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Importance of enforcing Hund’s rules in
density functional theory calculations of
rare earth magnetocrystalline anisotropy

Check for updates

Y. Lee1, Z. Ning 1, R. Flint1,2, R. J. McQueeney1,2, I. I. Mazin 3,4 & Liqin Ke 1

Density functional theory (DFT) and its extensions, such as DFT+U and DFT+dynamical mean-field
theory, are invaluable for studying magnetic properties in solids. However, rare-earth (R) materials
remain challenging due to self-interaction errors and the lack of proper orbital polarization.We show
how the orbital dependence of self-interaction error contradicts Hund’s rules and plagues
magnetocrystalline anisotropy (MA) calculations, and how analyzing DFT states that respect
Hund’s rules can mitigate this issue. We benchmark MA in RCo5, R2Fe14B, and RFe12, extending
prior work onRMn6Sn6, achieving excellent agreement with experiments. Additionally, we illustrate
a semi-analytical perturbation approach that treats crystal fields as a perturbation in the large spin-
orbit coupling limit. Using Gd-4f crystal-field splitting, this method provides a microscopic
understanding of MA and enables rapid screening of high-MA materials.

Among all the elements, the open-shelled lanthanides provide the largest
magnetocrystalline anisotropy (MA), due to the strongly-localized nature of
4f orbitals and strong spin-orbit coupling (SOC), which can evolve sub-
stantially, including changing sign while varying the rare earth (R) element
in an isostructural series of compounds. The unparalleled strength and
tunability of rare-earthMA allows for a wide range of applications, ranging
from conventional high-performance permanent magnets1–4 to recent rare-
earth-containing topological magnets5,6. To further exploit existing systems
and explore new ones, ab initio methods that can provide a microscopic
understanding of rare-earth anisotropy and reliably predict new materials
are highly desired.

The MA originates from the interplay between SOC and the crystal
field (CF)7,8. The 4f states are the most-localized among all shells and gen-
erally well-shielded by the outermost electrons, resulting in a small CF
splitting (Δ) of tens ofmeV. Considering the relatively large SOC strength ξ,
CF effects can be treated as a perturbation, and the 4f orbital largely remains
atomic-like. The mechanism of R MA can be understood in the following
picture.When the spin of 4f electrons rotates, in the first approximation, the
charge of the strongly-correlated 4f electrons remains the same shape and
follows the spin, as the spin and orbitals are locked by the large SOC. The
MA then arises from the energy variation corresponding to the rotating
aspherical 4f cloud under the ligand-induced CF potential. In the conven-
tional CF theory, this energy dependence on spin direction (θ, ϕ) can be

written as:

Eðθ; ϕÞ ¼
Z

drρ4f ðr; θ; ϕÞVCFðrÞ ¼
X

Am
l Q

m
l ðθ; ϕÞ: ð1Þ

Here, the CF potential of isostructural compounds is characterized by CF
parameters (CFPs) Am

l , while the asphericity of the rotating 4f charge,
evolved with 4f orbital filling, is characterized by multipole moment
Qm

l ðθ; ϕÞ. The multipole moment can be expressed in terms of the Stevens
coefficientsΘl, the operator equivalentsOm

l , and the rare-earth radii rl
� �

4f ,

e.g., Q0
l ¼ Θl r

l
� �

4fO0
l
9–11. Overall, the 4f electron configurations in solids,

especially thoseofheavyR elements, generally obey the sameHund’s rules as
in a free ion, according to the so-called standard rare-earth model
(SRM)12–14. TheMAof 4f elements can reach the sameorder ofmagnitude as
the CF strength, which typically ranges in tens of meV.

The atomic nature of the strongly-correlated, localized 4f electrons
poses great challenges for mean-field methods such as density functional
theory (DFT). Various approaches, including the 4f-open-core method,
DFT+U6,15, dynamical mean-field theory (DMFT)16,17, and quasiparticle
self-consistent GW (QSGW)18, have been employed depending on the
specific rare-earth properties being targeted. DFT+U is the simplest and
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mostwidely-usedmethod to treat strong correlations. Regarding the 4fMA,
the primary issue with DFT+U is that it is known to fail in reproducing the
experimental ground-state 4f configuration15,19–24. Specifically, it fails to
reproduce Hund’s second rule, which maximizes orbital polarization.

In general, DFT+U can have many metastable 4f-configuration
solutions13,24,25, and the correct ground state often appears in DFT+U as a
metastable state that is hundreds of meV higher. As discussed in detail, for
instance, in ref. 24, the root of the problem is the orbital-dependent self-
interaction error (SIE), stemming from the fact that eachKohn-Shamparticle
interacts with the total charge density, including its own. This orbital
dependenceofSIE isparticularly significant for4forbitals, leading to incorrect
orbital occupancies and 4f charge density, and consequently to incorrectMA.

Akeyquestionarises:CanDFT+Uaccurately describe theMAof tens of
meV, even though it overestimates the energy of the true ground state by
hundreds of meV? Our recent systematic study on topological magnetic
compoundsRMn6Sn6withheavy-R elementshas shownpromise6, provided
that their Hund’s-rules ground states are enforced. Not only are the easy
directions of the entire series of compounds reproduced if Hund’s rules are
enforced6, but the calculated MAE amplitude also agrees reasonably well
with experiments26,27. However, it remains unclear howwell the delicateMA
in other rare-earth-containing magnets can be described using the SRM in
the simplistic DFT+U framework. To better establish the validity and
effectiveness of these methods, systematic investigations of MA in more
rare-earth-based compounds are needed.

In this work, we first review and illustrate how the orbital dependence
of SIE affects the 4f ground state and MA calculation in DFT-based
methods. We then discuss various methods that attempt to enforce Hund’s
rules, such as DFT+U, self-interaction corrections (SIC), and orbital
polarization corrections (OPC), and how the additional terms therein affect
the MA calculations. We further systematically benchmark DFT+U cal-
culations of MA in several isostructural R-transition-metal (R-TM) inter-
metallic series, including well-established permanent magnet systems,
RCo5, R2Fe14B, and RFe12 with heavy R elements. In all cases, with the
enforcement of Hund’s rules, DFT+U calculations provide a useful
description of theMAwithout the need to include SIC andOPC. Finally, we
demonstrate that the evolution ofMA can bemodeled analytically based on
a perturbative treatment of the crystal field using the single-particle 4f levels
obtained in DFT+U6.

