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A neural master equation framework for
multiscale modeling of molecular
processes: application to atomic-scale
plasma processes
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Plasma-surface interactions (PSI) play a crucial role in microelectronics fabrication; however, their
multiscale nature and array of complex, often unknown interactions make computational modeling of
PSIs extremely difficult. To this end, we propose a general neural master equation (NME) framework
that usesmaster equations to describe the dynamics of amolecular process, wherein neural networks
learned fromatomistic simulations represent unknown transitions betweendifferent systemstates. By
leveraging the physics-based structure of master equations and data-driven state transitions, the
NME framework promotes generalizability and physics interpretability, and can bridge disparate
length and time scales. The framework is demonstrated for multiscale modeling of Si atomic layer
etching and reactive ion etching, where the learned NME-based surface kinetic models exhibit good
predictive and extrapolative capabilities for predicting experimentally relevant observables as a
function of process parameters. The NME-based surface kinetic models obey physical constraints,
which are violated in models based on neural ordinary differential equations. The proposed NME
framework for multiscale modeling of molecular processes can pave the way for the discovery of new
chemistries and materials in atomic-scale plasma processes.

Interactions of low-temperature plasmas (LTP) with material surfaces are
central to the fabrication ofmicroelectronics1,2, as approximately 30 percent
of the semiconductor manufacturing chain relies on plasma processing. A
holistic understanding of the interactions of plasma with materials, termed
plasma-surface interactions (PSI), is essential for maintaining greater uni-
formity inmicroelectronic features, implementing atomic-scale control and
reducing defects, as well as for exploring new chemistries, materials, and
fabrication techniques3,4. Despite huge strides in plasma modeling and
surface science simulations, model-based investigations of atomic-scale
plasma processes remain largely limited due to the lack of mechanistic
models of complex PSI5.

The main challenges in modeling PSI stem from the vast array of
possible atomistic processes at play. These include secondary electron
emission6, spontaneous etching7,8, surface reactions9, surface adsorption and
modification10, surface charging11, radical recombination10, diffusion12, and
knock-on collisions13, to name a few.Moreover, PSI strongly depend on the

plasma sheath, material surface condition, and bulk material properties,
each ofwhich is characterized by physics at different length and time scales5.
Hence, PSI involve multiscale processes, spanning length scales from Å to
cm and time scales from picoseconds to seconds. A comprehensive
description of PSI must take into account the quantum interactions at the
plasma-material interface,mesoscopic physics in the plasma sheath, and the
macroscopic variations in the bulk plasma.

Multiscale modeling of PSI has received renewed interest as plasma
processing of complex interfaces is becoming increasingly important in a
wide range of emerging LTP applications4. Common multiscale modeling
strategies for PSI include combiningmolecular dynamics (MD) andMonte-
Carlo (MC) simulations5,12,14–16, coupling kinetic MC (KMC) simulations of
surface with fluid descriptions of the bulk plasma17,18, rate equation
approaches for describing specific interactions where kinetic rate constants
are obtained from MD simulations19, and semiclassical models for charge
transfer using separate Boltzmann equations for electrons and holes on
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either side of the interface along with quantum mechanical matching
conditions at the interface20. However, these multiscale modeling strategies
are generally tailored to describe one or a subset of plasma-induced surface
processes5, often ignoring the interplay between a complex array of inter-
actions and thus limiting the ability to “transfer” the model to similar sys-
tems in a systematic and efficient manner. Additionally, these approaches
rarely provide equation-oriented model representations that can readily
capture the effects of process-level operating conditions and parameters,
and can often be prohibitively expensive.

Interactions at the plasma-solid interface can also be affected by the
subsurface, for example, when modified through ion bombardment15.
Typical strategies to account for the subsurface include assuming a well-
mixed zone (called the mixing layer) and using Arrhenius-type global
reactionmodels to describe surface reactions21–24. Such classical reaction rate
models are empirical in nature and typically rely on experimentally deter-
mined reaction rate laws, where a key challenge stems from accounting for
the complex series of reactions that can occur at the plasma-solid interface.
On theotherhand,KMCmodels describe thewell-mixed subsurface layer of
fixed depth through which chemical species can travel and reactions can
progress5,15,16. KMC models evolve probabilistic events through stochastic
sampling. As such, they do not provide analytical kinetic equations and can
be computationally expensive.

In recent years, machine learning-assisted approaches have been
widely used for data-drivenmodeling of plasma physics, chemistry, and PSI
(e.g.,25–32). While there has been fairly significant progress on physics-
informed, learning-assisted modeling of the bulk plasma behavior33–35,
much of themachine learning work related to PSI modeling has focused on
creating black-box, surrogatemodels for plasma-induced surface effects36–38.
Although such black-box models can exhibit good predictive capabilities
over the range of processing conditions covered in their training data, they
do not generally provide interpretable representations of the multiscale
processes governing PSI. Integration of physics into data-drivenmodels can
reduce overfitting, impart interpretability, extend extrapolative capabilities
beyond the range of training data, and promote generalization to new
systems39–41. As such, fusing physics-based and data-drivenmodeling can be
particularly useful for problems involving complex multiphysics.

Physics knowledge can be included into data-driven models either
through the loss function, as in physics-informed neural networks42, or
through composite equations composed of physics-based expressions, such
as conservation laws, and function approximators. The latter approach is
termed as universal differential equations (UDEs)43, where parts of a dif-
ferential equation are represented by neural networks or other function
approximators as a substitute for unknown physics, such that the entire
equation is differentiable44. UDEs have emerged as a powerful tool in sci-
entific computing for dynamic modeling of partially known systems45, as
well as discovery of governing equations of dynamical systems46. Example
applications include modeling of nucleation kinetics47, neural systems in
neuroscience45, and pandemic outbreaks48. The universality of UDEs, their
ability to retain physics through the model structure, and the differentiable
nature of the resulting equations canmake them highly suited for inference
of multiscale and multiphysics problems.

