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Next-generation power electronics require efficient heat dissipation management, and molecular
design guidelines are needed to develop polymers with high thermal conductivity. Polymer materials
have considerably lower thermal conductivity than metals and ceramics due to phonon scattering in
the amorphous region. The spontaneous orientation of the molecular chains of liquid crystalline
polymers could potentially give rise to high thermal conductivity, but the molecular design of such
polymers remains largely empirical. In this study, we developed a machine learning model that predicts
with more than 96% accuracy whether liquid crystalline states will form based on the chemical
structure of the polymer. By exploring the inverse mapping of this model, we identified a
comprehensive set of chemical structures for liquid crystalline polyimides. The polymers were then
experimentally synthesized, and the results confirmed that they form liquid crystalline phases, with all
polymers exhibiting calculated thermal conductivities within the range of 0.722-1.26 Wm ' K.

Machine learning is revolutionizing materials research by enabling data-
driven predictive science. In recent years, machine learning-enabled
molecular design, with the objective of identifying new materials with
specific, desired properties, has made significant strides”. The typical
workflow consists of forward and inverse predictionsS. First, a statistical
model is built to predict the target properties of a given material based on its
compositional and structural features. Subsequently, inverse mapping of
this model is explored to predict materials with the desired properties in the
reverse direction. Various machine learning techniques have been actively
developed to apply this concept in polymer chemistry, including a wide
range of property predictors”” and inverse design methods using virtual
polymer generators such as molecular generative artificial intelligence®"".
Notably, proof-of-concept examples include the discovery of amorphous
polymers with high thermal conductivity’, lithium-ion conducting
polymers'"', gas-separating polymer membranes', and high-temperature
polymer dielectrics'. However, few cases of polymers that were initially

predicted by machine learning and subsequently verified experimentally
have been reported. In this nascent field, our work advances the proof-of-
concept of machine learning-driven polymer material design for real-world
applications through the successful discovery of liquid crystalline polymers
with high thermal conductivity.

As the demand for the miniaturization and portability of electronic
devices increases, researchers have focused on the development of light-
weight, highly insulating polymers with high thermal conductivity for
efficient heat dissipation. However, the thermal conductivity of amorphous
polymers is one to three orders of magnitude lower than those of metals and
ceramics'>'’, which is a major barrier to their practical application. In
general, polymers without free electrons exhibit low thermal conductivity
because phonons, the dominant factor in heat transport, tend to scatter in
the amorphous region. To overcome this empirical and theoretical limita-
tion, inorganic fillers are commonly added to the polymer matrix'”. How-
ever, increasing the filler content causes other polymer properties such as
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adhesion, flowability, processability, and insulation to significantly
deteriorate'’. Additionally, if the thermal resistance of the matrix polymer is
high, the thermal conductivity of the composite material reaches a ceiling;
therefore, it is imperative to improve the thermal conductivity of the
polymer matrix itself'’. Therefore, attempts have been made to suppress
phonon scattering by utilizing liquid crystalline phase formation to induce
an ordered alignment of polymer chains”. However, the design of liquid
crystalline polymers remains purely empirical, and relies extensively on trial
and error. While some trends have been identified—for example, the ten-
dency of phenyl benzoate backbones or certain alkyl spacer chains to pro-
mote liquid crystallinity’” “°*—polymers with complex molecular
interactions, such as charge-transfer interactions in polyimides, often
deviate from these trends, resulting in numerous exceptions’.

In this study, we developed a machine learning algorithm to predict the
chemical structure of a polymer-repeating unit capable of forming liquid
crystalline phases. This is an indirect approach that aims to enhance the
thermal conductivity by addressing the challenge posed by the lack of a
comprehensive dataset on the thermal conductivity of oriented polymers. We
constructed a binary classifier using the compositional and structural features
of the polymer-repeating unit as inputs from a labeled dataset of liquid
crystalline polymers and other polymers that were previously synthesized.
The prediction accuracy of the constructed model in discriminating whether
a polymer exhibits a liquid-crystalline phase exceeded 96%. Using this model,
we conducted high-throughput virtual screening to search for polyimides that
form liquid crystalline states. In liquid crystalline polyimides, rigid mesogens
composed of aromatic segments (including conjugated rings and imide
groups) promote molecular alignment, while flexible spacer chains (con-
sisting of alkyl or similar groups) enhance the molecular mobility to facilitate
the formation of the liquid crystalline state’. In addition, six polymers were
selected from a narrowed-down library of candidates for experimental ver-
ification by the de novo syntheses of their monomers followed by their
polymerization reactions. As a result, all six polymers were successfully
synthesized, and the resulting polymers spontaneously formed smectic liquid
crystal phases. Moreover, by applying a lock-in photothermal method for
measuring the in-plane thermal diffusivity using arrayed temperature sensors
on suspended SiNy membranes, their thermal conductivities were experi-
mentally confirmed to reach 0.722—1.26 W m ™' K™". These are the first liquid
crystalline polymers predicted and discovered via machine learning.
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Results