Results
SIE effects on 4f Ground state and MA in DFT: TbMn6Sn6 as an
example
Many-body effects are crucial for accurately describing the strongly-
correlated 4f electrons. Especially for light rare-earth elements, multiple
Slater determinants are typically required to capture their complex elec-
tronic structure. Here, in this study, we focus primarily on the heavy R
elements with a large R-TM exchange coupling because their ground states
effectively satisfy Hund’s rules, and the ∣L; S; J;mJ ¼ J

�
state with J = L+ S

can, in principle, be represented using a single Slater determinant, as in
methods such as DFT28. However, even for these “relatively easier” heavy-R
cases, challenges arise in describing 4f electrons, specifically related to the
SIE and the corresponding violation of Hund’s rules.

To gain a quantitative understanding of how SIE affects the ground
state and MA, we illustrate this with a DFT+U calculation of TbMn6Sn6-a
recently discovered quantummagnet with very strong easy-axis anisotropy.
According to Hund’s rules, Tb3+ (4f 8) is expected to have a fully-filled 4f
majority-spin channel and one electron in the minority spin channel, with

4f 1;#∣ml¼3i. This expectation is consistent with neutron scattering and mag-

netizationmeasurements ofTbMn6Sn6
26 andTbV6Sn6

27.However,DFT+U

instead found a 4f ground state corresponding to 4f 1;#∣ml¼2i
6,27. The experi-

mental ground state is approximately Δϵ = 340meV higher in TbMn6Sn6,
appearing as a metastable state in DFT+U (performed with SOC included
and the experimental out-of-plane spin orientation at U = 10 eV).

Considering that the SOC included in calculation already lowers the ∣3i state
relative to ∣2i by approximately 1

2 ξ
Tb
4f � 120meV, the orbital dependence of

SIE for these two orbitals is about 460meV,which ismore than one order of
magnitude larger than MA.

TheSIE,while sizable, is practically independent of the crystallographic
environment and is rotationally invariant. The energy difference between
these two 4f configurations remains essentially the same as for the free Tb3+

ion, where we found Δϵatom = 350meV using a large supercell calculation.
Moreover, to ensure numerical accuracy, we calculated the variation of
Δϵatom with spin rotation and found that the change is negligible. In other
words, the SIE is spin-rotationally invariant.

If, aswe just established, the SIE is rotationally invariant, onemaywork
around that by calculating the MA (and similar effects) not in the DFT
ground state, but in ametastable state that respectsHund’s rules. This can be
achieved by starting DFT+U calculations from a 4f occupation matrix
constructed according to the desired orbital state, and by monitoring and
controlling the orbital occupancy through the self-consistency process to
ensure convergence closely to the targeted state. Such capability is easy to
implement and is generally available in popular DFT packages, including
WIEN2K and VASP29.

Figure 1 shows the total energy variation as a function of the spin-
quantization axis rotation, characterized by polar angle θ, calculated for the
two 4f configurations corresponding to the experimental and DFT ground
states, respectively. As illustrated in Fig. 1, at each polar angle, using the
procedure discussed above, the calculations converge to solutions closely
approximating the 4f 1;#∣ml¼3i and 4f

1;#
∣ml¼2i configurations, respectively, in the

local coordinate system (with the z-axis along the spin direction). The MA
profiles calculated with these two solutions are markedly different. Calcu-
lations using the ∣ml ¼ 2

�
DFT+U ground state yield an incorrect easy-

cone MA, while those calculated with the ∣ml ¼ 3
�
configuration, the true

ground state but metastable in DFT+U calculations, correctly host a strong
easy-axis MA.

This is not surprising, as the ∣ml ¼ 2
�
and ∣ml ¼ 3

�
configurations

lead to different asphericities of the 4f charge distribution, or equivalently,
different multipole moments Ql, which result in drastically different MA.

Fig. 1 |Magnetocrystalline anisotropy inTbMn6Sn6, represented by the variation
of magnetic energy as a function of spin-axis rotation, calculated using DFT+U.
The true ground state of Tb3+ (4f 8 = 4f 7↑+ 4f 1↓), followingHund’s rules, appears as a
metastable state in DFT+U. The anisotropy calculated for two configurations, the
true ground state 4f 1;#∣ml¼3i and the DFT+U ground state 4f 1;#∣ml¼2i , is represented by
the blue and red lines, respectively. The two 4f 1,↓ configurations are illustrated with
polar plots of the corresponding complex spherical harmonics Ym

l¼3ðθ; ϕÞ, where the
radius represents the amplitude and the color represents the phase at the point (θ, ϕ).

https://doi.org/10.1038/s41524-025-01632-3 Article

npj Computational Materials |          (2025) 11:168 2

www.nature.com/npjcompumats


Therefore, for accurateMAcalculations, it is crucial to enforce solutions that
represent the correct 4f orbital configurations.

Origin of erroneous Tb-4f ground state: orbital
dependence of SIE
The origin of the erroneous f 1;#∣ml¼2i ground state inDFT calculations for the

Tb3+ ion is due to the strongorbital dependenceof the SIE for 4forbitals. The
Tb3+ atom, with a 4f 8 configuration, has a fully-occupied 4f majority-spin
channel that produces an s-type spherical charge and potential. In a
single-particle Hamiltonian, without considering SOC, the seven 4f
states should be degenerate if the potential is orbital-independent, as in
plain DFT, and spherical. Therefore, excluding self-interaction, the
additional electron in the minority-spin channel, f 1,↓, experiences a
nearly spherical potential that does not lift the degeneracy of the seven
4f orbital states. This is the same reason behind the well-known issue of
4f states being pinned at the Fermi level in DFT calculations unless a
sizable Hubbard U interaction is introduced in schemes such as DFT
+U to polarize the occupied and unoccupied 4f states. However, in
DFT, the occupied f 1,↓ electron generates an aspherical charge density
that acts upon itself, as the functionals are evaluated using the total
electron density. The total SIE in the local density approximation
(LDA), ϵLDA, originates from the Hartree energy, EH, and the exchange-
correlation energy, Exc, and can be written as

ϵLDA ¼ ϵH þ ϵxc; ð2Þ

where ϵH and ϵxc are the corresponding SIE contributions associatedwithEH
and Exc, respectively. Due to the local approximation of the unknown exact
exchange-correlation functional, ϵH and ϵxc do not cancel out as ϵH and ϵx

(self-exchange) do in theHartree-Fockmethod, resulting in a nonzero ϵLDA.
Moreover, the orbital dependence of ϵLDA is substantial for 4f states, leading
to an incorrect 4f ground state.