Master equations are widely used to model molecular processes49,50,
such as adsorption from gas to an adsorbent surface51, mRNA interactions
with a promoter52, and particle hopping in space during diffusion53. This
work presents a neural master equation (NME) framework for multiscale
modeling of PSI. The proposed NME framework builds a kinetic model
through master equations, where unknown transition probabilities, which
are mesoscopic averages of quantum-mechanical interactions, are repre-
sented with neural networks to form a set of UDEs. As such, the NME
framework bridges the microscopic and mesoscopic scales, as it provides
mesoscopic rate equations where the transition rates are obtained from
atomistic simulations. Additionally, the proposed framework is able to
admit spatial variations of quantities of interest that cannot be readily cast
into a master equation form, such as those arising from transport.

The NME framework is demonstrated for multiscale modeling of Si
atomic layer etch (ALE) with Cl2 and Ar ion, as well as Si reactive ion etch
(RIE) with F and Ar ion, two LTP processes that are widely used in semi-
conductor manufacturing54–56. We demonstrate that the learned NME
models provide an interpretable mesoscopic description of the evolution of
surface processes by predicting experimentally relevant observables as a
function of process parameters. The NME-based surface kinetic models
exhibit extrapolative capabilities outside their training range in comparison
to a fully data-driven model learned using neural ordinary differential
equations57. Our results suggest that the NME framework can be used as a
viable physics-based surrogate for computationally expensive MD simula-
tions to investigate PSI. The remainder of the paper is organized as follows.
The section “General overview of the NME framework” presents a general
overview of the NME framework. In the sections “NME-Based Surface
KineticModel of ALE” and “NME-based surface kinetic model of RIE”, the
NMEframework is demonstratedonALEandRIE, respectively.The section
“Discussion” presents a discussion on the results and the broader use of the
NME framework, followed by the details of the NME framework in the
section “Methods”.

Results
General overview of the NME framework
In atomic-scale plasma processes such as RIE and ALE, there are multiple
chemical elements that exist in different states, taking part in surface reac-
tions and sputtering. For a molecular process with M species, with each
species denoted by subscriptm that undergoes V possible state transitions,
the occupation probability of a species m is defined as the probability of
occupying a state ν and is given by

Pν
m ¼ Nν

m

Nm
; 8 ν ¼ 1; . . . ;V; ð1Þ

with Pν
m denoting the occupation probability of species m in state ν, Nm

denoting the total number of speciesm in all the V states, andNν
m denoting

the number of species m in state ν. The dynamics of the state-to-state
transitions can be represented by master equations58

dPm

dt
¼ WmPm; 8m ¼ 1; . . . ;M; ð2Þ

where Wm 2 RV ×V denotes the transition rates between the states of
speciesm andPm ¼ ½P1

m; . . . ; P
V
m�

> 2 RV × 1 is the vector of the occupation
probabilities for species m in all of its V possible states.

Depending on the type of molecular interactions (e.g., quantum
interactions for chemical reactions, or classical interactions for diffusion59),
determining the transition probabilities in Eq. (2) can be particularly
challenging. Here, we use neural networks as universal approximators60,61 to
learn the transition probabilities in Eq. (2) as a function of local inputs (e.g.,
incident ion energy and dose) to an atomic-scale process. As such, the
master equation takes the form of a composite differential equation with
neural network components, as given by

dP̂m

dt
¼ fWmðx;ΘÞP̂m; 8m ¼ 1; . . . ;M; ð3Þ

where P̂m ¼ ½P̂1
m; . . . ; P̂

V
m�> is the vector of predicted occupation prob-

abilities of speciesm andfWmðx;ΘÞ : Rnx ×Rnθ 7!RV ×V is a neuralmodel
of the transition matrix, with x being the inputs to the system andΘ being
the vector of learnable parameters.

In addition to state transitions, ion bombardment can result in
incorporation of surface species into the bulk solid62 and ion-enhanced
diffusion in the bulk solid63–69. The ion-enhanced diffusion can result in the
redistribution of material in the mixed layer and, thus, must be accounted
for during state transitions, as during plasma etch, the moving etch front
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exposes underlyingmixed layer material to the surface, effectively causing a
state transition. The amount ofmaterial that is exposed depends on the local
mixed layer concentration, which is affected by ion-enhanced diffusion.
This non-linear state transition appears as an additive term to Eq. (3) as
given by

dP̂m
dt ¼ fWmðx;ΘÞP̂m þ gð�Þ;

8m ¼ 1; . . . ;M;
ð4Þ

where g( ⋅ ) is any linear ornon-linear contribution to theprobability current
due to transport ormoving boundaries. Figure 1 provides an overviewof the
NME framework. Ensemble atomistic simulations at different input
conditions of ion energy and fluence are used to generate time-series
trajectory data of “ground truth” occupation probabilities fPmgMm¼1 to train
the learnable parameters offWmðx;ΘÞ in Eq. (4).

NME-based surface kinetic model of ALE
The NME framework was used to obtain a mesoscopic kinetic model of
surface processes for the case of Si ALEwith Cl2 andAr

+. ALE is a layer-by-
layer removal of material that progresses cyclically70. During the first half
cycle, a reactive gas is adsorbed on the surface of the material to be etched,
whereas during the next half-cycle the modified surface is bombarded by
ions to sputtermaterial off the surface. The two steps occur sequentially and,
hence, are temporally decoupled from each other.

