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Nanomaterials’ properties, influenced by size, shape, and surface characteristics, are crucial for their
technological, biological, and environmental applications. Accuratequantificationof thesematerials is
essential for advancing research. Deep learning segmentation networks offer precise, automated
analysis, but their effectiveness depends on representative annotated datasets, which are difficult to
obtain due to the high cost andmanual effort required for imaging and annotation. To address this, we
present DiffRenderGAN, a generative model that produces annotated synthetic data by integrating a
differentiable renderer into a Generative Adversarial Network (GAN) framework. DiffRenderGAN
optimizes rendering parameters to produce realistic, annotated images from non-annotated real
microscopy images, reducing manual effort and improving segmentation performance compared to
existing methods. Tested on ion and electron microscopy datasets, including titanium dioxide (TiO2),
silicon dioxide (SiO2), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between
synthetic and real data, advancing the quantification and understanding of complex nanomaterial
systems.

Nanomaterials are ubiquitous and exhibit unique properties that are often
dictated by their size, shape, and surface characteristics. These attributes
influence not only their performance in technological applications but also
their interactions within biological and environmental systems. A precise
understanding of these parameters is therefore critical across fields, whether
the goal is to optimize material properties for advanced technologies or to
assess potential risks in environmental and health contexts. For example,
titaniumdioxide (TiO2) and silicon dioxide (SiO2) nanoparticles are used in
a wide range of applications, from nanomedicine1,2 to photocatalysis3 and
wastewater treatment4. Furthermore, silver nanowires (AgNWs) are pro-
mising candidates for indium-free transparent electrodes5,6 and are widely
studied in terms of degradation and performance7–10.

To effectively analyze nanomaterials, automated methods are neces-
sary, particularly when dealing with complex particle agglomerates and
large numbers of particles. Deep learning segmentation networks have
emerged as powerful tools in this regard, transforming quantitative analysis
in microscopic imaging from traditional subjective methods to precise and
automated approaches11. For example, these networks now offer unprece-
dented insight into pathological findings12,13 and material production
processes14,15.

However, their ability to generalize to novel, unseen data critically
depends on the availability of representative training datasets16, as these
datasets determine the data distribution from which diverse and class-
defining features are derived17. If the training data distribution insufficiently
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represents the problem at hand, models will perform unsatisfactorily17,18. In
microscopic imaging, several challenges hinder the acquisition of compre-
hensive datasets, including high equipment costs, reliance on highly spe-
cialized personnel, and the labor-intensive nature of manual image
annotation.

To address these challenges, researchers have increasingly turned to
data synthesis methods. Generative adversarial networks (GANs) have
shown significant potential in generating synthetic annotated data in an
unsupervised manner, effectively capturing the essence of real data19–22. For
example, Rühle et al.23 successfully utilized WassersteinGANs24 and
CycleGANs25 to synthesize annotated Scanning Electron Microscopy
(SEM) images for the identification and segmentation of TiO2 nano-
particles. Other approaches have explored the incorporation of prior
knowledge into the data synthesis process26, such as expert-guided image
rendering27,28. Mill et al.28 demonstrated this technique by simulating
helium-ion microscopy (HIM) images of SiO2 and TiO2 nanoparticles to
train expressive segmentation networks.

Although synthetic data was effectively used in the studies of Rühle
et al. andMill et al.23,28, evaluation results showed that segmentationmodels
trained on synthetic data generally underperformed in most metrics com-
pared to those trained on real data, indicating a domain gap in synthetic
data. For the GAN-based method of Rühle et al., reduced segmentation
performance could be attributed to factors such as visual artifacts, training
instability, and inaccuracies in the synthetic labels. In contrast, Mill et al.’s
rendering approach may have exhibited lower segmentation performance
due to theomissionof class-important features that exceed the identification
and rendering capabilities of domain experts.

