict iodine adsorption performance and
reveal the relationships between various descriptors and iodine adsorption
performance. Finally, molecular fingerprint technique was employed to
comprehensively identify the influence of structural features on the iodine
adsorption, providing valuable insights and guidelines for the future tar-
geted design of MOF materials.

Results
Structure-performance relationships
To identify the optimal structural features, the relationships between the
1816MOF structures and iodine adsorption performance were investigated

in Fig. 1 and Fig. S1. Structural characteristics of MOFs included the pore
limiting diameter (PLD), largest cavity diameter (LCD), void fraction (φ),
pore volume, surface area and density. When LCD was less than 4 Å
(Fig. 1a), the spatial steric hindrance between the I2 molecules and the pore
walls resulted in negligible iodine adsorption. When 4 Å < LCD< 5.5 Å, an
increase in LCD reduced the steric hindrance, thereby adsorption interac-
tion between the framework materials and iodine molecules became the
dominant factor, which led to an increase in both iodine adsorption capacity
and selectivity.However, when LCD exceeded 5.5 Å, further enlargement of
the channel size diminished the interaction between MOFs and iodine
molecules, which intensified the desorption of I2 in the pores and resulted in
a continuous decline in both adsorption capacity and selectivity. To identify
MOFmaterialswith optimal iodine adsorptionproperties, we couldfind the
ideal value for LCD lay between 4 and 7.8 Å. As for porosity (with the
optimal value for iodine adsorption in the range of 0 to 0.17) in Fig. 1b,
iodine adsorption capacity and selectivity initially increased (φ < 0.09) and
then decreased (0.09 < φ < 0.6). The relationships between density and
iodine adsorption performance also followed a similar trend (Fig. 1c): at low
densities (under 0.9 g/cm3), the increase in density promoted iodine
adsorption due to the greater number of available adsorption sites; however,
when the density exceeded 0.9 g/cm³, the steric hindrance effect gradually
increased and excessively compact pore structures limited iodine adsorp-
tion; with the density further surpassing 2.2 g/cm3, iodine uptake amount
would fall below 100 cm3/g. Furthermore, the optimal values of pore
volume, PLD and surface area for iodine capture were also identified, which
lay at the range of 0 ~ 0.18 cm3/g, 3.34 ~ 7 Å and 0 ~ 540 m2/g, respectively
(Fig. 1d and Fig. S1). In order to facilitate the comparison of the adsorption
behavior of different molecules, structure-performance relationships of
MOFmaterials forH₂Oadsorption have been delineated (Fig. S2), in which
the optimal structural parameters exhibited a broader range (for instance,
the optimal LCD could reach up to 11 Å and the optimal φ could attain
0.48); this is likely attributed to the larger kinetic diameter ofH₂Omolecules
compared to I₂. The above results explained that relatively small pore sizesof
MOF materials could confer the advantage during competitive iodine
adsorption in humid conditions.

Machine learning
After the aforementioned analysis, we initially employed six structural
descriptors - PLD, LCD, φ, pore volume, surface area and density, to train
machine learning algorithms for predicting iodine gas adsorption in MOF
materials under humid conditions (Fig. 2a, d). Two different machine
learning algorithms (including random forest and CatBoost model) were
trained and compared32,33. After training the model with only structural
parameters as the simplest feature set, we gradually incorporated more
comprehensive feature sets, including “structural+molecular descriptors”
(Fig. 2b, e) and “structural+molecular+ chemical descriptors” (Fig. 2c, f).
For molecular descriptors, each molecular feature corresponded to specific
elemental, hybridization, and bonding types. For carbon (C) and nitrogen
(N) elements, the atomic types included C_1, C_2, C_3, and C_R (or N_1,
N_2, N_3, and N_R), depending on the nature of single, double, triple, and
ring bonds. Oxygen (O) atoms can form double bonds and ring bonds,
defined as O_2 and O_R, respectively, as well as central tetrahedral oxygen
(denoted as O_3_f) or central trigonal oxygen (denoted as O_2_z)34. For
hydrogen (H), fluorine (F), chlorine (Cl), and bromine (Br), the atomic
types are designated as H_, F_, Cl, and Br. Additionally, tetrahedral four-
coordinate phosphorus for organo-metallic coordination is defined as
P_3+q, along with sulfur atoms connected via cyclic bonds (denoted as
S_R)35. Regarding metal atoms, only the predominant metal species within
theMOFwere considered: descriptors for these metals includedmetal ratio
(themolar ratio relative to all atoms), atomicnumber, atomicweight, atomic
radius, polarizability, electron affinity, and Mulliken electronegativity. In
chemical descriptors, Henry’s coefficient and heat of adsorption of I2, H2O,
N2 and O2 in MOF materials were considered and defined as I2_Henry
(I2_heat), H2O_Henry (H2O_heat), N2_Henry (N2_heat) and O2_Henry
(O2_heat), respectively.