Since the 4f charge asphericity and orbital dependence of SIE for the
Tb3+ ion (with f 7,↑ + f 1,↓ configuration) are predominantly associated with
the single electron in the minority-spin channel, we now present an ana-
lytical estimation of ϵH and ϵxc for the f 1 configurations with various ∣ml

�
states. Obviously, we have ϵH = EH and ϵxc = Exc for this single-electron
model. Here, we consider the eigenstates of the f electron, where the angular
part of the wavefunction is described by complex spherical harmonicsYm

l¼3.
As we will show, ϵH favors the ∣ml ¼ 2

�
state, with the energy order

∣2i < ∣1i < ∣3i < ∣0i. Conversely, ϵxc favors the ∣ml ¼ 0
�
state, with the

energy hierarchy ∣2i > ∣1i > ∣3i > ∣0i. However, these contributions do not
cancel each other out, resulting in an overall ϵLDA that disfavors
the ∣ml ¼ 3

�
state.

Hartree self-interaction for f 1. For the f 1 single-electron state, the ϵH of
the ∣±mi state can be written as:

ϵHm ¼ 1
2

Z Z
dr1 dr2

ρmðr1Þρmðr2Þ
jr1 � r2j

; ð3Þ

where the electron density can be expressed in terms of the radial and
angular parts of the wavefunction as ρmðrÞ ¼ R2

4f ðrÞjY3mðθ; ϕÞj2, withm∈
0, 1, 2, 3.TheCoulomb interaction canbe expandedusing complex spherical
harmonics as:

1
jr1 � r2j

¼
X1
k¼0

rk<
rkþ1
>

4π
2kþ 1

Xq¼k

q¼�k

Ykqðθ1; ϕ1ÞY�
kqðθ2; ϕ2Þ; ð4Þ

where ri ¼ riðsin θi cos ϕi; sin θi sin ϕi; cos θiÞ, and r < ¼ minðr1; r2Þ
and r > ¼ maxðr1; r2Þ.

Substituting Eq. (4) into Eq. (3) and separating the radial and angular
parts of the integration, we obtain:

ϵ0
ϵ1
ϵ2
ϵ3

0
BBB@

1
CCCA

H

¼ F0 þ

a02 a04 a06
a12 a14 a16
a22 a24 a26
a32 a34 a36

0
BBB@

1
CCCA

F2

F4

F6

0
B@

1
CA � F0 þ

~a02
~a12
~a22
~a32

0
BBB@

1
CCCAF2: ð5Þ

Here, the radial integrals are represented by the Slater integrals [F0, F2,
F4, F6], and the angular integrals are represented by thematrix element amk,
which can be evaluated using the Gaunt coefficients as follows:

amk ¼
4π

2kþ 1
Gaunt ð3; k; 3;�m; 0;mÞ½ �2: ð6Þ

The last stepofEq. (5) is obtainedusingam0=1andassumingF4/F2≈0.6681
and F6/F2 ≈ 0.4943.

Table 1 lists the matrix elements amk and the effective element ~am2, as
well as the orbital-dependent part of ϵHm,Δϵ

H
m � ~am2F2, calculatedwith F2 =

10 eV, with respect to the ∣ml ¼ 2
�
state. Clearly, ϵH favors ∣ml ¼ ± 2

�
states while disfavoring ∣ml ¼ 0

�
and ∣ml ¼ ± 3

�
states. The small SIE of

∣± 2i is due to the vanishing of the matrix element a22 calculated using Eq.
(6), which results from the fact that they satisfy one of the conditions for
non-trivial zeros ofWigner-3j symbols, i.e.,Wigner3j(3, k, 3;m, 0,−m) = 0
with k = 2.

Exchange-correlation self-interaction for f 1. The ϵxc, which comprises
the exchange part ϵx and the correlation part ϵc, is also orbital-dependent.
In general, the exchange energy has a much larger magnitude than the
correlation energy, making it the dominant contribution to ϵxc. With the
LDA exchange energy given by Ex½ρ� / � R

ρ
4
3ðrÞ; dr, the orbital-

dependent ϵxm for the f 1 ¼ ∣±mi states can be characterized by the
angular part of the integration:

ΩðϵxmÞ ¼ �
Z

dθdϕ jYlmðθ; ϕÞj2
� �4

3: ð7Þ

Table 2 listsΩðϵxmÞ values and the corresponding values with respect to
the ∣m ¼ 0i state, along with the relative exchange-correlation energy E xc

m
and total energyE Tot

m of free Tb atoms calculated usingDFT+U. Clearly, ϵxm
favors the ∣0i minority-spin state, following the energy ordering
∣0i < ∣± 3i < ∣± 1i < ∣± 2i. Numerically, our DFT+U calculations for the
Tb3+ free ion also show that Exc strongly favors ∣0i state while least favoring
∣2i state, in agreement with ΔΩðϵxmÞ.

Moreover, the numerical values of E Tot
m � Exc

m listed in Table 2 follow
the same ordering as ΔϵHm listed in Table 1. Therefore, the DFT+U calcu-
lations provide numerical support for the analytical f 1 model, despite the
latter being a highly simplified representation of the Tb3+-4f system, which

Table 1 | The coefficients amk, where m denotes the complex
spherical harmonics

m am2 am4 am6 ~am2 ΔϵHm

0 0.0711 0.0331 0.0543 0.1201 876

± 1 0.0400 0.0009 0.0306 0.0557 232

± 2 0 0.0450 0.0049 0.0325 0

± 3 0.1111 0.0083 0.0001 0.1167 842

The coefficients ~am2 ¼ am2 þ 0:6681am4 þ 0:4943am6 is calculated by assuming the ratio between

F2, F4, and F6 values as 1: 0.6681: 0.4943. The orbital-dependent part of ϵHm , Δϵ
H
m (in units of meV), is

then calculatedby further assumingF2= 10 eV,with the valueof the ∣± 2i state as the reference zero.
For complex ∣mi states, the ordering is ∣± 2i<∣±1i<∣± 3i<∣0i.
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contains many electrons beyond the single 4f electron in the minority-spin
channel.

Overall, when combining ϵH and ϵxc, the total ϵLDA yields amuchhigher
energy for ∣± 3i solutions compared to other ∣mi solutions. Specifically, ϵH
strongly favors ∣± 2imuchmore than ∣0i and ∣± 3i, while ϵxc strongly favors
∣0i. Consequently, overall ϵLDA results in a significantly higher energy for
∣± 3i states than for other states. The SOC energy, on the other hand, favors
states with large positive ml values in the minority-spin channel. While it
maynot be sufficient to overcome the SIE to stabilize the true ground state of
∣3i, it does lower the energy of the ∣2i state below that of the ∣0i and ∣1i
states, ultimately leading to an erroneous ground state of f 1;#∣ml¼2i in
calculations.