Recent advances in differentiable rendering offer new potential by
enabling the automatic optimization of reality-replicating 3Dmodels using

gradient descent methods29. This minimizes reliance on manual expertise
while enhancing the realism of synthetic images. Building on this potential
and the unsupervised training capabilities of GANs, we combine both
techniques and introduce DiffRenderGAN, a novel generative model that
integrates a differentiable renderer within a GAN framework. Using
nanoparticle 3D models, such as meshes, and a transformation matrix
containing positional and scaling information to arrange these meshes
realistically, DiffRenderGAN learns distributions of textural rendering
parameters that simulate materials from a given real nanoparticle dataset.
This parametric representation enables the generation of synthetic, anno-
tated images that closely mirror real-measured data. These images can then
be used to train segmentation networks effectively, facilitating the identifi-
cation and quantification of nanoparticles in measuredmicroscopy images.

In Fig. 1, we summarize the contributions of this work. This paper
presents DiffRenderGAN and demonstrates its application across various
microscopy datasets, including those fromMill et al.28 (SiO2, TiO2 in HIM)
and Rühle et al.23 (TiO2 in SEM), as well as an AgNW dataset using mul-
tibeamSEM.We evaluateDiffRenderGANby comparing the synthetic data
it generates with other methods, training segmentation models only on
synthetic data, and testing them on real microscopy images. For the AgNW
dataset, where ground truth annotations are unavailable, we assess Dif-
fRenderGAN qualitatively.

Our results demonstrate that DiffRenderGAN effectively optimizes
parameters for realistic image generation, reducing manual effort to
selecting target meshes and training parameters. Our method meets or
exceeds the performance of existingmethods, achievinghigher scores across
key segmentation metrics. These results highlight the potential of Dif-
fRenderGAN as a powerful tool for generating synthetic multimodal
microscopy data, reducing the domain gap in synthetic images, and

Fig. 1 | Addressing training data scarcity in deep segmentation networks for
quantitative nanomaterial analysis through synthetic data generation.Thisfigure
highlights the key contributions of our work by illustrating the data bottlenecks
inherent in the standard methodology used for training models in nanoparticle
micrograph quantification. Our contribution aims to address three primary objec-
tives: (1) to present an image synthesismethod applicable across variousmicroscopy
modalities for the analysis of materials with diverse morphologies, (2) to minimize

the need for expert intervention, and (3) to reduce or eliminate the representa-
tiveness gap between synthetic and real data, as observed in previous studies,
enabling more efficient training of deep segmentation networks for improved
analysis of complex nanomaterial systems. It is important to note that our goal is not
to generate a physically accurate simulation of materials but rather to conduct a
simulation that produces images capturing the characteristics necessary for training
a generalizing segmentation network.
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advancing the analysis and understanding of complex nanomaterial
systems.

Results
Leveraging differentiable rendering for enhanced generative
modeling
Our image synthesis method integrates the principles of image rendering
andGANs. Image rendering involves transforming a virtual 3D scene into a
realistic 2Ddigital image froma specifiedperspective30. The virtual 3D scene
is defined by parameters such as meshes (e.g., 3D nanoparticle models) and
textures attached to them, referred to in this work as bidirectional scattering
distribution functions (BSDFs), which simulate material properties like
diffuseor dielectric behavior. In addition, light sources are included todefine
observable emissions. Formally,wedenote the renderingprocess as fr, which
generates an image Ir from the virtual scene expressed by Θ:

Ir ¼ f rðΘÞ: ð1Þ

The interested reader is referred to Kajiya et al.31 for a detailed defi-
nition and description of the rendering function fr. Rendering has been used
in computer vision to create synthetic datasets for trainingmachine learning
models by integrating expert knowledge into the design of the virtual
scene27,28,32.

Onekeyadvantage of rendering-based synthetic data is that annotation
masks can be automatically extracted using unique identifiers assigned to
each mesh in the virtual scene. Expert-guided image rendering prevents
visual artifacts and labeling inaccuracies that are common in CycleGAN
applications33–35. However, the expert-driven process of creating synthetic
images is time-consuming, and key features might be overlooked in com-
plex reference images. Therefore, a data-driven approach may be more
desirable.

Differentiable rendering makes this possible by enabling the calcula-
tion of ∂Ir∂Θ, allowing for iterative optimization of virtual scene parameters36.
Usingmethods such as stochastic gradient descent or Adam37,38, parameters
can be adjusted to minimize an objective function, such as the mean-
squared error between a rendered image and a target image. Replicating real
data using a differentiable renderer presents significant challenges, parti-
cularly whenworking with large datasets of nanoparticle images. Achieving
a realistic representation of each observed nanoparticle in images necessi-
tates the accurate reconstruction and positioning of meshes, a process that
becomes increasingly complex as the number of particles in the dataset
grows. To address this challenge, we employ GANs, which are capable of
generating realistic and diverse data distributions rather than exact replicas.