https://doi.org/10.1038/s41524-025-01617-2 Article

npj Computational Materials |          (2025) 11:115 2

www.nature.com/npjcompumats


Throughout the above process, the prediction performance of both the
random forest and CatBoost algorithms progressively improved. The
accuracy of the machine learning algorithm was evaluated using R2 2, mean
absolute error (MAE), and mean squared error (MSE). When only struc-
tural descriptors were used, the random forest algorithm exhibited a rela-
tively low prediction accuracy (R2 = 0.438). After adding molecular
descriptors to the feature set, the prediction accuracy of the random forest
model improved, with R2 increasing to 0.592. Further incorporation of
chemical descriptors led to the highest prediction accuracy (R2 = 0.900).
Simultaneously, the MAE and MSE values of random forest model
demonstrated a steady decrease: MAE reduced from 75.588 to 61.673, and
finally to 23.378; MSE decreased from 14293.744 to 10387.059, and ulti-
mately to 2547.433. For the CatBoost algorithm, the trends were similar to
those observedwith the random forestmodel, but overall, it exhibited better
prediction performance. The hyperparameter tuning space and optimal
hyperparameters are listed in Table S1. When using the “structural
descriptors+molecular descriptors+ chemical descriptors” feature set, the
CatBoost algorithm achieved the highest R2 of 0.941, with MAE and MSE
dropping to 18.276 and 1512.681, respectively. Additionally, by following
the above process, the accuracy of the CatBoost algorithm in predicting the
H₂O adsorption performance of MOF materials also gradually improved
(Fig. S3), and the value of R2, MAE and MSE respectively reached 0.911,
5.672 and 166.554 based on “structural descriptors+molecular descriptors
+ chemical descriptors” feature set. The above results further confirmed
that molecular and chemical descriptors significantly complemented the
structural descriptors, playing a crucial role in accurately predicting gas
molecules capture in MOF materials.

To investigate the contributionof different features inpredicting iodine
adsorption performance, the SHAP (SHapley Additive exPlanations)
method was used to rank and explain the significance of various features in
the CatBoost model (Fig. 3). Among the structural descriptors (Fig. 3a),
LCD was identified as the most important descriptor, followed by void
fraction and surface area (both of which exhibit a certain negative correla-
tionwith I2 adsorptionperformance). PLDanddensity of theMOFmaterial
ranked next in importance, while pore volume had the least significance
among the six structural descriptors. In the “structural descriptors +
molecular descriptors” set (considering only the top 20 descriptors in terms
of importance), all structural descriptors, except for pore volume, ranked
within the top 10, with LCD maintaining the highest importance. Among
the molecular descriptors, the most significant was C_R (positively corre-
lated with adsorption capacity), followed by the proportion of metal atoms
(negatively correlated with adsorption capacity), and then H_R, N_R, and
O_2 (all positively correlated with adsorption capacity).We speculated that
iodine adsorption inMOFmaterials primarily relied on the organic ligands,
with carbon rings, nitrogen, and oxygen atoms serving as key adsorption
sites. In the “structural descriptors + molecular descriptors + chemical
descriptors” set (considering only the top 20 descriptors), the most influ-
ential features were I2_Henry, followed by I2_Heat. Both features were
positively correlated to iodine capture amounts. Notably, in contrast to N₂
and O₂, the adsorption heat of H₂O (H2O_heat) was strongly negatively
correlated with iodine adsorption capacity (with the damping coefficient
positively correlated), likely because under humid conditions, H₂O mole-
cules are themain competitive species for iodine gas adsorption. In terms of
H2O molecules adsorption (Fig. S4), H2O_heat possessed the highest