Performance of the machine learning model

The machine learning task is formulated as a supervised learning problem
aimed to classify the chemical structure of a polymer repeat unit denoted as
X into two classes with the binary variable Y € {—1, 1} indicating a liquid
crystalline state (Y = 1) or a non-liquid crystalline state (Y = —1) (Fig. 1a).
The compositional and structural features of a given repeat unit are encoded
into a 397-dimensional descriptor vector (¢(X) € R*”). Here, only linear
homopolymers without additives were considered for the learning and
prediction tasks by focusing on their intrinsic properties and avoiding the
influence of additives or copolymerization, which can affect liquid crystal-
line phase formation. The descriptor was formed through the concatenation
of two different descriptors: a 207-dimensional vector of RDKit descriptors
representing various physical, chemical, and structural features of polymer
molecules (https://www.rdkit.org/), and a 190-dimensional quantitative
descriptor that encodes empirical force field parameters derived using a
general AMBER force field version 2 (GAFF2)*, which is widely used in all-
atom classical molecular dynamics simulations””. The calculations of these
two polymer descriptors were performed using the Python libraries
XenonPy™"' and RadonPy”’, which implement wrapper functions for RDKit
and the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)*, respectively. To properly describe the periodicity of polymer
repeating structures, the descriptor was calculated after linearly linking the
head and tail of the repeating unit 10 times to form a decamer”. The
descriptor calculation procedure is described in the Supplementary Infor-
mation (Section 1.2; pages S2 and S3).

A machinelearning classifier Y = f (([)(X)) defines a mapping from
the vectorized polymer to the binary class label by indicating whether
the polymer would exhibit a liquid crystalline state. As positive
instances (P) for the binary classification task, we used a list of 951
liquid crystalline polymers compiled from PoLyInfo”, a polymer
property database that had been manually compiled based on a lit-
erature survey. The polymer list was partially labeled with more
detailed annotations representing liquid crystalline states such as the
nematic and smectic phases; however, in this study, they were merged
into a single label (liquid crystal). A total of 3,597 polymers without any
record of forming liquid crystalline states were extracted from the
database and used as unlabeled instances (U).
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Fig. 1 | Machine learning process for predicting whether a polymer with a
designed repeating unit exhibits liquid crystalline states. a Machine learning
workflow. b Prediction accuracy (confusion matrix, precision, recall, and F; scores)

« Liquid crystalline states (LCP)

(b) True
LCP Others
& Lcp 114 (9.6) 13 (7.3)
k3]
©
o
O Others  10(3.6) 504 (11.1)
Best Mean (SD)
Accuracy  0.973 0.964 (0.012)
Precision 0.919 0.898 (0.044)
Recall 0.947 0.920 (0.028)
F,score  0.933 0.908 (0.027)

for test datasets; standard deviations of the performance metrics obtained from 100
independent tests are shown in parentheses.
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Fig. 2 | Virtual screening of liquid crystalline polyimides. a The rigid and flexible
chains of polyimides were divided into five building blocks, and the corresponding
fragment set for each block was extracted from the Zinc database. By combining these
fragments, 115,536 virtual polyimides were computationally generated. b The

chemical structures of the virtual polymers are visualized using the UMAP projection
(in gray). The 10,825 candidates predicted to exhibit liquid crystallinity were clustered
into 391 groups based on molecular similarity and visualized in different colors. From
these clusters, six polyimides were selected and successfully synthesized.

Notably, these polymers are not necessarily true negative cases, and
their liquid crystallinity has not been confirmed. No comprehensive data-
base of negative cases has been constructed for liquid crystalline polymers.
In machine learning, this problem is known as positive and unlabeled (PU)
learning™. In the present study, we applied the classical PU learning algo-
rithm proposed by Elkan et al.” to calibrate the classification probability.
However, the effect of the PU learning calibration was insignificant. The
protocols established for data preparation and PU learning are provided in
Supplementary Information (Section 1.3; pages S3 and S4).