GANs, introduced by Goodfellow et al.19, consist of two neural net-
works: a generator G(z) that maps a random noise vector z from a dis-
tribution pz into a synthetic image, and a discriminator D(x) that classifies
images as real or fake, where x denotes a real sample from the distribution
pdata. The generator aims to produce images that are indistinguishable from
real data, while the discriminator is tasked with effectively differentiating
between real and synthetic images.The adversarial process is formulated as a
min-max optimization problem:

min
G

max
D

Ex�pdataðxÞ logDðxÞ
� �þEz�pz ðzÞ logð1� DðGðzÞÞÞ� �

ð2Þ

By combining the unsupervised training capabilities of GANswith the
controllability of differentiable rendering and automatic mask extraction,
we developed DiffRenderGAN, which integrates a differentiable renderer
into the GAN’s generator. This integration enables the generation of highly
realistic synthetic images achieved without reconstruction. Simultaneously,
the controlled rendering environment mitigates common visual artifacts,
such as checkerboard patterns often observed in CycleGAN applications25,
thereby ensuring higher-quality and more consistent outputs.

Optimizing all virtual scene parameters Θ to visually simulate real
nanoparticles, including their morphologies, is computationally

demanding. To simplify this process, our generator focuses on optimizing
textural parameters θBSDF that mimic the material properties observed in
SEM and HIM imaging. Assumptions regarding morphologies, size dis-
tribution, andplacement of reference nanomaterials are provided by experts
before training to guide DiffRenderGAN. This assumption-based strategy
allows for a realistic arrangement of meshes without the need for direct
optimization of their shapes and positions. We define the virtual scene
parameter space Θ as:

Θ ¼ θBSDF
θother

� �
; ð3Þ

where θBSDF includes all optimized BSDF parameters, while θother encom-
passes non-optimizable BSDF parameters and all other scene parameters,
including those related to geometry, position, and size.

Before training DiffRenderGAN (see Fig. 2), an expert-guided process
is employed tomodel a collection of n particle meshes that reflect the shape
propertiesof nanoparticles observed in real images (detailed inNanoparticle
Mesh Modeling). The sizes and positional arrangements of the meshes are
selected from distributions such as normal, lognormal, or bimodal. Mesh
placement can either be random or agglomerated, utilizing a Poisson Disk-
based sampling algorithm for clustering39. Subsequently, based on the
selected placement and scale strategy, a transformation tensor

Φ ¼ fϕijϕi 2 Rn× 4; i ¼ 0; 1; . . . ;m� 1g ð4Þ

is computed, where each subtensor ϕi contains spatial coordinates and a
scaling factor for each of the nmeshes. The tensorΦ encodesm different
nanoparticle constellations, defining the synthetic image sampling size
with varying mesh arrangements used during training. We detail the
computation of the transformation tensor in “Transformation
computation”.

The architecture ofDiffRenderGAN’s generator is organized into three
modules, as depicted in Fig. 2. The first module, a fully connected network
(FCN), denoted as f fcn, takes a uniformly randomly selected ϕi � UðΦÞ,
serving as a distinct mapping. This is analogous to the role of the randomly
sampled noise vector z in vanilla GANs (as illustrated in equation (2)). The
FCN regresses θBSDF and a noise scale σ, which is subsequently used in the
generator’s final module to introduce learnable Gaussian noise:

ðθBSDF; σÞ ¼ f fcnðϕiÞ: ð5Þ

For regularization and training stability, f fcn produces parameter
estimates in [0, 1]. We then rescale and clip these values for both the
BSDF parameters θBSDF and the noise deviation σ so that they lie in their
respective physically and render-environmental feasible ranges. The
specific limits used in this work, including noise, stage, and particle
mesh BSDF boundaries, are provided in Supplementary Table 1. In the
second module, a virtual scene is dynamically created where the col-
lection of n expert-generated particle meshes is positioned and scaled
according to ϕi. The latest BSDF values from θBSDF are applied to both
the nanoparticle meshes and a rectangular stage mesh located beneath
them. The virtual scene is then passed to the differentiable renderer, fr,
to generate a synthetic image.