In the ALE process at hand, Cl adsorption equilibrates quickly com-
pared to the cycle time of adsorption, with Cl atoms fully covering all
available active sites according to the Langmuir isotherm71. Hence, the
dynamics of the adsorption process were ignored and, instead, an equili-
brium coverage of Cl atomswas assumed at the start of every bombardment
cycle. Three distinct states in which Cl can be present were considered, i.e.,

ν∈ {I, II, III}. Figure 2 depicts these states and the transitions among them.
In state I,Cl atomsaremixedwithbulk Si forming amixed layer. This state is
characterized by diffusion processes occurring in the mixed layer, with Cl
only being able to interact with itself and Si. In state II, Cl atoms are present
on the exposed surface of the Si-Cl block and are capable of interacting with
both Ar+ and Si. It was assumed that Ar+ does not interact with Cl or Si in
the mixed layer, and that the mixed layer composition can vary with depth,
as opposed to the homogeneous mixed layer assumption in ref. 16. In state
III, Cl atoms are present in bulk gas as SixCly. Due to high-energy Ar+

bombardment, Cl atoms can transition from the surface (II) to the bulk gas
phase (III). Additionally, Cl atoms can be pushed down from the surface
into the subsurface mixed layer (I), where they mix with Si. Other transi-
tions, such as recombination from the bulk gas phase to the surface, are also
possible, but were ignored here for simplicity. The transition from state II to
III can be broken down into a series of first-order transitions for different Cl
species in the bulk (SixCly); however, all such transitions were lumped
together.

Following Eq. (4), the set of NMEs for the three Cl states can be easily
derived (See Supplementary Section1.2). Avalue of 1× 10−19 m2/swas taken
for the diffusion coefficient66. Since the length and time scales change with
time, the problem becomes stiff and, thus, an adaptive solver was used to
solve the coupled, non-linear set of NMEs for the occupation probabilities.

Model validation and predictions
MD simulations were performed to generate high-resolution time series
data for the occupation probability of Cl in the three states (I, II, and III) at
different conditions of incident Ar+ energy and dose, exactly following the
parameters used in ref. 62. These time series data were used to train the
surface kinetic model for Si ALE with Cl2/Ar

+. Only one ALE cycle was
simulated, starting with a pristine Si block, covered with an equilibrium

Fig. 1 | Overview of the neural master equation (NME) framework. At the
microscopic scale, all-atom simulations are performed to generate time-series tra-
jectory data of occupation probabilities fPmgMm¼1 for different values of system inputs
x. The data are used to determine the learnable parameters of the neural model of

mesoscopic transition rates fWmðx; θÞ in the NMEs in Eq. (4) by minimizing the
mean-squared-error loss function (Eq. (13)). The term g(⋅) is an addition to the
master equation to account for possible probability currents due to additional
physics, such as transport.
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concentration of Cl atoms. In the MD simulations, sputtered species were
taken out of the simulation box, and only species on the surface and in bulk
Si were kept. One sample was taken per impact of Ar+; thus, the total length
of a time series at a particular condition is the number of ion impacts at that
condition.

From ensemble MD simulations with three realizations per condition,
time series data of the occupation probabilities were calculated at different
conditions of Ar+ energy and dose. Ion energies from 30 to 70 eV with
intervals of 1 eV and ion dose between 100 and 1000 impacts at intervals of
50 impacts were considered, totaling 779 distinct time series to train the
surface kineticmodel. The range of ionflux for the above impactswas 3.14×
1013–3.14 × 1014 ion/cm2-s, as is of the order seen in experiments71. The ion
dose and ion energywere the only inputs x to the neural networkfWmðx;ΘÞ
in Eq. (4). To keep parity with experimental results, the ion fluence in the
MD simulations was selected to be the same as that in experiments62.

To classify Cl into the proposed states, the coordination number of all
Cl atoms in the system was calculated: those having coordination number
greater than two were classified as occupying state I, while all others were
classified into state II, with the reasoning that Cl atoms inside the densely
packed mixed layer would feel the effect of multiple neighboring species.
This classification was based on heuristic arguments; however, more formal
distinctions can be made, e.g., based on bond orders of individual Cl atoms
from the modified reactive empirical bond-order potential used in ref. 72.
The training details of NMEs in Eq. (4) for the ALE system are provided in
Supplementary Section 2.1.

The transition rates in Eq. (4) were learned using the aforementioned
time series data, as shown in Fig. 1. The resulting surface kinetic model was
tested on combinations of ion dose and energy not present in the training
dataset. Details of the neural network models, training procedure, and loss
curves can be found in Supplementary Section 2.1. Figure 3 shows the
comparison between the predicted occupation probability dynamics and
those obtained fromMD simulations; the statistical evaluation of themodel
performance is given in Table 1. The predicted occupation probability
dynamics of all three states are in goodquantitative agreementwith test data
for a variety of different ion dose and energy conditions. As bombardment
starts with an equilibriumCl coverage on a pristine Si block, the probability
offindingCl at the surface is unity.This probability decreaseswith timeasCl
atoms transition to states I and III due to Ar+ bombardment. However,
exponential decay in the surface occupation probability is arrested by the
non-linear transition of Cl atoms to the surface through the moving etch
front, which exposes the underlying Cl atoms of the mixed layer.

The surface kinetic model retains the physical structure of the system
by using the master equations to describe the state transitions and the ion-

enhanced diffusion for transport in the mixed layer. Consequently, it also
uses relatively fewer trajectories (779) compared to learning a fully data-
driven model38, and ensures that mass conservation, Eq. (11), is always
satisfied. The retention of the physical form of the dynamical equations
using NMEs promotes model performance for a wide range of operating
conditions of ion energy and dose, while providing physically consistent
results.