DFT+U, DFT+DMFT, SIC, and OPC
Various methods have been developed and employed to improve the DFT
description of 4f electrons, includingDFT+U, SIC, andOPCmethods. Both
SIC30 and OPC31 methods can be connected to the more general DFT+U
method; all of these methods polarize selected local orbitals using an
additional orbital-dependent potential within the single-particle DFT fra-
mework. DFT+DMFT, on the other hand, enables a multiple-Slater-
determinant description of the 4f shell. In this section, we discuss their
applications to MA calculations.

DFT+U approach. To resolve the unphysical pinning of 4f states near
the Fermi level in DFT, DFT+U with a sizable Hubbard U value is the
most employed method to treat the well-localized 4f orbitals, shifting the
occupied and unoccupied 4f states away from the Fermi level by
± 1

2 ðU � JHÞ, respectively.
The DFT+U total energy, which differs from the plain DFT one by a

correlation contribution from theHubbard-typemodelHamiltonian for the
selected orbitals, can be written as

ELDAþU ½ρðrÞ;n� ¼ ELDAðρÞ þ EcorrðnÞ; ð8Þ

where the correlation energy is evaluatedusing the occupationmatrixnwith
the screened Coulomb interactions parameterized with U and J values as

EcorrðnÞ ¼ EHubðnÞ � EdcðnÞ: ð9Þ

Here, theHartree-Fock-like interactionEHub(n) is self-interaction-free as the
SIE of the direct and exchange terms is exactly canceled out22; the double-
counting termEdc(n), which accounts for the interaction already included in
LDA, is not uniquely defined and depends on the implementation scheme.
Typically, it depends only on the trace of n; therefore, Edc(n) depends only
on the number, but not the orbital characterml, of the occupied states. It is
worth noting that, besides of the aforementioned splitting between the
occupied and unoccupied 4f states by (U − JH), in the popular fully-
localized-limit (FLL) double-counting scheme, JH also induces the spin
splitting of corresponding 4f levels, depending on the orbital’s occupancy.

Overall, the Ecorr(n) in DFT+U, which consists of the SIE-free EHub(n) and
the orbital-independent Edc(n), do not explicitly address the orbital
dependence of SIE. Therefore, the SIE inherited from the original DFT in
DFT+U remains largely intact, and conventional DFT+U schemes are not
expected to correct the Tb3+ ground state discussed above.

Alternative DFT+U schemes that aim to minimize the orbital
dependence of SIE have been proposed. An interesting work by Zhou and
Ozoliņšmodifies only the exchange term of the LDA by including only the
exchange, but not Hartree, component of Ecorr(n). The exchange-only
Ecorr(n) now contains orbital-dependent SIE and can be used to minimize
the orbital dependence of SIE by properly mixing the FLL Edc(n) exchange
and LDA exchange. This method has been demonstrated to improve the
description of the 4f ground-state and other properties such as CFP and
optical properties24,32. However, such corrections, with rotational invariant
Ecorr(n), does not explicitly affect the calculated E(θ, ϕ) profile once the 4f
configuration is enforced during the rotation.

Therefore, the main effect of applying the U parameter is to shift the
occupied 4f states away from the Fermi level. This shift is necessary to be
consistent with experiments and helps ensure convergence to the desired 4f
orbital occupation that respects all threeHund’s rules, whichmay otherwise
be disrupted by strong hybridization between 4f and ligand orbitals. This is
because, when the spin-quantization axis rotates, the U- and JH-dependent
correlation energy remains constant as long as the orbital occupancy
remains the same in the local coordinate system. On the other hand, in the
range of U values that lead to strong hybridization between 4f and ligand
orbitals, a much strongerU dependence of MA is expected. This is because
the contribution of hybridization, in addition to the crystal electric field,
becomes more significant for MA.

DFT+DMFT approach. In contrast to DFT+U, where the Hubbard-type
interaction is treated by adding aHartree-Fock-likemean-field term into the
LDAHamiltonian, DMFT allows a multiconfigurational description for the
selectedorbitals of rare-earth elements, capturing the atomicphysics of the4f
shell. Applications to rare-earth elements so far have mostly been imple-
mented using the Hubbard-I approximation (HIA)33, which neglects the
explicit hybridization between the impurity and the bath for simplicity and
computational efficiency. DFT+HIA has been used to investigate various
properties of rare-earth materials, including cohesive, structural, spectro-
scopic, and magnetic properties13,14; it has later been extended to more
challenging properties such as magnetocrystalline anisotropy and crystal-
field parameters16,17,34, with further development of methods and imple-
mentations, e.g., the implementation of a charge self-consistency scheme35.
An advantage of DMFT over DFT+U is its improved description of cor-
relation effects. However, the principal problem outlined above—the SIE of
the 4f-orbitals—remains equally severe in DFT+DMFT as in DFT+U. In
ref. 16, this issue was circumvented in an ingenious way: they replaced the
actual 4f-electron density obtained in DMFT with its spherical average by
enforcing a uniform occupancy of the 4f ground-state multiplet before
recalculating the electron density and updating the one-electron Kohn-
Sham potential in the next DFT iteration. Conceptually, this approach is
similar to our analytical model, which replaces the crystal field of an actual
material with that of spherically symmetric Gd, as described below. How-
ever, it contrasts with our ab initio calculation, where the crystal fields and
hybridizations effects onMAare evaluated based on the charge density with
properly-enforced Hund’s-rules 4f occupations.

Self-interaction correction. The SIC method, proposed by Perdew and
Zunger in 198136, was initially inspired by the problem of reproducing the
correct energy gap in insulators. They pointed out that in the limit of one-
electron systems, the exchange-correlation potential should exactly
cancel the Hartree potential, which was not the case for all functionals
available at that time. With this in mind, Perdew and Zunger proposed a
method that deducts the self-interaction energy of each orbital from the
DFT functional. The resulting orbital-dependent functional was neither a
Kohn-Sham functional nor uniquely defined for many-electron

Table 2 | Angular part of the integration of ϵx, denoted asΩðεxmÞ,
for the f1 configuration, along with the exchange-correlation
energy Exc

m and total energy ETot
m of free Tb atoms calculated

using DFT+U

m 0 ± 1 ± 2 ± 3

ΩðϵxmÞ −0.5314 −0.4903 −0.4801 −0.4963

ΔΩðϵxmÞ 0 0.0411 0.0513 0.0351

E xc
m (meV) 0 406.1 757.3 689.0

E Tot
m (meV) 0 32.9 73.2 497.4

ΔΩðϵxmÞ represents the ΩðϵxmÞ values relative to the ∣m ¼ 0i state. Similarly, Tb E xc
m and E Tot

m are

calculated relative to the ∣m ¼ 0;#� state. SOC is not included in the DFT+U calculations.
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systems36–39. Nevertheless, it was conceived that this functional would
offer a better approximation to the exact Kohn-Sham functional than
existing local flavors. However, it was never proven to systematically
improve the total energy. Indeed, the weighted density functional40,
which is inherently self-interaction-free in the Perdew-Zunger sense and
yields improved total energy and linear response41, produces results that
are quite different from those of SIC LDA or GGA functionals.