To simulate real-world imaging conditions, the third module, fnoise,
adds zero-centered Gaussian noise scaled by σ to the rendered image. This
step aims to replicate the noise present in real images, making the synthetic
output more realistic. The final synthetic image Isynth is evaluated by the
discriminator for its realism, allowing for gradient computation via back-
propagation to update weights in the generator’s f fcn

40. The generator’s
overall functionality is summarized as:

Isynth ¼ GðϕiÞ ¼ f noiseðf rðf fcnðϕiÞ; θotherÞ; σÞ: ð6Þ
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Within the adversarial training framework, DiffRenderGAN’s gen-
erator and discriminator engage in the following adversarial process:

min
G

max
D

Ex�pdataðxÞ½logDðxÞ� þEϕi�UðΦÞ½logð1� DðGðϕiÞÞÞ�: ð7Þ

The available data from each image case introduced in “Introduction”
is split into ~80% for training and 20% for testing (later used in “Deep
learning-based segmentation of nanoparticles trained on synthetic ima-
ges”). Details of the image data acquisition and a sample description are
provided in “Image acquisition and processing”. Each image of the training
dataset is cropped into overlapping patches of size 256 × 256 pixels.

DiffRenderGAN is then trained on image patches that contain at least three
fully displayed particles while avoiding repetitive particle patches.

At the same time,wedemonstrate an effective use of imagepatches that
do not contain particles but still provide valuable background information,
such as artifacts, which do not necessitate additional annotation for particle
segmentation tasks. We extract 200 of these patches for each dataset, which
we later use to supplement our synthetic datasets.

The trainingprocess ismonitoredusing theFréchet InceptionDistance
(FID) score, a state-of-the-art metric that measures the feature distance
between the generated synthetic images and real images41. To determine the
best epoch,we compare thefive epochswith the lowest FID scores and select

Fig. 2 | DiffRenderGAN training procedure. This figure illustrates the overall
working process of our proposed methodology. We provide a detailed visualization
of the novel generator architecture, highlighting its key components and how it
integrates differentiable rendering to synthesize realistic, annotated microscopy
images from unannotated inputs. Domain experts create target nanomaterial
meshes to match the morphology of real particle systems. Scale and placement
parameters are used to compute a transformation matrix for training. The meshes
and transformation matrix serve as input to the DiffRenderGAN model. During

image generation, a slice of the matrix is processed by a 5-layer Fully Connected
Network (FCN) to predict BSDF parameters and noise scale. These parameters are
passed to a differentiable renderer, which uses a virtual scene with scaled and
positioned meshes to create the final synthetic nanomaterial image. A technical
description of DiffRenderGAN's modules is provided in “Model design”. For
visualization purposes, the virtual scene used by the differentiable renderer is shown
in a simplified form. The actual structure can be found in the supplementary
information of this paper, with a technical summary stated in “Virtual scene design”.
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the one that demonstrates abroader distributionof learnedparameters.This
ensures a balance between a low FID score and diversity in the learned
parametric distributions, preventing the selection of a mode-collapsed
model and ensuring that the final model produces high-quality and varied
synthetic data.

In Fig. 3, we present samples of the synthetic data generated using the
trained models for each material case, along with their automatically
computed mask images (see “Model inference”). An overview of all
experiments is provided in Supplementary Table 1. Parameter progressions
during training, along with corresponding synthetic images after optimi-
zation, are presented for each material case in Supplementary Figs. 2–5.

Deep learning-based segmentation of nanoparticles trained on
synthetic images
After training DiffRenderGAN on the four image cases, we assessed its
effectiveness by training segmentation models on each respective synthetic
dataset. For three of these cases (TiO2 HIM, SiO2 HIM, and TiO2 SEM),
synthetic data produced by previously published methods are available for
comparison23,28. For the AgNW case, where no alternative synthetic data or
ground truth annotations are available, we performed a qualitative assess-
ment of our synthetic data to demonstrate its effectiveness for rod-like
nanoparticles.