Figure 4 shows the profile of Cl atomic fraction in the mixed layer at
1000Ar+ ion impacts. Theprofile arisesdue to competitionbetween the rate
of removal of material from the surface and rate of diffusion into the mixed
layer. The penetration depth decreases with increasing ion energy. This is
because at higher incident ion energies, Cl atoms aremore rapidly sputtered
off the surface due to higher etch rate, which results in subsurface Cl being
exposedmore rapidly.Noclear trendbetween the totalCl concentrationand
the ion energy is observed due to the highly nonlinear nature of the process.
At 40 eV, the ion energy is not sufficient to push toomanyCl atoms into the
mixed layer. The ability of Ar+ to push Cl atoms into the mixed layer
increases with increasing energy, as seen for 60 eV and 80 eV, where there
are more Cl atoms in the mixed layer compared to 40 eV. For 100 eV, the
etch front depletes fastest, and Cl atoms rapidly and nonlinearly transition
from the mixed layer to the surface. This leads to fewer Cl atoms in the
mixed layer and a smaller penetrationdepth.The totalCl and its penetration
dependupon the competitionbetween the etch anddiffusive transport away
from the etch front. The atomic fraction depth of 22 Å for 100 eV is in
agreement with MD simulations from ref. 62, even though the surface
kinetic model was not trained on atomic fraction data. To obtain the rele-
vant concentrations from the occupation probabilities, it is sufficient to
multiply the probabilities with the total number of Cl atoms in the system.
The time evolution of number of Cl atoms is shown in Fig. 5. Since the
bombardment step of ALE is considered to be a closed system with respect
to Cl, the dynamics closely follow the time evolution of occupation
probabilities.

Figure 6 shows the evolution of Cl uptake and Si etched over ALE
cycles, and compares them with MD simulations from ref. 62. The
representative first-order dynamics of Cl is shown only for the first half
cycle. Cl adsorption process equilibrates very fast; hence, an equilibrium
coverage of Cl was assumed at the start of every bombardment half
cycle62,71. The cases of 80 eV and 100 eV represent an extrapolation from
the training data, since the training range was 30–70 eV. The surface
kinetic model predicts incremental increases in the final Cl uptake from
cycle to cycle (Fig. 6a), as increasinglymoreCl atomsare incorporated into
themixed layer.More efficient removal of Cl is seen at higher ion energies
in both the surface kinetic model predictions and the MD simulations.

Fig. 2 | Schematic representation of the three
overarching states of Cl atoms in Si ALE with Cl2
and Ar+. Blue circles represent Si atoms, while yel-
low circles represent Cl atoms. Cl atoms can be
either mixed with Si in the subsurface mixed layer
(state I), on the exposed surface (state II), or in the
bulk gas as atomic or compound Cl (state III).
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The surface kinetic model correctly predicts that the Cl retained in the
substrate post-bombardment increases across cycles.While the prediction
from the surface kineticmodel is of the same order asMD simulations, the
predictions are off by 0.15–1 monolayer (ML). The primary cause for this
mismatch can be the classification of Cl atoms into states. The classifi-
cation was made on the basis of coordination number, which is a discrete
classifying feature and, thus, is limited. The surface kinetic model over-
estimates the amount of Cl left on the surface post bombardment, com-
pared to MD simulations, which predict almost no Cl at the surface post
bombardment. This reduces the amount of Cl that can be absorbed in the
subsequent adsorption half cycle. It should be noted that the amount of Cl
left on the surface is a matter of classification. A more accurate repre-
sentation of the physical systemmay be made through using bond orders
and bond energies of the pair potential used in MD simulations72. How-
ever, the cut-off value for the bond energies and orders is a parameter that
will require tuning from system to system. Other potential causes for the
mismatch could be the inability of the surface kinetic model to accurately
account for the increase in active sites due to ion bombardment73 and the
deficiency of theMDsimulations in capturing diffusion, both ofwhich can
affect the concentration of Cl at the surface and subsurface. These effects
can further cause a change in the total Cl uptake across cycles.

For the total Si etched (Fig. 6b), the model predicts an approximately
constant etch per cycle. A very good agreement is found with the results of
ref. 62, demonstrating the predictive capability of the NME-based surface
kinetic model. The model can capture the physical idiosyncrasies of the
system and maintain quantitative agreement, all while drastically reducing
the problem to one of solving a set of ODEs.

A discrepancy is seen in the curvature gradient of the etch rate in
Fig. 6b. However, when scalar values of the transition probabilities are
judiciously chosen for particular conditions and the surface kineticmodel is
solved numerically with constant values of the transition probabilities, the
correct curvature and a good fit is obtained, underlying the validity of the
master equations.Asneural networks are used to approximate the transition
probabilities, the proposed approach is prone to getting stuck in local
minima, and may not represent all of the physics correctly. Possible
remedies for this are to include all the species and their respective states in
the master equations and impose physically meaningful constraints on the

Fig. 3 | Performance of the surface kinetic model
forALE on test data.The solid blue line, black dash-
dot line, and red dashed line represent the occupa-
tion probabilities predicted by the surface kinetic
model in the mixed layer (I), surface (II), and bulk
gas (III), respectively, while the open circles denote
the corresponding occupation probabilities from
MD simulations. a 119 Ar+ impacts at 49 eV energy.
b 261 Ar+ impacts at 51 eV energy. c 311 Ar+

impacts at 61 eV energy. d 593 Ar+ impacts at 43 eV
energy. These combinations of ion dose and energy
were not included in the training data, but the ion
energy is within the training range of 30-70 eV.