The binary classifier was modeled as a conventional multilayer per-
ceptron neural network. A total of 85% of the entire dataset was randomly
selected and used as the training set, while the remaining 15% was used as a
test set for evaluating the model performance. A randomly selected 85% of
the training dataset was applied for training, and the remainder was utilized
for the validation set. The hyperparameters of the classification model were
optimized using the black box optimization software Optuna®, which
adjusted the number and width of the hidden layers to minimize the vali-
dation F; score with this random split (see details in Supplementary
Information (Section 1.2; page S2 and S3)). To assess the variation in the
performance metrics, we independently repeated the training and testing
process 100 times using different random data splits.

According to Fig. 1b, the average classification accuracy exceeds 96%.
The mean values of recall and precision are 0.92 and 0.90, respectively,
suggesting that the trade-off between the false and true positive rates is well
balanced. Although the data are not shown herein, we confirmed that other
machine learning algorithms, such as ensemble learning, achieve com-
parative predictive performance.

Virtual screening of liquid crystalline polyimides

Using the PU learning-calibrated classifier, we conducted an exhaustive
search for polymers that undergo liquid crystallization. The search space
was limited to polyimides, which are usually synthesized via the poly-
condensation of tetracarboxylic dianhydride and diamine monomers. To
create a virtual library, we decomposed the template structure of polyimides
into five building blocks labeled A-E in Fig. 2a. According to this decom-
position, the acid dianhydride and diamine are composed of symmetric
molecules. Fragments matching the structural pattern of each building block
were searched among a set of highly available compounds in the small
molecule database ZINC”. Considering these combinations, 115,536 virtual
polyimides were computationally generated. In polyimides, the rigid chains,

which consist of conjugated aromatic rings bonded to imide groups, pro-
mote molecular orientation to instill mesogenic behavior. In contrast, the
flexible spacer groups tend to form an amorphous structure that can
strongly absorb impact energy. Because the rigid and flexible components
are arranged symmetrically, the self-assembled higher-order structures are
also expected to exhibit structural equivalence (symmetry) and periodicity
in the plane of the main chain. Thus, a virtual library was constructed
following this design and synthesis strategy.

By applying a median liquid crystal transition probability of unity and a
standard deviation of less than 0.2 as thresholds, approximately 91% of the
candidate polymers were filtered out, resulting in 10,825 polyimides predicted to
exhibit liquid crystallinity. Figure 2b shows a two-dimensional (2D) repre-
sentation of the selected candidates using the uniform manifold approximation
and projection (UMAP) algorithm®, in which the chemical structure of each
repeat unit was encoded into the descriptor following the procedure utilized
during the construction of the predictive models. We applied hierarchical
density-based spatial clustering of applications with noise (known as
HDBSCAN)™* to the projected polymers, which suggested the presence of 391
different clusters. Subsequently, we selected candidates suitable for experimental
synthesis by examining representatives from the 391 clusters and those with
closely related structures. Specifically, the repeating unit of a representative
polyimide candidate from each cluster was reviewed by a polymer synthesis
expert to assess the synthesizability of each dianhydride and diamine monomer,
as well as the availability of the necessary ingredients. As a consequence, six
polyimides (Fig. 3) were selected from several promising clusters and success-
fully synthesized; X-ray structural analysis of these polyimide bulk films revealed
the formation of smectic liquid crystalline phases (Supplementary Information,
Section 3.5 (pages S40-S41)). Further details of the selection procedure are
provided in the Supplementary Information (Section 1.5; pages S4-S6).

Analysis of higher-order structures in spin-coated films

The higher-order structures within the spin-coated thin films were
analyzed by conducting Grazing Incidence Wide-Angle X-ray Diffrac-
tion (GIWAXD) measurements. In this study, the in-plane thermal
diffusivity of polyimide films—fabricated via spin coating followed by
thermal imidization—was measured using SiNx devices. The small size
of these devices meant that conducting GIWAXD directly on the poly-
imide films formed on them was challenging. Therefore, similar films
were replicated on silicon wafers under identical spin-coating conditions
to facilitate GIWAXD measurements. To quantify the molecular
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Fig. 3 | Chemical structures of the six polyimides
selected for synthesis through virtual screening

and their corresponding monomers. The poly- PIC1-1
imides were derived from combinations of three
types of dianhydrides (TACI1, TAC2, TAC3) and PIC1-2
two types of diamines (DAC1, DAC2).
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orientation within the spin-coated films, the uniaxial orientational order
parameter S = (3<c052¢> — 1) /2 was calculated using the azimuthal
distribution of the diffraction intensity at 26 ~ 20°. This calculation
method follows the approach described by Ishige et al.*".