To comprehensively evaluate segmentation performance across dif-
ferent aspects, we employ three key metrics: the dice similarity coefficient
(DSC), average precision (AP) at an Intersection-over-Union (IoU)
threshold of 50%, andpanoptic quality (PQ).TheDSCmeasures the overlap
between predicted and ground truth segmentation masks42, providing a

direct assessment of segmentation accuracy. AP quantifies the precision of
object localization at a fixed IoU threshold, reflecting a model’s ability to
correctly detect and delineate nanoparticles43. Lastly, PQ integrates both
segmentation and object detection accuracy into a singlemetric, offering an
evaluation of both detection and segmentation performance44. During
testing on the remaining 20% split of the data, we intentionally limited
postprocessing to binarization and connected-components analysis to
ensure an accurate quality assessment of the synthetic datasets. Our primary
objective here was to evaluate the raw segmentation capabilities of models
trained on these datasets. Postprocessing techniques can compensate for
quality gaps in the synthetic data. For example, watershed-based post-
processing can mitigate the issue of overlapping particles that remain
connected during testing. Additionally, we benchmark the synthetic data
models, except in the AgNW case, against the test performance of a model
trained on real data, which serves as a desired performance reference for the
synthetic data models. Quantitative results for the three comparable cases
are presented in Table 1, while visual segmentation results are shown in Fig.
4. Thequalitative visual results forAgNWinSEMare provided separately in
Fig. 5. For details on the evaluation procedure, refer to “Workflow for deep
learning-based segmentation of nanoparticles”.

In the TiO2 HIM case, the segmentation model trained on real data
achieved the best results, closely matching the ground truth with a DSC of
0.968 ± 3.16 × 10−4, AP50 of 0.737 ± 0.014, and PQ of 0.938 ± 5.93 × 10−4.
Among the models trained on synthetic data, our model outperforms the
one trained on synthetic data from Mill et al., achieving a DSC of
0.932 ± 0.003 compared to 0.906 ± 0.009 and a PQ of 0.874 ± 0.005 versus
0.829 ± 0.015, indicating better segmentation accuracy. However, Mill

Fig. 3 | Comparison of real and synthetic image patches with corresponding
segmentation masks. This figure showcases representative synthetic images pro-
duced after DiffRenderGAN optimization for each microscopy case. In each figure
section, the top row shows real images used to trainDiffRenderGAN, themiddle row
depicts synthetic images, and the bottom row shows the corresponding segmenta-
tion masks, highlighting material classes (purple) and boundaries (orange). These
synthetic image-mask pairs serve as training data for multiclass segmentation net-
works, as demonstrated in (deep learning-based segmentation of nanoparticles
trained on synthetic images). aAgNW: trained using 10 bent conemeshes, choosing

for transformation computation random placement in 2D and a lognormal size
distribution. b TiO2 in SEM from Rühle et al.23: trained using 40 cubically deformed
meshes, choosing for transformation computation PoissonDisk-based placement in
3D and a lognormal size distribution. c TiO2 in HIM fromMill et al.28: trained using
15 cubically deformed meshes, choosing for transformation computation Poisson
Disk-based placement in 3D and a lognormal size distribution. d SiO2 in HIM from
Mill et al.28: trained using 20 sphere meshes, choosing for transformation compu-
tation Poisson Disk-based placement in 3D and a lognormal size distribution.
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et al.’smodel achieved a higherAP50 score (0.493 ± 0.020 vs. 0.393 ± 0.016),
suggesting better precision in particle localization and separation. Figure 4a
shows that the model trained on real data most closely matches the ground
truth images. The model trained on Mill et al.’s synthetic data tends to
oversegment, introducing frequent false positives, but excels at distin-
guishing individual instances of nanoparticles. In contrast, our model
trained on synthetic data displays false negatives, such as partially unfilled
particles, but introduces fewer false positives. However, it struggles with the
separation of nanoparticles, particularly with smaller instances, as indicated
by the quantitative results.