Table 1 | The root mean squared error (RMSE) between the
surface kinetic model predictions and MD simulations for all
four cases of Fig. 3

Statistics Mixed Layer Surface Bulk Gas

RMSE 0.024 ± 5E−4 0.051 ± 2E−3 0.046 ± 2E−3

Fig. 4 | Predicted profile of the Cl atomic fraction in the mixed layer. Profiles are
drawn at the end of 1000 Ar+ impacts as predicted by the surface kinetic model.
The solid golden line is at 40 eV, the red dashed line at 60 eV, the black dash-dot line
at 80 eV, and the blue dotted line at 100 eV.
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loss function. Additionally, the surface kinetic model does not show a cyclic
steady state for Cl uptake, as seen in long-time MD simulations. Potential

reasons for this could be using a constant diffusion coefficient, or the
absence of depth-dependent diffusion67.

Theperformanceof theproposedNMEframework is compared to that
of a NODE model of the form of Eq. (14). To ensure that the results are
physical, the loss function is constrained (See Supplementary Section 3) to
obey Eq. (11) and provide probabilities in the interval [0,1]; this approach is
termed as fully constrained NODE (FC-NODE). Figure 7 shows the per-
formanceofFC-NODEagainst test data. FC-NODEperformspoorly on test
data andboth constraints, althoughnot violatedduring training, are violated
on test data.UnlikeNME (Eq. (4)), FC-NODE (Eq. (14)) does not retain the
physics-based structure of state transitions or transport. Furthermore, while
Eq. (11) is built into the structure of NMEs, it only appears as a soft con-
straint in the loss function during training of the FC-NODE.

NME-based surface kinetic model of RIE
Surface kinetic modeling of RIE of Si with F and Ar+ is also studied using the
NMEframework showninFig. 1.RIE is a continuousprocess,whereaplasma
chamber is filled with reactive and neutral gases. Accelerated ions sputter the
surface, and reactive neutrals and radicals chemically react with the exposed
surface74. As in the Si ALE system above, three states were considered to
represent the RIE system at hand: F atoms can exist in the mixed layer (state
I), at the exposed surface of Si (state II), and as volatiles in the gas phase (state
III). The NMEmodel structure was kept the same as that for ALE, with two
distinct differences: (i) RIE is an open systemwith respect to F atoms, and (ii)
there is an additional adsorption process for F on the surface of Si. Hence, the
master equations were modified to account for these differences; derivations
are provided in Supplementary Section 1.3.

Fig. 6 | Predictions of the surface kineticmodel for
ALE cycles at 1000 Ar+ impacts, compared with
MD simulations from ref. 62. An equilibrium Cl
coverage was assumed at the start of each bom-
bardment cycle since Cl adsorption equilibrates very
fast71. The blue, golden, red, and black lines repre-
sent Ar+ energies of 40 eV, 60 eV, 80 eV, and 100 eV,
respectively. a Cl uptake in monolayers (ML); the
adsorption half cycle is shown only for the first cycle
(dashed line in teal). The dashed lines correspond to
MD simulations, while the solid lines are the surface
kinetic model predictions. b Distance of Si etched
(Å). The open circles correspond to MD simula-
tions, while the solid lines are predictions from the
surface kinetic model.

Fig. 5 | Time-evolution of the number of Cl atoms as predicted by the surface
kinetic model for ALE for the three states under 1000 Ar+ impacts at 30 eV. The
solid blue line represents the mixed layer (I), the black dash-dot line represents the
surface (II), and the red dashed line represents the bulk gas (III).

Fig. 7 | Performance of the FC-NODE model on test data. The lines denote
predictions from the model, while the open circles denote the test data fromMD
simulations. The solid blue line, the black dash-dot line, and the red dashed line

represent the mixed layer (I), the surface (II), and the bulk gas (III) occupation
probability dynamics, respectively. a 119 Ar+ impacts at 49 eV energy. b 261 Ar+

impacts at 51 eV energy.
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Similar to theSiALE system, the characteristic length and time scales of
ion-enhanced diffusion within bulk Si are D/v(t) and D/v(t)2, respectively.
The atomic fraction is used, instead of the probability density function, to
obtain a simpler representation of diffusion within bulk Si; however, the
atomic fraction and probability density function share a linear relationship
given by Eq. (9), where the total number of atoms Nm is now a function of
time. There are two fluxes to the exposed surface: the flux of incident Ar+,
JAr, and the flux of incident F atoms, JF. The net rate of addition of F into the
system is described by an additional ODE that can be solved independently
from the set of NMEs. In an actual RIE system, gases are continuously
pumped out from the etch chamber.Here, it is assumed that any gases taken
out are also in state III, an assumption that can be dropped by adding a
removal term to the surface kinetic model. Another difference from the Si
ALE system is the rate of adsorption of F to the exposed surface.

Model validation and predictions
MD simulations with appropriate interatomic potentials are extensively
used to study surface dynamics in RIE processes13,75–78. Following ref. 79, we
used MD simulationsto generate time series data of F occupation prob-
abilities to train the NME-based surface kinetic model for RIE of Si.

The architecture of the neural networks representing the transition
rates in Si RIE was kept the same as that for Si ALE, as similar kinetics are
expected in both systems. The transition rates are functions of the incident
ion energy and the combined dose of F and Ar in the system. The flux ratio
of F toAr was kept constant at 5. Ion energywas varied from 20 eV to 80 eV
at intervals of 2 eV, while the combined dose values were in the range of 500
to 1000 impacts with an interval of 25 impacts, resulting in 651 distinct
combinations. Figure 8 shows the performance of the NME-based surface
kineticmodel on unseen test data, where neither the dose nor the ion energy
is present in the training dataset. Furthermore, a condition of 1100 total
impacts at 90 eV Ar+ energy, outside of the domain of training data, is also
considered. As can be seen, the NME-based surface kinetic model exhibits
very good agreement with test data and can also generalize beyond the
training dataset, as evident from Fig. 8a. The mixed layer concentration is

negligible since the extremely strong Si-F bond80 significantly weakens the
Si-Si bond and prevents F from being pushed into the mixed layer.