There have been widespread applications of the SIC method across
various materials, including localized 4f systems42. For instance, Strange
et al.43 demonstrated it to investigate the preferred valence states of
R-compounds by calculating the energy differences between R3+ and R2+

states. Hughes et al.44 utilized SIC to study lanthanide contraction and
magnetism in heavy rare-earth elements. Svane et al.45 demonstrated that
the SIC method provides a more accurate description of isostructural
transitions, the equilibrium lattice constants of Ce and CeP, and the zero-
temperature equations of state for Pr and Sm compared to LDA. Lüders
et al.46 implemented SIC using multiple scattering theory and applied it to
theα-γphase transition inCe. Patrick et al.47 utilized SICwith thedisordered
local moment (DLM) formalism to investigate the finite-temperature
magnetic properties of RCo5. Overall, SIC provides a parameter-free
approach to enhancing the localization of correlated orbitals, leading to a
more accurate description of various properties.

However, to the best of our knowledge, there is still a lack of systematic
studies demonstratingwhether the application of SIC can resolve the orbital
dependence of 4f SIE and correctly reproduce the Hund’s rule ground state
of 4f states in rare-earth magnets. Thus, there is no solid foundation for
expecting that such non-DFT SIC functionals would universally enforce
Hund’s rules in f-electron systems, nor is this method (as opposed to DFT
+U) commonly implemented in modern DFT codes.

Orbital polarization correction. In analogy to the Stoner expression for
spin polarization� 1

4 IM
2
s , Brooks and coworkers

48 introduced an orbital
polarization term proportional to � 1

2 L
2, giving rise to a one-electron

eigenvalue shift (− E3Lml) for the state ∣ml

�
. Here, the Racah parameter

E3, which can be related to Slater integrals (F2, F4, and F6), plays a role
analogous to the Stoner I for spin polarization.

While this method does introduce a correction that tries to maximize
the orbitalmoment and, thus, technically can enforceHund’s rules, it has no
direct first-principles justification. Various attempts31,49 to derive an OPC
have resulted in formulations that, while potentially useful, differ from the
suggested form. To the best of our knowledge, the more elaborate OPC
schemes beyond the original description of Brooks and coworkers are
neither implemented in standard codes nor universally tested.

The original OPC prescription is implemented in WIEN2K code and
we applied it to TbV6Sn6. It appears that achieving the Hund’s rule state
using the OPmethod is quite challenging, if not impossible. In theminority
spin channel, ∣ml ¼ 2

�
levels remain the lowest unless a very high OP

parameter is applied to promote the occupation of the ∣ml ¼ 3
�
state.

However, since the orbital polarization term is spin-independent, such a
large OP parameter also causes large orbital polarization in the majority-
spin channel, resulting in partial occupation in the majority-spin channel.
As a result, with this OPC scheme, we are not able to obtain the correct 4f
ground state that satisfies Hund’s rules.

Thus,we conclude that neither the SICnor theOPCmethod, at least by
itself, is useful for extensive calculations of MA in 4f-metal compounds.
Therefore, we will pursue the idea discussed above of calculating MA in an
artificially stabilized, computationally-metastable orbital state that respects
Hund’s rules.

4f anisotropy: Benchmarking total energy calculation
To systematically benchmark the validity of MA calculations, we further
investigate several isostructural systems, including the two most important
permanent magnet systems: RCo5 and R2Fe14B. Among them, SmCo5- and
Fe-rich Nd2Fe14B-based magnets are the most successful permanent

magnets so far.Wewill show that the rare-earthMA in these systems can be
well described using DFT+U.

Variousmethods, including DFT+U, SIC47, andDMFT in the form of
Hubbard I16,17, have been employed to investigate the rare-earthMA in these
systems, especially for SmCo5 due to its importance and a smallerRCo5 unit
cell. However, despite the wide application of simplistic DFT+U, the sys-
tematicMAstudyof isostructural serieswithheavy-R elements is, to the best
of our knowledge, rare. Moreover, most of the previous calculations in the
literature did not discuss the details of the converged 4f configuration or
were carried out without enforcing Hund’s rules; the calculated orbital
moments can deviate significantly from SRM due to the orbital-dependent
SIE in DFT+U and the corresponding failure to reproduce Hund’s rules
being ignored. Consequently, the reported orbital magnetic moment and
MAvaluesare scattered andhard to evaluate, castingdoubton the validity of
DFT+U applications for rare-earth MA.

Therefore, herewewant tofill this gap by systematically benchmarking
MAcalculationswith the SRMmodel usingDFT+U. Such benchmarking is
also necessary if we want to compare with more sophisticated approaches
such as DMFT or other methods and evaluate their improvement.

Here, we focus on the rare-earth MA in these systems, although the
transition-metal sublattice MA is also important and of interest by itself 50.
For example, in RCo5, the Co sublattice also contributes a large easy-axis
anisotropy, as YCo5 represents one of the largest 3dMA systems. However,
plain DFT underestimates the MA of Co sublattices and only gives a value
between 1

4 and
1
3 of the experimental value inRCo5

51. Orbital polarization34,52

or applying an additional Hubbard U interaction on Co-3d orbitals in
DMFT53 or DFT+U has been used to improve the agreement between
calculation and experiments.

RCo5compounds. Figure 2 shows the calculated total energies E(θ, ϕ) in
RCo5 as functions of spin-quantization direction characterized by the
polar angle θ and the azimuthal angle ϕ. Besides the heavy R elements, we
also consider R = Sm and Nd for comparison with existing experimental
data. In contrast to other RCo5 compounds, GdCo5 with a spherical Gd-
4f charge exhibits a very small easy-axis MA, contributed mostly by the
Co sublattices. The energy minimum occurs at θ = 0°, [0 0 1], for Er and
Sm, and at θ = 90° for all other compounds. This suggests that RCo5 has
an easy-axis MA for R = Er and Sm, while an easy-plane MA for R = Tb,
Dy, Ho, and Nd. The calculations for all the compounds accurately
reproduce their experimental easy directions measured at low
temperatures54–57, demonstrating the effectiveness of MA description in
SRM through DFT+U.