Fig. 1 | Structure-performance relationship. I2 capture performance (uptake amount and selectivity) as a function of (a) largest cavity diameter (Å), (b) void fraction, (c)
density (g/cm3) and (d) pore volume (cm3/g).
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relative importance, and metal atoms also exhibited relatively high sig-
nificance with polarizability, metal ratio, Mulliken electronegativity and
atomic radius positioning within the top six rankings. In contrast to the
adsorption of I2 molecules, the atomic radius of themetal atoms exhibited a
positive correlation with the adsorption of H2O molecules (Fig. S4b); fur-
thermore, O_R replaced N_R as the most favorable ligand structure due to
the strong hydrogen bonding interactions (Fig. S4c).

The correlation coefficients between different features were calculated
and visualized as heatmaps. Among the pure structural descriptors (Fig. S5),
a strong positive correlation (correlation coefficient > 0.6) was evident
between PLD, LCD, void fraction, surface area, and pore volume, while
density showed a strong negative correlation (correlation coefficient > -0.4)
with the other five structural parameters. In the “structural descriptors +
molecular descriptors” set (Fig. S6),metal ratio,metal atomicnumber,metal
atomic weight, andmetal atomic radius exhibited positive correlations with
the density of the MOF material (with correlation coefficients of 0.32, 0.38,

0.39, and 0.28, respectively), due to the heavier nature of metal atoms
compared to ligand atoms. Additionally, the metal atoms ratio was posi-
tively correlated with void fraction (with correlation coefficient of 0.23),
whereas the correlations between porosity and the number of metal atoms,
metal atomicweight, andmetal atomic radiuswere relativelyweak. Thiswas
because metal clusters, formed by a greater number of metal atoms as
connecting nodes, would lead to the increased porosity, irrespective of the
type of metal atoms. The metal ratio was negatively correlated with the
number of most organic ligand atoms (including H_R, C_R, N_R, O_R,
C_3, andN_3) (with correlation coefficient of -0.43, -0.42, -0.11, -0.10, -0.15,
and -0.13), but was positively correlated with O_2 (with correlation coef-
ficient of 0.31), which was likely due to the fact that a certain amount of O
existed to form metal clusters in MOF materials by bonding with metals
atoms. In the “structural +molecular+ chemical descriptors” set (Fig. 4),
I2_Henry showed a low correlation with both structural and molecular
descriptors. N2_Henry, O2_Henry, and H2O_Henry exhibited significant

Fig. 2 | Comparisons of prediction performance. Prediction accuracy of I2 capture using random forest and CatBoost algorithms based on (a), (d) “structural descriptors”,
(b), (e) “structural + molecular descriptors” and (c), (f) “structural + molecular + chemical descriptors” feature sets.