In the SiO2 HIM case, the model trained on real data demonstrated
superior performance once again, achieving a DSC of 0.955 ± 9.49 × 10−4,
AP50 of 0.945 ± 0.016, and aPQof 0.914 ± 0.002.Among themodels trained
on synthetic data, our synthetic data model performed better than Mill
et al.’s approach across all metrics. Our model achieved a higher DSC
(0.860 ± 4.86 × 10−4 vs. 0.786 ± 0.002), AP50 (0.478 ± 0.011 vs.
0.375 ± 0.004), and PQ (0.754 ± 6.21 × 10−4 vs. 0.659 ± 0.003), indicating a
better representation of real-world SiO2 HIM data. Qualitatively (see Fig.
4b), the results from the real data models correspond most closely to the
ground truth images. In contrast, our synthetic data model effectively
identifies true positives but introduces false positives, particularly in the
form of small particle instances. Mill et al.’s synthetic data model struggles
with both true positive identification and the avoidance of frequent false
positives.

In the TiO2 SEM domain, among all models, the segmentation model
trained on real data achieved the highest performance, with a DSC of
0.964 ± 0.001, aPQof 0.930 ± 0.001, andanAP50 scoreof 0.567 ± 0.012.The
models trained on synthetic data performed very similarly, with our model
achieving a DSC of 0.916 ± 0.003 and a PQ of 0.845 ± 0.004, while Rühle
et al.’s model reached a DSC of 0.911 ± 0.001 and a PQ of 0.837 ± 0.002.
Their AP50 score were also closely matched, at 0.474 ± 0.033 for our model
and 0.467 ± 0.017 forRühle et al.’s. These results indicate that both synthetic
models offer comparable segmentation accuracy and instance detection,
with only marginal variations. The qualitative results in Fig. 4c further
illustrate this similarity, showing that both synthetic models effectively
segment particles and handle particle separations in a comparable manner.
While slight differences in segmentation behavior exist, such as ourmodel’s
tendency for oversegmentation, both approaches perform nearly equally.

For the AgNW in the SEM case, we conducted a qualitative evaluation
due to the absence of annotated ground truth data. Figure 5 presents the
segmentation performance of a model trained on synthetic AgNW images
generated by DiffRenderGAN. Overall, the model performs well in identi-
fying nanowires, though frequent false negatives can be observed. Despite
these errors, the model effectively segments nanowires, highlighting the
potential of our synthetic data for this application. Figure 5 also

demonstrates an example application of integrating DiffRenderGAN’s
framework into nanowire image quantification. Specifically, we apply local
thickness calculations to examine the rod-like structure of the AgNWs. The
figure shows an overlay of local thickness measurements based on the
model’s segmentations, along with the corresponding thickness
distributions.

Discussion
In this study, we present DiffRenderGAN, a novel generative model
designed for generating synthetic training data for microscopy analysis. By
integrating differentiable rendering into a GAN, DiffRenderGAN directly
addresses the challenges posed by the limited availability of (annotated)
data, which represents a significant bottleneck in training deep learning
models for segmentation and analysis in microscopy research.

Our experiments demonstrate that the method performs well even
with limited data, provided that sufficient particle diversity and structural
complexity are present. In our study, we utilized datasets ranging from 7 to
10 scans. In this context, we also observed that the balance between gen-
erator and discriminator during training can serve as a useful indicator of
whether the overall training setup is appropriate. This includes, but is not
limited to, aspects such as the suitability and representativeness of the
real data.

We assessed DiffRenderGAN across various material morphologies
andmodalities, including TiO2 and SiO2 inHIM, TiO2 in SEM, andAgNW
for rod-like particles in SEM. Our results showed that while models trained
on real data consistently achieved the highest performance across seg-
mentation metrics, DiffRenderGAN’s synthetic data often matched or
exceeded the performance of existing synthetic data techniques. Despite
some challenges, particularly in improving particle segregation, Dif-
fRenderGAN shows promise in generating high-quality synthetic data for
segmentation-based applications across multimodal microscopy domains,
effectively narrowing the domain gap between synthetic and real data.
Additionally, it offers a simplified and streamlined approach using a single
model for image generation, avoiding multi-stage model training or time-
intensive expert-guided rendering methods. This limits manual interven-
tion to providing basic nanoparticle meshes and selecting a scale and
positional strategy for realistic nanoparticle mesh alignment.