The measured GIWAXD profiles show that the diffraction is somewhat
concentrated on the meridional axis, indicating preferential in-plane orien-
tation of mesogens in the thin films (Fig. 4a—f). The S values calculated for the
films ranged from —0.33 to —0.45 (see the rightmost column of Table 1).

Mesogens of which the molecular orientation is such that the long axis
is oriented perfectly parallel to the substrate surface would display a 2D
GIWAXD profile with the diffraction concentrated on the meridional line
parallel to the film normal, yielding an S value of —0.5. The range of S values
obtained in our work suggests that the alignment of the mesogens is not
entirely parallel to the substrate surface. The in-plane molecular orientation
develops during the imidization process, where a polyimide film fixed onto a
silicon wafer undergoes contraction. GIWAXD profiles measured imme-
diately after spin coating and solvent removal, i.e., before the imidization
process, showed azimuthally spread diffraction, indicating a lack of pre-
ferential molecular orientation (see Fig. S57 in the Supplementary Infor-
mation, Section 3.5 (page 44)).

Moreover, SAXS and WAXD analyses of the bulk samples suggested
that PIC1-1, 1-2, and 2-1 exhibited a smectic B-like phase, whereas PIC3-1
and 3-2 demonstrated a smectic E-like phase. PIC2-2, similar to PIC3-1 and
3-2, formed a close-packed arrangement between neighboring molecules
(Fig. S54). In thin films, however, the intensity vs. g profiles shown in Fig. 4g
indicated that the peak shape around g ~ 15nm~* for PIC2-2, 3-1,and 3-2
differed from those observed in bulk analyses. This discrepancy suggests that
in thin films, the molecular alignment over long distances may be insufficient
to produce the diffraction patterns characteristic of a smectic E-like phase.

According to the S values listed in Table 1, no significant differences in
the degree of in-plane orientation were observed between the PIC1-1 and
PICI-2 samples, nor between the PIC3-1 and PIC3-2 samples. However, a
different trend was observed for the PIC2 series, where PIC2-1 exhibited a
higher degree of in-plane orientation compared to PIC2-2. Additionally, the
PICS3 series displayed a lower degree of in-plane orientation than both the
PICI and PIC2 series. These findings suggest that differences in the struc-
ture of the mesogen significantly affect the S values, whereas variations in the
spacer length do not have a substantial impact.

The presence of a methylene group at the center of the mesogen in the
PIC2 series influences the higher-order structure and S values. The results of

subsequent analyses of the bulk samples presented in Fig. S57 reveal the
distinct higher-order structural characteristics of the PIC2 samples as com-
pared with the other samples. This suggests that the methylene group of the
mesogen in the PIC2 series plays a critical role in determining the degree of
molecular orientation and structural evolution during thermal imidization.