Fig. 3 | Feature importance for I2 capture. SHAP value distribution of (a) “structural descriptors”, (b) “structural+molecular descriptors” and (c) “structural+molecular
+ chemical descriptors”.
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positive correlations withmost structural descriptors (including PLD, LCD,
porosity, specific surface area, and pore volume), while N2_Heat, O2_Heat,
and H2O_Heat were negatively correlated with the aforementioned
descriptors. This was attributed to the fact that the larger size of cavity or
pore channel in MOFs facilitated the diffusion of gas molecules within
MOFs, but the reduced density of adsorption sites weakened the adsorption
strength, leading to the lower adsorption heats. The very strong correlations
between N2_Henry and O2_Henry (correlation coefficient = 0.98) and
between N2_Heat and O2_Heat (correlation coefficient = 0.89) arose from
the similar molecular structures of N₂ and O₂. I2_Heat was negatively
correlated with the proportion of metal atoms (correlation coefficient of
-0.27) and positively correlated with C_R (correlation coefficient of 0.21),
further indicating that metal sites were not effective adsorption sites for I₂
molecules, which tended to be adsorbed near organic ligands (such as
benzene rings).

Molecular Fingerprint
In order to comprehensively reveal the factors that positively or negatively
influenced iodine adsorption performance, thereby paving the way for
future molecular design, four types of molecular fingerprint (including
MolecularACCess Systems (MACCS), PubChem,AtomPairs2DandEstate
fingerprint) were employed in place of the previously used molecular
descriptors. MACCS and PubChem represented two of the most widely
used fingerprints derived from substructure key information: the MACCS
fingerprint consisted of a set of 166 structural keys, constructed using
SMART patterns; while the PubChem fingerprint originated from the
PubChem database, encompassing 881 types of structural keys represented
as binary substructure encodings. The APFP fingerprint encoded a total of
780 atomic pairs based on their topological distances. Estate summarized
the microscopic structure of materials through a 79-byte representation.
Based on the presence or absence of bits, molecular fingerprint digitized the
molecular features of MOF materials, thereby providing microscopic
insights into the structure of exceptional materials. These molecular fin-
gerprints, in conjunction with previous structural and chemical descriptors,
were applied to train machine learning models for the prediction of iodine
adsorption performance under humid conditions. Although the prediction
performance showed a slight decrease based on “structure + molecular
fingerprint+ chemical descriptors” set compared to the prior “structure+
molecular + chemical descriptors” set, because the encoding of molecular
fingerprint solely indicated the presence or absence of specific features and

other information such as the quantity or proportion in a single MOF unit
cell weremissed, which limited their ability in prediction of uptake amount;
however, their comprehensive inclusion of various structural categories
enabled them to serve as excellent interpretative tools.

After comparing the prediction accuracies of the four molecular
fingerprints (Fig. 5a, Fig. S7 and Table S2), MACCS molecular finger-
print exhibited its superiority in machine learning (R2 = 0.927, MAE =
20.057, andMSE = 1651.391). The 20 most significant MACCS bits were
ranked and accompanied by detailed interpretations (Fig. 5b and
Table S3). Additionally, the autocorrelation coefficients of the molecular
fingerprints were presented in the heatmap to reveal the interrelation-
ships among the fingerprints (Fig. S8). The top two, Bit_158 and Bit_75,
demonstrated the significant positive impact of nitrogen (N) atoms in
MOF materials on iodine adsorption performance. The strong correla-
tions between Bit_158 and Bit_156 (with correlation coefficient of 0.9),
and between Bit_158 and Bit_45 (with correlation coefficient of 0.73)
further highlighted that the presence of N atoms, whether in rings or
directly bonded to carbon (C) atoms, promoted the iodine adsorption in
humid air conditions. Bit_163 and Bit_162, which had a correlation
coefficient of 0.6, represented that six-membered aromatic ring was
another important structural feature. Six-membered aromatic ring likely
provided electron-rich adsorption sites due to their large π-bonds,
thereby enhancing the iodine adsorption. Bit_6 and Bit_12, which were
associated with the type of metal, represented lanthanide metal and
group IB (or IIB) metal elements, respectively. The negative correlation
(-0.38) between these twomolecular fingerprints arose from the relatively
homogeneous nature of the metal clusters in these materials; however,
the former demonstrated a negative effect on I2 adsorption, while the
latter had a positive impact (consistent with previous findings, where a
negative correlation was observed between the metal atomic radius and
iodine adsorption performance). The relationships between MACCS
molecular fingerprint and other structural (or chemical) features were
also illustrated (Fig. S8). It could be found that although Bit_6 (lantha-
nide metals) and Bit_12 (group IB/IIB metals) showed little correlation
with I2_Henry and I2_Heat, Bit_6 enhanced the adsorption of H2O in
MOF materials (correlation coefficient with H2O_Heat of 0.65), while
Bit_12 weakened the adsorption of H2O (correlation coefficient with
H2O_Heat of -0.41); thus, it could be concluded that group IB/IIB metals
played the significant role in promoting competitive adsorption of I2
under humid conditions compared to lanthanide metals.