Figure 9a shows the F occupation dynamics at different states with the
learnedmodel for a dose of 1100 total impacts and ion energy of 90 eV. The
number of F atoms in the bulk gas phase quasi-linearly increases due to the
flux of F atoms into the system, while that on the surface, plateaus and
reaches a steady state due to competing sputtering andadsorptionprocesses.
Since the surface kinetic model also solves for the instantaneous velocity of
the etch front, the instantaneous etch rate can be calculated. Figure 9b shows
the dynamics of the instantaneous etch rate, and the area under the curve
gives the total amount etched. The etch yield, which is the ratio of Si
sputtered per incidentAr+, was not calculated here, but it can bemodeled by
including the master equation for Si.

Discussion
In this paper, anNMEframework is introduced formultiscalemodeling of
plasma-surface interactions in atomic-scale plasma processes. The fra-
mework can be adopted for any system where chemical master equations
can be used to describe the underpinning molecular processes, for
example, in spin dynamics, lasers81, electroporation and electropore-
transport82, and electron exchange from electrolyte phase to electrode
surface83, amongst others. Here, the NME framework is used to derive
surface kinetic models for ALE and RIE of Si with Cl2/Ar

+ and F/Ar+,
respectively, as these systems are industrially relevant. The NME-based
surface kinetic model is informed by the physics of state transitions of the
system81–83. The NME structure is adaptable, whereby additional physics
can be accounted for.

The examples demonstrated for plasma processing have numerous
reaction steps. Ideally, each reaction step should be modeled as a master
equation in order to satisfy microscopic reversibility. The proposed NME
framework can be readily used for master equations with microscopic
reversibility, as themodel structuremakesnoassumptions andproperNME
training can result in a detailed balance being satisfied. However, for prac-
tical purposes, accounting for all the reaction steps and intermediate states

Fig. 8 | Performance of the surface kinetic model
for RIE on test data. The lines denote predictions
from the model, while the open circles denote test
data from MD simulations. The solid blue line, the
black dashed–dot line, and the red dashed line
represent themixed layer (I), the surface (II), and the
bulk gas (III) occupation probability dynamics,
respectively. a 1100 total impacts at 90 eV Ar+

energy. b 560 total impacts 51 eV Ar+ energy. c 864
total impacts 79 eV Ar+ energy, and d 952 total
impacts 29 eV Ar+ energy.
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can become intractable. While full knowledge of intermediate states and
transitions and their incorporation into the master equation preserve the
detailed balance, one can lump intermediate states ino an overall effective
state. Omitting the states results in a set of reduced-order “quasi” master
equations that yield a surface kinetic model useful for longer time scale
investigation of the system of interest.

Retention of the physics of state transitions in the NME framework
ensures that relevant constraints are inherently built into the structure of the
model. Hence, predictions from the NME-based surface kinetic model do
not show non-physical results, such as negative probabilities or sum of
probabilities be greater than one at any time instant for any condition, as
opposed to the black-boxNODEmodels. Additionally,NMEmodelswhose
transition rates are only parametrized by neural networks are expected to
use lesser data compared to NODEs that use neural networks to represent
the entire state transition dynamics47. With the same amount of data, NME
vastly outperforms FC-NODE, although FC-NODEmay provide improved
predictions when trained with substantially more data. However, FC-
NODE does not guarantee mass conservation, unlike the NME model, as
seen in Fig. 7.

Due to their physics-based structure, NME-based surface kinetic
models are also capable of extrapolation to regimes beyond their training
data. Another advantage of NME-based surface kinetic models is that they
enable exploration of longer time scales than is possible byMD simulations.
For example, the MD simulations in Fig. 6 done on one core of Intel Xeon
Gold 6330 took on the order of 8-10 hours, while the surface kinetic model
simulations done on one core of Apple M2 took approximately 5 minutes,
representing a 99% decrease in computation time. The significant compu-
tational speed up provided by NME-based surface kinetic models makes
comparisons between model predictions of system observables, like con-
centrations in different phases, and experimental observations, such as
optical emission spectroscopy signals84, possible.NME-basedmodels can be
deployed simultaneously with experiments or during fabrication, and be
used to make online decisions. Furthermore, these models allow for
exploration of large surfaces at longer length scales with ion energy dis-
tribution functions obtained from plasma simulations. This can be used in
surfaceprofile evolutionwithmuch smaller computational time, as opposed
to traditional voxel-based methods with KMC85. A possible application is
the study of roughness and critical dimension uniformity over a wafer
surface, or in a smaller feature.

A possible extension of the proposed surface kinetic models for the
plasma etch processes is to learn the ion-enhanced diffusion coefficient,
in lieu of using guess values (Eq. (8)). Atomic fraction data from MD
simulations can be used to learn the effect of ion dose and energy on the
diffusion coefficient and, thus, obtain more accurate values of the ion-
enhanced diffusion coefficient. This would enable better predictions of
penetration depth and concentration profiles in the mixed layer. The
microscopic resolution of state transitions provided by the NME fra-
mework can be used in the discovery of newmaterials and chemistries in
atomic-scale plasma processing. The resultant scale-bridging surface

kinetic models can also be used for surface evolution studies and recipe
design for the next-generation semiconductor device fabrication.

Methods
Master equation for molecular processes
In molecular processes, the occupation probability for each species can be
defined by an objective probability as given in Eq. (1), with the indexm used
for any species. The total possible states arefixed for a particular systemwith
defined chemistry. The state-to-state transitions can be modeled as first-
order processes that occur with some transition rate, also known as tran-
sition probability. While the assumption of first-order transitions may not
always be true, higher or fractional order transitions can be converted to
pseudo first-order transitions. In essence, the state-to-state transitions
describe the dynamics of a molecular process, wherein the occupation
number of different states can be averaged to obtain approximate dynamical
rate equations.