Evaluation of thermophysical properties
The in-plane thermal conductivity (1) and phase transition temperatures of
the synthesized liquid crystalline polyimides were investigated. The results,
including the in-plane thermal diffusivity («), specific heat capacities (C,),
densities (p), and A (calculated using &, C,, p), as well as the phase transition
temperatures, are summarized in Table 1. Measurement of the thermal
conductivity and diffusivity of microscopically ordered liquid crystalline
polymer thin films requires unique setups and equipment with high preci-
sion and fine spatial resolution. Several techniques, such as a thermal bridge
method”, atomic force microscopy cantilever-assisted measurements®, and
time-domain thermoreflectance*, have been employed for measuring the
microscale thermal conductivity of polymers. In this study, the thermo-
physical properties were evaluated by a microscale temperature wave ana-
lysis method (u-TWA) using a device consisting of a line-shaped or spiral-
shaped temperature sensor array on a 2D silicon nitride (SiNy) membrane
with a thickness of 50 or 150 nm® and ultrafast scanning calorimetry
(FSC)*. The method employing the array-type sensors (u-TWA) enabled
rapid measurements of the in-plane thermal diffusivity of the aligned
polyimide nanofilms to obtain thermal diffusivity distributions at different
positions. The thermal conductivities of liquid crystalline polymers were
obatind by measured thermal diffusivities, densities and specific heat capa-
cities according to the following equation A = apC,,. Detailed descriptions of
the measurement techniques and the corresponding results are provided in
the Supplementary Information (Sections 3.3 and 3.4; pages S36-S39).
Using this method, the in-plane thermal conductivity of the newly
synthesized liquid crystalline aromatic polyimide nanofilm (PIC2-1) pre-
pared via spin coating was computed from the measured thermal diffusivity,
which reached 1.26 Wm ™" K. This value was significantly higher than
those of commercial polyimides in their nearly amorphous states” and of
previously reported non-crosslinked liquid crystalline polyimides*. The
PICX-2 samples exhibited higher thermal conductivities compared to the
PICX-1 samples. This result aligns with previous studies showing that
increased molecular rigidity promotes thermal conductivity”. The PICX-2
samples, with their shorter alkyl spacer chains, have more rigid molecular
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structures than the PICX-1 samples, which likely contributes to
their superior thermal conductivities. Furthermore, among the PICX-2
samples, those with S values closer to —0.5, indicative of a higher degree of
in-plane molecular orientation, exhibited higher thermal conductivities.
Specifically, PIC1-2 demonstrated the highest thermal conductivity,
whereas the thermal conductivity of PIC3-2, which had the largest S
value, was the lowest. These findings clearly indicate that the
molecular chain orientation exerts a significant effect on the thermal con-
ductivity. Figure 5 illustrates the relationship between the structural char-
acteristics of the molecule (chain rigidity), degree of in-plane molecular
orientation (evaluated on the basis of the order parameter S), and thermal
conductivity.

The FSC measurements revealed first-order phase transitions at tem-
peratures higher than 350 °C in the course of an ultra-fast temperature scan
(10,000 K/s using FSC) during the heating and cooling processes. These
observations were made possible by the extremely short residence times at
high temperatures, which significantly suppressed the thermal decom-
position of aromatic polyimides. To the best of our knowledge, this is the
first study in which a liquid crystal transition at temperatures above 350 °C
has been actually observed as a transient transition with an enthalpy change.

Discussion
This study demonstrates that machine learning can predict the formation of
liquid crystalline phases for various polymers based on their chemical
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Table 1 | Experimental properties of the six synthesized polyimides

Sample Tyc, (°C) T, (°C) Tic, (°C) T¢ (°C) «(x10 " m?s™") d (hm) C, (¥ p(gecm™) AWm'K") S
g 'K

PIC1-1 391/399 459/457 314/305 403/393 5.74 +0.01 600 1.18 1.32 0.894 +0.003 —0.45
PIC1-2 424/- 478/459 334/326 445/424 7.93+0.08 500 1.16 1.37 1.26 +0.013 —0.44
PIC2-1 402/- 474/477 273/259 360/352 5.77 £0.04 470 1.2 1.31 0.904 +0.007 —0.40
PIC2-2 - 460/463 298/332 356/454 6.88+0.17 260 1.13 1.36 1.06 + 0.026 -0.35
PIC3-1 - 464/492 325/321 411/411 4.71 £0.05 540 1.16 1.32 0.722 +0.008 -0.33
PIC3-2 - 456/420 -/349 374/372 6.35+0.36 270 1.13 1.38 0.990 + 0.056 -0.33

T\c, Tm»and T, values measured via FSC at scan rates of 5000 and 10,000 K/s during heating and cooling; thermal diffusivities « measured by ,-TWA,; thickness values d measured by the step profilometer
(Alpha-Step 1Q); specific heat capacities C,, determined via differential scanning calorimetry; densities p measured by the density gradient tube method; and thermal conductivities A calculated from the a,
C,, and density values. The uniaxial orientational order parameter S was calculated from the GIWAXD results.
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Fig. 5 | Relationship between rigidity of the molecular chain, in-plane molecular orientation, and in-plane thermal conductivity ().