HoCo5 shares a similar MA profile with NdCo5 but has an opposite
MA profile to ErCo5. This can be understood as Ho3+ with a 4f 3,↓ config-
uration and Nd3+ with a 4f 3,↑ configuration having a similar aspherical
charge density in the single-Slater-determinant description of DFT, if one
ignores thedifference between their radialwavefunctions.Thenearlyperfect
opposite MA profiles of HoCo5 and ErCo5 reflect the particle-hole sym-
metry also found in HoMn6Sn6 and ErMn6Sn6

6.
Interestingly, all RCo5 compounds exhibit a sizable in-plane MA,

suggesting a significant higher-orderCFPA6
6. Among allR elements, TbCo5

has the smallest in-plane MA, while NdCo5 shows the strongest in-plane
MA, almost equal in amplitude to the out-of-planeMA.Notably, a large in-
planeMA inNdCo5 has been observed experimentally58,59 and has also been
reproduced in a recent DFT+DMFT study17. Assuming a fixed CFP A6

6 for
the isostructural RCo5, the magnitude of in-plane MA correlates well with
the element’s multipolemomentQ6, with the largest value found inNd and
the smallest in Tb. However, our calculations overestimate the in-plane
anisotropy of NdCo5 due to inherent limitations of DFT, which can be
alleviated by employing a multiple-Slater-determinant approach.

It is worth noting that the in-plane MA in SmCo5 would vanish in a
conventional CFP model using the lowest multiplet
∣L ¼ 5; S ¼ 5

2 ; J ¼ 5
2 ;mJ

�
, as the Stevens operator O6

6 vanishes for J ¼ 5
2,

unless the Jmixing due tomultiplet interaction is considered. The non-zero
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in-plane MA also reflects a difference between the many-body treatment
and the single-Slater-determinant description of DFT for the Sm ion.

R2Fe14B compounds. R2Fe14B compounds crystallize in a tetragonal
crystal structure with space group P42/mnm (no. 136). There are two
inequivalentR sites, denoted byWyckoff sites 4g and4f. The primitive cell
consists of four formula units. Experimentally, the easy directions of
R2Fe14B at low temperatures are easy-axial for Tb and Dy, conical for Ho
and Nd, and easy-plane for Er and Tm60.

Figrue 3 shows the MA calculated in R2Fe14B with the spin quantiza-
tiondirection rotating from[001] to [100]and then to [110]directionsof the
tetragonal crystal structure. The calculated easy directions again all agree
with experimental observations. Notably, for the in-plane MA, R2Fe14B
compounds show somewhat smaller values than those in RCo5.

Remarkably, very strong easy-axisMA is obtained forR=TbandDy. In
fact, in practice, a small amount of these two heavy R elements is often
required to enhance the coercivities of R2Fe14B-based magnets for real
applications. Similar toRCo5 andRMn6Sn6, the calculatedE(θ,ϕ) profiles of
R2Fe14B also exhibit perfect particle-hole symmetry for R = Ho and Er.

Experimentally, it was found that the net magnetization in Nd2Fe14B
cants away from the c axis toward the [110] direction by an angle of θ = 30°,
measured at 4 K. This is consistent with the calculated energy minimum
occurring at θ = 30° when the spin rotates from [001] to [100], as shown in
Fig. 3We further confirm that rotation from [001] toward [110] produces a
slightly deeper energy minimum at θ = 30° (not shown), thus reproducing
exactly the experimental easy-cone angle. The contribution from the two
inequivalent Nd sites to the MA is also of great interest. It has been argued
that the 4f and4g sites have negative andpositive contributions, respectively,

to the MAE61. However, we found that contributions from both sites show
an energy minimum near θ = 30° (see Supplementary Fig. 1).

It is interesting that in some light-R elements, DFT—despite being an
approximation that projects the Hund’s-rules ground state onto a dominant
single Slater determinant—successfully reproduces the easy magnetization
directions in SmCo5 and NdCo5, as well as the nontrivial easy-cone angle of
Nd2Fe14B. We see here that simply enforcing Hund’s rules already gives the
correct easydirection, an improvementover conventionalDFT+U.However,
the magnitude of the MAE can be significantly overestimated for light rare
earths, such as the easy-axis anisotropy in SmCo5 and the in-plane anisotropy
in NdCo5. These errors can be corrected by explicitly accounting formultiple
Slater determinants (this will be the subject of a future publication).

RFe12 compounds. Fe-rich RFe12-based compounds have recently
attracted significant interest in the permanent magnet community62. In
general, these compounds typically form as RFe12−xMx, requiring a third
element M = Ti, V, Cr, Mn, Mo, W, Al, or Si to stabilize a body-center-
tetragonal ThMn12-type (I4/mmm space group, no. 139) structure.
Experimental easy-axis information for RFe11Ti is available for com-
parison, though there are some disagreements in experimental
reports60,63–65. For example, both easy-plane and easy-coneMAhave been
reported for R = Tb, while both easy-axis and easy-cone MA have been
reported for R = Ho at low temperatures.

To compare with experiments, we calculated the MA in the hypo-
thetical composition of RFe12, ignoring the third element for simplicity.
We found that the calculatedMAE per R atom of RFe12 is more than five
times smaller than in RCo5 and R2Fe14B. The calculated MA, as showin
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Fig. 3 | Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a
function of spin-axis rotation in R2Fe14B with R = Gd, Tb, Dy, Ho, Er, Tm,
and Nd. The spin direction is characterized by the polar angle θ and the azimuthal
angle ϕ. The lattice vector c ([0 0 1]) direction is along the ẑ direction and denoted by
θ = 0°, while the lattice vector a ([1 0 0]) direction is denoted by θ = 90° and ϕ = 0°.
The calculations are performed in DFT+U with U = 8 eV on the 4f states of all R
elements to satisfy Hund’s rules. For all the depicted compounds, the calculated easy
directions are consistent with experimental observations.
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Fig. 2 | Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a
function of spin-axis rotation in RCo5 with R=Gd, Tb, Dy, Ho, Er, Tm, Yb, Sm,
and Nd. The spin direction is characterized by the polar angle θ and the azimuthal
angle ϕ. The lattice vector c ([0 0 1]) direction is along the ẑ direction and is denoted
by θ = 0°, while the lattice vector a ([1 0 0]) direction is denoted by θ = 90° and ϕ =−
30°. The calculations are performed inDFT+UwithU=10 eVon the 4f states of allR
elements to satisfy Hund’s rules. For all the depicted compounds, the calculated easy
directions are consistent with experimental observations.
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in Fig. 4, is easy-plane for R = Tb and Dy, and easy-cone for R = Ho,
which agrees with the experimental findings reported60,63. For R = Er and
Tm, however, our calculated easy directions for RFe12 do not exactly
match the experimental results for RFe11Ti. Experiments found that the
MA is easy-cone and easy-axis, respectively, for R = Er and Tm in
RFe11Ti. In contrast, for R = Er, our calculations indicate a local mini-
mum at the experimental easy direction, but the energy is slightly higher
than that of the in-plane direction. Similarly, for R = Tm, the easy-axis
and in-plane directions have nearly identical energies. The discrepancy
is likely due to the presence of the Ti atom in the real materials; the
chemical effect and induced crystal structure distortion can modify the
crystal field of the R element and MA66. More comprehensive experi-
ments and MA calculations, incorporating more realistic experimental
structures and compositions, are desired to further elucidate MA in
RFe12-based systems.