Fig. 4 |Heatmap of correlation coefficients.Pearson coefficientsmatrix for the 20most significant features for I2 capture in “structural+molecular+ chemical descriptors”
feature set.
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Furthermore, the MACCS fingerprints Bit_138, Bit_69, Bit_100 and
Bit_131, representing different forms of hydrogen (H) (whether connected
to C or non-C elements), and Bit_143 and Bit_139, representing different
formsof oxygen (O) (eitheras part of a ring structureor ashydroxyl groups),
all demonstrated the positive role of H and O atoms in enhancing iodine
adsorption in MOF structures. Nevertheless, modifications involving N
atoms appeared to offer the greater advantages over O atoms (Overall,
Bit_158 and Bit_75 had the higher importance ranking compared to
Bit_143 and Bit_139). This was because the presence of N atoms, compared
to O atoms, exerted the evident suppressive effect on both pore size and the
adsorption ofH2Omolecules, both of whichweremore favorable for iodine
adsorption in humid environments; specifically, the correlation coefficients
between N-related molecular fingerprints (Bit_158, Bit_75, Bit_156, and
Bit_45) andpore volumewere -0.27, -0.28, -0.26, and -0.26, respectively, and
their correlations with H2O_Heat were -0.12, -0.18, -0.13, and -0.17; in
contrast, O-related molecular fingerprints (Bit_143 and Bit_139) had the
positive correlation coefficients with pore volume of 0.2 and 0.046,
respectively, and correlation coefficients with H2O_Heat were 0.24 and
0.029. The role of H atoms lay between that of the N and O atoms: the
correlation coefficients between H-related molecular fingerprints (Bit_138,
Bit_69, Bit_100 and Bit_131) and pore volume were at the range of -0.1 ~
-0.2, and the correlation with H2O_Heat were also weak (with negative
correlation coefficients less than -0.1).

Finally, the top six MOF materials with the best iodine adsorption
performance were picked out, andmicroscopic insights into the common
fingerprints present shared by most of these MOFs were provided (Fig. 6
and Table S4). These MOF structures shared a common set of molecular
fingerprints: Bit_45, Bit_75, Bit_156, Bit_158, and Bit_163, all of which
indicated the presence of six-membered rings and N atoms, and N atoms
were part of the six-membered rings or directly coordinated with metal
atoms. Furthermore, the metal atoms in these structures were all tran-
sition metals from the fourth period (including Zn, Co, Ni, and Mn),
which were characterized by the smaller atomic radii and atomic num-
bers compared to lanthanide elements. Four of these MOF materials had
Bit_97 molecular fingerprint, representing the presence of O atoms. To
derive more generalizable conclusions, all MOF materials were categor-
ized into different groups based on their adsorption performance, and
the occurrence frequencies of the aforementioned MACCS bits were
analyzed (Table S5). The proportions of Bit_45, Bit_75, Bit_156, Bit_158,
Bit_163 and Bit_97 in the entire MOF material database were 35.8%,
37.2%, 51.7%, 50.9%, 72.8%, and 30.7%, respectively. Among the top 30
high-performance MOF materials, their frequencies increased to 76.7%,