For a molecular process consisting of M species that undergoes V
possible state transitions among all its species Eq. (2) constitutes a set of
linear ordinary differential equations (ODEs), describing the rate of change
of occupation probabilities fPmgMm¼1. The rate of change in the occupation
probability Pν

m due to transitions into and away from any state ν is given by

dPνm
dt ¼ PV

ν0≠ν
ν0¼1

�ωνν0
m Pν

m þ ων0ν
m Pν0

m

� �
;

8 ν ¼ 1; . . . ;V; 8m ¼ 1; . . . ;M:

ð5Þ

The first term in Eq. (5) represents all possible transitions from state νwith
an associated transition rate of ωνν0

m , while the second term represents all
possible transitions to the state ν from other states with an associated
transition rate of ων0ν

m . Hence, the probability of transition from state ν to
stateν0 in a small timeΔt isωνν0

m Δt. These transition rates form the elements
of the transition matrixWm in Eq. (5).

Neural representation of transition probabilities
In PSI, the transition probabilities are mesoscopic averages of the many-
body quantum interactions between different species. Density functional
theory and ab-initio MD simulations have been widely used to study these
quantum mechanical interactions for a variety of systems86–89. While
information of the energy barriers and other physical parameters would
vastly improve the predictive power of mesoscopic reaction rate models90,
obtaining exact transition probabilities from many-body quantum inter-
actions is often not possible.

Machine learning-based approaches have been developed to learn
approximate representations for transition rates91–93 for chemical reaction
networks approximated as Markov processes on continuous state space.
However, these use simulation trajectories to model transition kernels,
which take in the current state andoutput the state at thenext time interval91,
which make the kernel time-dependent, without an explicit dependence on

Fig. 9 | Predictions of the surface kinetic model
for RIE. a Time-evolution of the number of F atoms
at 1100 total impacts and 90 eV Ar+ energy. The
solid blue line, black dash-dot line, and red dashed
line represent the number of F atoms in the mixed
layer (I), surface (II), and bulk gas (III), respectively.
b Time-evolution of Si etch rate (Å/s) at 1100 total
impacts and 90 eV Ar+ energy.
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local system conditions. To mitigate that, we use neural networks to learn
the transition probabilities in Eq. (5) as a function of system inputs (such as
incident ion energy and ion dose), as opposed to the occupation probability
at any time t. Thus, the neural networks represent discrete values of the
transition rates, and not distributions, as has been done in the previous
works91–93. The resulting master equation with neural network components
is given by

dP̂
ν

m
dt ¼ PV

ν0≠ν
ν0¼1

�~ωνν0
m ðx; θÞP̂ν

m þ ~ων0ν
m ðx; θÞP̂ν0

m

n o
;

8 ν ¼ 1; . . . ;V; 8m ¼ 1; . . . ;M;

ð6Þ

where P̂
ν

m is an approximation of the occupation probability Pν
m, ~ω

νν0
m ðx; θÞ

and ~ων0ν
m ðx; θÞ denote (deep) neural networks that are a function of nx

system inputs, x 2 Rnx ; and are parameterized by learnable parameters θ.
We refer to the composite differential equation in Eq. (6) as a neural master
equation (NME). The key advantage ofNME is theflexibility that it offers in
approximating the unknown transitions ~ω from atomistic simulation data
while preserving the physics-based structure of (5).

Following Eq. (2), the set of NMEs for a molecular process with M
species can be cast as

dP̂m

dt
¼ fWmðx;ΘÞP̂m; 8m ¼ 1; . . . ;M; ð7Þ

where P̂m ¼ ½P̂1
m; . . . ; P̂

V
m�

>
is the vector of predicted occupation prob-

abilities of speciesm andfWmðx;ΘÞ : Rnx ×RnΘ 7!RV ×V is a neuralmodel
of transition rates, whose elements consist of neural networks ~ωðx; θÞ in
Eq. (6). The parameters θ constitute the concatenated vector of learnable
parametersΘ. Equation (7) is, in fact, a set of continuous-time UDEs43 that
synergizes the interpretable structure of the master equation with data-
driven descriptions of hard-to-model transition rates. Equation 7 can be
readily solved using state-of-the-art ODE solvers to obtain time-series
predictions of occupation probabilities for different values of system
inputs x.

Ion-enhanced transport in bulk solid
The setofNMEs inEq. 7describesPSI consistingof reactions and sputtering
events. However, ion bombardment has two other consequences: incor-
poration of surface species into the bulk solid62 and ion-enhanced diffusion
in the bulk solid63–69. Ion-enhanced diffusion is of great importance in small
features, where characteristic diffusive length scales can become comparable
to the feature size94. Incorporation of surface species can be considered as a
state transition from the surface to the bulk solid, thus lending itself to a
master equation representation. However, diffusion-driven species trans-
port due to ion bombardment gives rise to spatial variations in the prob-
ability density of the corresponding occupation probability95 within a
subsurface, amorphous mixed layer62,96–98. It is important to account for the
mixed layer in thedescriptionof PSI, particularly inplasma etchwherein the
removal of material from the surface exposes themixed layer. Additionally,
the removal or addition of material, in plasma etch or deposition, respec-
tively, results in a moving surface, which constitutes a convective transport
phenomenon. This drift-diffusion transport in the mixed layer results in a
non-linear state transition.