RMn6Sn6 and RV6Sn6 compounds. Besides these three permanent
magnet systems, we have also previously investigated the rare-earth MA
in RMn6Sn6 and RV6Sn6 compounds6,27, which have recently garnered
significant attention as platforms for topological magnets. For all of these
different isostructural series, the calculated easy directions are consistent
with experiments, as long as reliable experimental measurements are
available for comparison. Among these two dozen compounds, in
addition to the easy-axis and easy-plane anisotropy, some of them exhibit
non-trivial easy-cone angles, e.g., ~ 30° in Nd2Fe14B and ~ 45° in
DyMn6Sn6 and HoMn6Sn6. Moreover, we found that not only the easy
directions but also the magnitudes of MA are comparable to existing
experiments26,27,67. Therefore, our benchmarking of MA in all of these

systems validates the usefulness of applying simplistic DFT+U total
energy calculations to investigate rare-earth MA, provided that Hund’s
rules are enforced.

4f anisotropy: Perturbation theory for fast scanning
Perturbation theory (PT) on top of magnetic force theory has been widely
used to calculate and spatially resolve MA in non-4f systems, providing a
microscopic understanding of MA. Since SOC is much smaller than the CF
ind-electron systemsand is treated as a perturbation, oneobtainsK ¼ 1

2KSO
according to second-order perturbation theory7,8,68. In other words, the total
MA is half of the anisotropy of the SOC energy, KSO. Unlike total MA, KSO

can be resolved into sites, orbitals, spin channels, and bandfillings7,8,69.
In contrast to d-electron systems, in heavy R systems, CF is much

smaller than SOC and should be treated as a perturbation. When the spin
rotates, the 4f charge is locked to the spin by the dominant SOC and rotates
rigidly with the spin. As a result, the SOC energy ESO remains the same
during the rotation, and theMA, in principle, can be calculated asK=KCF in
first-order perturbation theory.

The challenge lies in the accurate estimation of CF energy in open-4f-
shell elements using DFT+U methods, where CF is overestimated by an
order of magnitude, as the aspherical 4f charge induces a much larger CF
splitting than the ligands. A quick and rough fix is to use the CF levels of
isostructural compoundswithR=Gd (f 7), whose half-filled 4forbitals give a
spherical charge and minimize the CF splitting caused by 4f electrons
themselves. It is worth noting that, in a similar spirit, Yttrium (f 0) analogues
of rare-earth/transition-metal magnets have been used to investigate their
CFPs70,71. However, for our approach, Gd is better suited for estimating the
CF splittings in magnetic rare earths because the occupied 4f states are
significantly more localized than the unoccupied ones. Using the occupied
4f levels inGd provides amuchmore accurate estimate compared to relying
on the high-lying 4f bands of Y.

Obviously, one should expect that the ligand-only-induced CF split-
tings would vary across the R series, deviating from the values in the Gd
counterpart. However, even with this rough estimation of CF, we have
shown that the perturbation treatment of 4fMAprovides a gooddescription
of MA in RMn6Sn6

6. To further demonstrate the validity of PT application
on rare-earth anisotropy, we next model the 4f uniaxial MA in RCo5 and
compare it with the 4f-only contributions obtained from total energy
calculations.

Figure 5 compares the 4fMAcalculated using total energy in DFT and
CF energy in PT. The latter is calculated using:

Eðθ; ϕÞ ¼
X

m2Occ: 4f

hΨθ;ϕ
m jHCFjΨθ;ϕ

m i: ð10Þ

Here, ECF(θ,ϕ) is obtained by evaluating the original CFHamiltonian in the
rotated wavefunctions, or, equivalently, the rotated CF Hamiltonian by (−
θ,−ϕ) in the originalwavefunctions. For allR elements, we use theCF levels
ofGdCo5 atΓ, obtained from scalar-relativisticDFT+U calculations.Due to
the high symmetry of the RCo5 crystal structure, theHCF is diagonal in the
real-spherical-harmonics basis at Γ. Therefore, the eigenvalues of the seven
occupied 4f states at Γ in GdCo5 are sufficient to construct the Hamiltonian
HCF in the complex-harmonics basis, which serves as the natural basis for
the SOCHamiltonian. The rotated wavefunctions and Hamiltonian can be
calculated using the Wigner rotation matrix.

Given that the PTmodel assumes theGd-4f crystal field splitting for all
R compounds, the agreement between the DFT and PT model is quite
reasonable. Notably, the deviation increases from Tb to Yb as one moves
farther away fromGd.Our results further demonstrate the validity of the PT
approach in describing rare-earth MA.

Due to its simplicity, such PT calculations can be used for 1) fast
screening of MA and 2) for understanding the origin of rare-earthMA in a
system. For example, large easy-axis MA is required for many applications,
such as permanent magnets and topological magnets. Total energy calcu-
lations are more demanding, and special care must be taken to ensure
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Fig. 4 | Variation of magnetic energy (in meV/f.u.) calculated in DFT+U as a
function of spin-axis rotation in RFe12 with R = Tb, Dy, Ho, Er, Tm. The spin
direction is characterized by the polar angle θ and the azimuthal angle ϕ. The lattice
vector c ([0 0 1]) direction is along the ẑ direction and denoted by θ = 0°, while the
lattice vector a ([1 1 0]) direction is denoted by θ = 90° and ϕ = 45°. The calculations
were performed using DFT+U with U = 10 eV applied to the 4f states of all R
elements, with Hund’s rules enforced on the 4f states.
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convergence to the desired 4f configurations at every spin direction. In this
context, before conducting more reliable total energy calculations, PT cal-
culations can be used for a rapid initial screening of rare-earth MA to
identify potential easy-axis rare-earth MA in unexplored crystal structures.
Furthermore, thePTapproach canbe used to decomposeMAcontributions
into those from different rare-earth sites, such as in R2Fe14B, and analyze
how the MA changes with other tuning parameters, thereby aiding in the
understanding of the origin of MA in a system.