structures. The trained predictor achieved an accuracy of over 96% within
the chemical space of the tested polymer sets. Six polyimides were suc-
cessfully synthesized according to the molecular design predicted via
machine learning. They formed higher-order structures with smectic liquid
crystalline phases. These are the first liquid crystalline polymers predicted
and discovered by machine learning in the history of polymer materials
research. In this proof-of-concept study, we aimed to suppress phonon
scattering and enhance the thermal conductivity of the polymers by
increasing the molecular orientation order through liquid crystalline phase
formation. As anticipated, the thermal conductivity of the synthesized liquid
crystalline polyimides exceeded 1.2 W m ™' K ™', which is significantly higher
than those of commercial polyimides in their nearly amorphous states.
Currently, fundamental methodology is not available for computa-
tionally predicting the likelihood of liquid crystalline phase formation in any
given polymer, and the molecular design of these materials remains highly
empirical. The proposed method offers potential as a powerful tool for
facilitating the study of not only liquid crystalline polyimides but also other
liquid crystalline polymers; however, several challenges persist. The repor-
ted predictive accuracy is an estimate based on a limited set of polymers,
which necessitates the determination of the true generalization performance

outside the current data distribution. Additionally, this study focused on
binary classification to predict whether a polymer would exhibit liquid
crystalline behavior, yet the prediction of specific phase types, such as
nematic, smectic, and crystalline phases, should also be addressed to enable
the synthesis of polymers with targeted liquid crystalline phases. Another
matter is the predictability of phase transition temperatures. Furthermore,
predicting the physical properties of liquid crystalline polymers represents
another important challenge. Constructing a comprehensive database and
establishing a methodological basis for data-driven liquid crystalline poly-
mer chemistry are desirable goals for future studies.

Methods

Synthesis of predicted polyimides

Detailed reaction conditions and nuclear molecular resonance (NMR) and
Fourier-transform infrared (FT-IR) spectra of the resulting compounds are
provided in the Supplementary Information (Sections 2.1-2.5; pages
S6-534). Examples of the synthesis procedures are provided in Fig. 6.

Synthesis of tetracarboxylic dianhydrides. The three types of
tetracarboxylic dianhydrides (TACI1-3) were synthesized through a three-
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Fig. 6 | Synthesis procedure for the designed polyimides. a Synthesis of acid
dianhydride TAC3; TACI and TAC2 were synthesized via the same procedure after
replacing the starting compounds. b Synthesis of diamine DAC2; DAC1 was

synthesized via the same procedure after replacing the starting compounds.
¢ Synthesis of polyimides using a drop casting method.

step process using different aromatic diamines as starting materials. In the
first step, the aromatic diamines reacted with 4-methoxybenzoic acid
chloride to form amides, using N-methyl-2-pyrrolidone (NMP) as the
solvent and pyridine as the base. The resultant compounds were purified
via recrystallization from dimethylformamide. The second step involved a
demethylation reaction using thiophenol, following the method developed
by Chakraborti et al.”’. The demethylated products were purified through
reprecipitation in methanol. In the third step, the hydroxyl-terminated
compounds were esterified with trimellitic anhydride chloride, followed by
recrystallization using y-butyrolactone.

Synthesis of diamines. The two diamines were synthesized from
dibromoalkanes in a two-step process. The first step involved Williamson
ether synthesis with 4-nitrophenol, followed by reduction of the nitro
groups to amino groups via hydrogenation using a Pd/C catalyst. The
resulting compounds were purified by recrystallization in ethanol for
subsequent polymerization.

Preparation of polyimide samples. The three tetracarboxylic dia-
nhydrides and two diamines were polymerized in NMP to prepare six
poly(amic acid) solutions. Portions of these solutions were drop-cast
onto glass plates and thermally imidized for wide-angle X-ray analyses.
Additional samples were prepared for FSC measurements. The
remaining solutions were reprecipitated, dried, and redissolved for
further analysis. For thermal diffusivity measurements, a 10 wt.%
solution of redissolved poly(amic acid) was spin-coated onto the sensor
device and silicon wafer (2 cm x 2 cm) for GIWAXD measurements,
followed by thermal imidization. Inherent viscosities were measured
using an Ostwald viscometer after dissolving 0.5 g/dL of each poly(amic
acid) in NMP.

Analysis of higher-order structures in spin-coated films

The molecular orientation and higher-order structures of polyimide
films were analyzed by conducting GIWAXD measurements
(Bruker D8 DISCOVER instrument equipped with a VANTEC-500
detector and CuKa radiation). The incident angle was consistently set
to 0.25°.

Measurement of thermophysical properties

Detailed procedures for the measurement of the polymer properties are
provided in the Supplementary Information (Sections 3.2-3.4; pages
$36-S39).

Data availability

All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supplementary Information. Data and Python codes
supporting the findings of this study will be made available upon reasonable
request to the corresponding authors.
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