70.0%, 73.3%, 76.7%, 86.7% and 56.7%, respectively; whereas in the 300
lowest-performing MOFs, their frequencies dropped to 22.0%, 27.7%,
47.3%, 47.7%, 45.3% and 26.3%, respectively. Additionally, Bit_6
(representing lanthanide elements) was more prevalent in MOFs with
poorer adsorption performance, appearing in 23.0% of the bottom 300
MOFs but entirely absent in the top 30 MOFs. These findings suggested
that the presence of six-membered rings, nitrogen atoms, oxygen atoms,
small metal atomic radii, and low metal atomic numbers favored iodine
adsorption in MOFs. This further validated the previous analysis and
provided valuable insights for the future design of high-performance
MOF materials.

Discussion
In summary, large-scale GCMC simulations were employed to investigate
iodine adsorption performance (including adsorption capacity and selec-
tivity) for 1816 MOF materials from CoRE MOF database under humid
conditions. Two machine learning algorithms, Random Forest and Cat-
Boost, were utilized to predict the iodine adsorption performance of MOF
materials, gradually incorporating three different types of descriptors to
enhance the prediction accuracy of the models: 6 structural features
(including pore characteristics, density, and surface area), 25 molecular
features (including the types of metal and ligand atoms as well as their
bonding modes), and 8 chemical features (including adsorption heat and
Henry’s coefficient). SHAPmethodwasused to rank the importance of these
descriptors, and correlation coefficients were employed to reveal the rela-
tionships among features. Four types of molecular fingerprints were also
generated in place of molecular features and combined with the CatBoost
algorithm to predict iodine adsorption performance. The top 20 MACCS
bitswere extracted, demonstrating themost significant role of six-membered
rings andNatoms inMOFmaterials, followedbyOatoms.Among themetal
sites, the lighter transition metal elements were found to be more favorable
for iodineadsorptioncompared to lanthanide elements.This comprehensive
and systematic study shed light on the iodine adsorption performance of
MOFmaterials under humid conditions, providing valuable insights for the
future screening and design of high-performance MOF materials.

Methods
Simulation method
GCMCsimulationswere employedusingRASPAsoftware to investigate the
adsorption behavior of I₂within theMOFs at an environment of 423 K and
1 bar. The temperature of 423K was relevant to operational conditions in
the nuclear industry6,36,37. To replicate the high humidity environment

Fig. 5 | Prediction performance and feature importance using CatBoost algorithm. (a) Prediction accuracy of I2 capture and (b) SHAP value distribution based on
“structural + MACCS + chemical descriptors” set.
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encountered during the post-treatment phase of spent nuclear fuel, the
mixed gas system was composed of 300 ppm I₂, 68.5% N₂, 18.4% O₂, and
12.2% H₂O, achieving a relative humidity of 100%6. Throughout the
simulation, the MOFs were treated as fixed rigid structures with periodic
boundary conditions. Supercells were utilized as necessary to ensure that the
system dimensions exceeded twice the cutoff distance (12Å). In addition,
the selectivity of I2 during adsorption was calculated as the following
equation8,37:

selectivityI2 ¼
XI2

=YI2

Xothers=Yothers

where XI2
and YI2

denoted the uptake amounts and gas phase concentra-
tion of I2; Xothers and Yothers were the uptake amounts and gas phase con-
centration of other gas components (N2, O2 and H2O).