Discussion
In summary, using TbMn6Sn6, we illustrate a general challenge of calcu-
lating rare-earth magnetocrystalline anisotropy in DFT and related meth-
ods, which often fail to reproduce the correct Hund’s-rules ground state of
rare-earth elements due to significant orbital dependence of the self-
interaction error for strongly localized 4f orbitals, and the lack of explicit
proper orbital polarization treatment. The true ground state appears as a
metastable state that lies several hundred meV above, resulting in an
incorrect 4f orbital occupation associated with an incorrect 4f charge den-
sity, which in turn leads to incorrect magnetocrystalline anisotropy. How-
ever, as the self-interaction error and orbital polarization are, in principle,
largely rotationally invariant, the anisotropy of the true ground state might
be expected to remain correct if Hund’s rules are enforced by hand.

We have benchmarked this approach on materials with rare-earth
atoms with saturated moments where Hund’s rules are expected to be
satisfied and the single Slater determinant description is suitable.Notably, in
RCo5, R2Fe14B, RFe12, and other compounds, the calculated easy directions
(including easy axes, planes, and conical angles) have all agreed resonablly
well with low-temperature measurements.

Besides total energy calculations, we also demonstrate the application
of perturbation theory for evaluating rare-earth anisotropy. The good
agreement between the perturbation approach and total energy calculations
shows that it canbe auseful tool for fast screeningofnew systems.Moreover,
in analogy to using the SOC anisotropy to spatially resolve 3d anisotropy,
such perturbation treatment of crystal field energy can be used to resolve
anisotropy in systems that contain multiple nonequivalent rare-earth sites,
aiding in the understanding themicroscopic origin of rare-earth anisotropy.

Methods
Total energy calculations of magnetocrystalline anisotropy
To evaluate the MA, we use DFT to compute the total energies E(θ, ϕ) as a
function of the spin-quantization direction, characterized by the polar angle θ
and the azimuthal angle ϕ. Unlike anisotropy in 3d-electron systems, where
SOC is generallymuchweaker thanCFand canbe treated as aperturbation—
allowing the use of the force theorem for MAE calculations—fully self-
consistent DFT+U+SOC calculations with various spin directions are
required tocompute theMAof4f systems.Additionally, theHund’s rule states
are enforced for all spin quantization directions in all rare-earth elements.

Crystal structure
Experimental crystal structures were used for all calculations. Detailed
structural parameters, including lattice constants, atomic positions, and
corresponding references, are provided in Supplementary Tables S1,
S2 and S3. Note that RFe12 is a hypothetical compound, as real compounds
always contain a small amount of a third element, such as in RFe11Ti, to
stabilize the structure.

DFT+U+SOC calculation details
The DFT calculations were performed using the full-potential linear aug-
mented plane wave (FP-LAPW) method, as implemented in WIEN2K72.
The generalized gradient approximation (GGA) of Perdew, Burke, and
Ernzerhof 73 was used for the exchange and correlation potentials.

The strongly correlated R-4f electrons were treated using the DFT+U
method with the fully localized limit (FLL) double-counting scheme19.
Sizable U values (8–10 eV) were employed to shift the occupied 4f states
away from the Fermi level. SOC was included using the second-variational
method74–76. Compared to the scalar-relativistic case, SOC explicitly couples
the spin-up and spin-down channels and reduces the symmetry.

To generate the self-consistent potential and charge, we employed
RMT � Kmax ¼ 9, 8, and 9 for RCo5, R2Fe14B, and RFe12, respectively, with
muffin-tin radii RMT = 2.8, 2.1, 2.1, and 1.6 a.u. for R, Fe, Co, and B atoms,
respectively. The calculations were performed with 7200, 400, and 4800 k-
points in the full Brillouin zone (FBZ) for RCo5, R2Fe14B, and RFe12,
respectively. A further increase in the number of k-points had a negligible
effect on the results. For k-space integrations to determine the Fermi level,
the tetrahedron integrationmethodwith Blöchl corrections77 was used. The
calculations were iterated until the charge difference between consecutive
iterations was smaller than 10−5e and the total energy difference was below
10−3 mRy/cell.

For perturbation modeling, the CF levels of Gd-4f states of corre-
sponding Gd-containing compounds are calculated without SOC in DFT
+U and used for all R elements. Therefore, our perturbation model ignore
the dependence of the CF on R elements. Additionally, we performed MA
calculations for corresponding Gd compounds (or treated 4f as a spherical
open-core) to obtain the non-4f contributions to the total MA6.

Enforcing Hund’s Rule for the 4f States: with and without
constraints
To enforce the Hund’s rule state for 4f electrons, we performed DFT+U
+SOC calculations with constraints. Specifically, we initialized and then
froze the 4f occupancy matrix (and consequently, the potentials dependent
on it) for each spin direction until the system reached convergence.

Once self-consistency was achieved, the constraint could be lifted,
allowing additional iterations to fully relax the 4f states near the targeted
Hund’s rule states. With sizable U values of 8–10 eV, the Hund’s rule state
solution remained stable evenafter the constraintwas removed. Special care,
such as reducing the mixing parameters, was sometimes required to ensure
that the solution remained in the designated state during subsequent
iterations after the constraintwas lifted,which could result in a slowprocess.

However, key results, including magnetic moments and anisotropy,
remained nearly unchanged when comparing the constrained and relaxed
cases (See Supplementary Discussions for details). Therefore, we primarily
report the constrainedcalculations in thiswork.On theotherhand, for small
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Fig. 5 | Single-ion anisotropy of R-4f in RCo5 calculated using the perturbation
model and DFT+U. The anisotropy is represented as a function of the spin
quantization angle, characterized by the polar angle θ, in RCo5, modeled with per-
turbation theory using CF levels fromGdCo5. The CF levels of GdCo5 are calculated
using DFT+U without SOC, with U ≈ 10 eV. In this analysis, the energy difference
between the ∣ml ¼ ± 3

�
4f levels is disregarded, as it reflects in-plane anisotropy but

not uniaxial anisotropy.
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U values, the constraint often became necessary and could not be removed.
Some 4f configurations can become extremely difficult—or even impossible
—to stabilize without a constraint, as strong hybridization could destabilize
the targeted states.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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