While diffusive processes can be described by master equations99, the
numberof states tobe accounted for canbecomeprohibitively large. Instead,
one can observe the process at timescales longer than the timescale of
microscopic fluctuations to obtain a continuum diffusion equation within
the bulk solid. These timescales are not short enough to resolve all the states
and transitions associated with sputtering and reaction events on the sur-
face. However, a master equation representation can be formulated for
longer time state transitions on the surface by ignoring intermediate short-
lived states. A consequence of this is that microscopic reversibility is no

longer applicable to the state transitions. This simplifying assumption of
using only long timescale states and transitions allows significant reduction
in the number of states to be considered in the proposed NME framework,
andmakes it viable formodeling PSI that involve ion-enhanced diffusion in
the bulk solid. Diffusion at the atomic scale can be understood by con-
sidering the motion of atoms that enter the mixed layer with some
momentum. These atoms undergo a series of random collisions with other
atoms in the mixed layer. The position and momentum after collision
depend only on the last collision, and the atoms do not retain memory of
previous collisions, a hallmark of aMarkov process. Hence, we describe the
drift-diffusion transport in the mixed layer by

∂p̂m
∂t

¼ Dm∇
2p̂m � vðtÞ � ∇p̂m; ð8Þ

where p̂m ¼ ½p̂1m; :::; p̂Vm�
>
is the probability density of the corresponding

occupation probability, P̂m. Eq. (8) is in fact a Fokker-Planck equation,
where the drift term is due to a moving boundary, instead of an externally
applied field, and the diffusive term is assumed to be a constant. Dm is a
diagonalmatrix of the ion-enhanced diffusion coefficient of speciesm in the
corresponding state ν, and v(t) is the velocity of the translating plasma-solid
interface. The occupation probability in each state is

P̂
ν

mðtÞ ¼
Z

Vν

p̂νmðx; tÞdVν ;

where Vν is the hypervolume of state ν. The probability density is related to
the atomic fraction by

p̂m ¼ n � cm
Nm

; ð9Þ

where ∘ is the Hadamard product, n is the vector of atomic densities of all
states, assumed constant66, Nm is the total number of speciesm in all the V
states, and cm is the vector of atomic fraction of species m in all states.
Accordingly, the set of NMEs in Eq. (7) can be modified as

dP̂
ν

m
dt ¼ PV

ν0≠ν
ν0¼1

�ωνν0
m P̂

ν

m þ ων0ν
m P̂

ν0

m

n o
þ δννsAp̂

νs
mvðtÞ;

8 ν ¼ 1; . . . ;V; 8m ¼ 1; . . . ;M;

ð10Þ

where νs refers to the exposed surface state, δννs is the Kronecker delta
function, andA is the area of the exposed surface. The final term in Eq. (10)
represents a probability current for state ν, rendering the equations non-
linear. Notice that Eq. (10) must follow mass conservation, which is
equivalent to the summability relation of probabilities, i.e.,

X
ν

dP̂
ν

m

dt
¼ 0: ð11Þ

To close the system of equations, boundary conditions are needed for
Eq. (8). Probability current continuity must be imposed at the boundary
between different states across which transitions can occur, while the cur-
rent continuity equations must be consistent with mass conservation in
Eq. (11). Conversely, substitution of Eq. (10) in Eq. (11) yields another
boundary condition that ensures mass conservation.

Other transport phenomena that cause probability currents out of a
state canbe included in a similarmanner, andwill only contribute additional
probability current terms in Eq. (10). Accordingly, the set of NMEs in Eq. 7
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takes the form of Eq. (4)

dP̂m
dt ¼ fWmðx;ΘÞP̂m þ gð�Þ;

8m ¼ 1; . . . ;M;
ð12Þ

where g(⋅) is any linear or non-linear contribution to the probability current
due to transport or moving boundaries, as described in Eq. (10).

Learning framework
The proposed NME framework is shown in Fig. 1. The training data for

learning the neural model of transition matrix fWm in Eq. 12 are obtained
from atomistic simulations for different values of system inputs x (e.g.,
incident ion energy and ion dose in atomic-scale plasma processes). An
ensemble of atomistic simulation data collected at different input values is
used to generate time-series trajectory data of “ground truth” occupation
probabilities fPmgMm¼1. Accordingly, the learnable parameters Θ of the

transition matrix fWmðx;ΘÞ; are determined by minimizing the mean-
squared-error (MSE) loss

LðΘÞ ¼ 1
N

XN
i¼1

XM
m¼1

PmðxiÞ � P̂mðxi;ΘÞ� �2
: ð13Þ

Here i denotes the trajectory index of time-series occupation probabilities
for different values of inputs xi, with N being the total number of
trajectories. The occupation probabilities fP̂mðxi;ΘÞg

M
m¼1 are predicted by

numerical integration of the NMEs in Eq. 12 using standard ODE solvers
(see Supplementary Section 2.1). Note that the differentiable nature of the
NMEs allows for the use of backpropagation through the ODE solver
when minimizing the loss function in Eq. (13).

Here, we briefly contrast the proposed NMEs with neural ordinary
differential equations (NODEs)57, which can be used to take a fully black-
box approach to describing the time-evolution of occupation probabilities

dP̂m

dt
¼ f ðP̂m; x; γÞ; 8m ¼ 1; . . . ;M; ð14Þ

where the function f is treated as a black box, approximated using (deep)
neural networks with learnable parameters γ. The NODEs formulation in
Eq. (14) does not include any physics in the structure of f and, thus, does
not provide an interpretable representation of themesoscopic behavior of
themolecular process. Yet, froma computational standpoint, a significant
advantage of NODEs over NMEs is that NODEs can make use of the
adjoint sensitivity method57 to efficiently backpropagate through f. The
savings in computational cost are, however, offset by the poor predictive
capabilities of NODEs and its non-physical predictions outside the
training range, as demonstrated in the section “NME-Based Surface
Kinetic Model of ALE”.

Data availability
The data is available from the authors upon reasonable request.

Code availability
The codes can be found in the Github repository https://github.com/
Mesbah-Lab-UCB/NODE-Training-for-Plasma-Surface-Kinetic-Model.
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