All GCMC simulations comprised an equilibration phase of 50,000
cycles, followed by a production phase of 50,000 cycles. Each cycle involved
the movement of all adsorbed molecules, encompassing the insertion,
deletion, translation, rotation, reinsertion, identity change, and swap pro-
cesses. Iodine molecules were modeled as spherical entities, with van der
Waals parameters derived from the viscosity of pure iodine38. Water
molecules were represented using the transferable intermolecular potential
(TIP3P) model (rOH = 0.9527 Å and θ∠HOH = 104.52°), which was a model
empirically validated to accurately describe hydrogen bonding
interactions39,40. N₂ and O₂ molecules were modeled as three-site
representation41,42. The relevant molecular model parameters were refer-
enced fromprevious publishedwork20. TheUniversal ForceField (UFF)was
employed to establish the Lennard-Jones (LJ) parameters for the MOF
structures43. Interatomic interactions were described using LJ and electro-
static potential energy functions as below:

U rij
� �

¼
X

4εij
σ ij
rij

 !12

� σ ij
rij

 !6" #
þ
X qiqj

4πε0rij

where UðrijÞ denoted the non-bonded interaction energy between atoms i
and j; the first term represented the van der Waals non-bonded potential

energy, and the second term accounted for the Coulombic electrostatic
interaction energy. rij signified the interatomic distance, σ ij was the depth of
the Lennard-Jones (LJ) potential well, qi and qj represented the partial
charges of atoms i and j, respectively, and ε0 was the vacuum dielectric
constant.

Material descriptors
For structural descriptors, PLDandLCDwere computedusing theZeo++
software package, based on Voronoi tessellation44. The void fraction was
calculated using the RASPA software package with helium atoms (kinetic
diameter = 2.58 Å) as probes.Meanwhile, the surfacearea, pore volume, and
density were determined by RASPA using nitrogen molecules (kinetic
diameter = 3.64 Å) as probes. To identify the molecular descriptors within
the MOF structure, the Python program lammps_interface was utilized
based on the UFF4MOF force field34,45,46. As for the chemical descriptors,
adsorption heat and Henry’s coefficient were calculated under infinite
dilution conditions using RASPA based on an NVT-MC system (MC
referred to theMonteCarlomethod),with simulations conducted for 10,000
cycles.

The OpenBabel and PaDEL-Descriptor software were performed to
compute four types of molecular fingerprint47,48: MACCS, PubChem,
AtomPairs2D and Estate49–52. OpenBabel was an open-source chemical
toolbox designed to convert CIFfiles into SDFfiles compatiblewith PaDEL-
Descriptor. And the PaDEL-Descriptor software processed the SDF format
structural files, ultimately yielding the required four types of molecular
fingerprint.

Machine learning
Two machine learning regression algorithms - Random Forest and Cat-
Boost, were implemented in Python 3.9 using the scikit-learn package32,33,53.
Both of these algorithms offered advantages in terms of low computational
costs and good interpretability compared to other machine learning model
such as neural network algorithm54. For eachML algorithm, the dataset was
randomly divided into training sets and test sets, ofwhich80%were used for
the training of the model and 20% for testing. Additionally, for optimizing
and validating the models, we tuned the related hyperparameters using
cross-validation. The accuracy of the models was evaluated using R2, MAE,

Fig. 6 | Decomposition diagrams of molecular fingerprint of the top six MOF materials with the best iodine adsorption performance.Molecular fingerprint of MOF
materials of (a) BARZUR, (b) CUVGOQ, (c) ZEXKUK, (d) QUDJOP, (e) UFATEA01 and (f) CEYPUT.
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and MSE, whose relevant equations were as follows:

R2 ¼ 1�
Pn

i¼1ðYi � bYiÞ
2

Pn
i¼1

ðYi � �YÞ2

MAE ¼ 1
n

Xn
i¼1

jYi � bYij

MSE ¼ 1
n

Xn
i¼1

jYi � bYij
2

where n represented the number of instances in the training or testing set,Y
denoted the predicted values from the machine learning algorithms, �Y
signified the mean of the model’s predictions, and Ŷ represented the
computed values for the MOF materials.

Data availability
The datasets generated and/or analyzed during the current study are
available at the following GitHub repository: https://github.com/gcshan82/
ML4MOF.git. The data and codes employed in the current work can also be
obtained from the corresponding author upon request.

Code availability
Code is publicly available at the followingGitHub repository: https://github.
com/gcshan82/ML4MOF.git.
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