To further enhance realism, future versions of DiffRenderGAN could
incorporate the simulation of scanning-related artifacts such as charging
effects, astigmatism, and defocusing, which are commonly observed in SEM
andHIM images. Similar to our approach ofmodeling real-measured noise
using a Gaussian distribution, these artifacts could be represented by opti-
mizable known operators26. For instance, a trainable Gaussian blur filter
could be applied to the output of the differentiable renderer within the
generator to approximate blurring effects.

Table 1 | Quantitative evaluation results of segmentation performance for real and synthetic data

Domain Model DSC AP50 PQ

Model–Real 0.968 ± 3.16 × 10−4 0.737 ± 0.014 0.938 ± 5.93 × 10−4

TiO2 HIM Model–Synth Mill et al. 0.906 ± 0.009 0:493 ± 0:020 0.829 ± 0.015

Model–Synth Ours 0:932± 0:003 0.393 ± 0.016 0:874 ± 0:005

Model–Real 0.955 ± 9.49 × 10−4 0.945 ± 0.016 0.914 ± 0.002

SiO2 HIM Model–Synth Mill et al. 0.786 ± 0.002 0.375 ± 0.004 0.659 ± 0.003

Model–Synth Ours 0:860± 4:86× 10�4 0:478 ± 0:011 0:754 ± 6:21 × 10�4

Model–Real 0.964 ± 0.001 0.567 ± 0.012 0.930 ± 0.001

TiO2 SEM Model–Synth Rühle et al. 0.911 ± 0.001 0.467 ± 0.017 0.837 ± 0.002

Model–Synth Ours 0:916± 0:003 0:474 ± 0:033 0:845 ± 0:004

The table presents the mean and variance of test performance across three runs, measured by the Dice Similarity Coefficient (DSC), Average Precision at 50% IoU (AP50), and Panoptic Quality (PQ) for
different segmentationmodels trainedon real andsynthetic datasets across various domains: TiO2 inHIM,SiO2 inHIM, andTiO2 inSEM.The “Model–Real" rows represent theaveraged test performanceof
the real-datamodels. “Model–SynthMill et al." refers tomodels trained on synthetic data generated byMill et al.28. Similarly, “Model–Synth Rühle et al." refers tomodels trained on synthetic data generated
by Rühle et al.23. “Model–Synth Ours" refers to models trained on synthetic data generated by our DiffRenderGAN approach. Bold values indicate the best scores for each metric within a domain, and
underlined values highlight the top scores among synthetic models.
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Given DiffRenderGAN's limitation of generating arbitrary textures to
simulate damaged particles, dust, etc., future research should investigate how
to address this problem, as such features are particularly hard to model
explicitly in 3D.Onepossible idea is to extendDiffRenderGANwith a second
generator branch focusing on synthesizing complex textures, potentially
using a neural network, given its strength in capturing stochastic patterns.
The generated textures could then be combined with the results of the dif-
ferentiable renderer branch, enhancing the realism of the synthetic images.

Looking ahead, DiffRenderGAN’s potential applications extend
beyond HIM and SEM. Future research should explore its use with other
imaging techniques, such as atomic force microscopy, computed tomo-
graphy, and transmission electron microscopy (TEM), as well as across a
broader range of nanomaterials. We demonstrated that although Dif-
fRenderGAN relies on a differentiable renderer library originally designed
for light-based interactions, its framework isflexible enough to approximate
key features of electron and ion imaging45.Moreover, the extensibility of the

renderer library used in this work makes it possible to implement custom
BSDFs tailored to specific modalities, enabling the simulation of non-light-
based contrast mechanisms and transmission-mode responses45. While
these adaptations do not aim to replicate physically accurate processes, they
provide a practical means of generating realistic image data.

In conclusion, DiffRenderGAN represents a substantial advancement
in synthetic data generation for microscopy, offering an efficient, scalable,
and integrated solution.Although a representativeness gap compared to real
data remains,DiffRenderGANsignificantly reduces this gap, paving theway
for more robust and comprehensive image-based analyses in the study of
complex nanomaterial systems.

Methods
Image acquisition and processing
Details regarding sample preparation can be found in the respective
publications5,23,28. Data for silver nanowires were provided by the authors of

Fig. 4 | Excerpt of segmentation test results from
models trained on real and synthetic data. Input
images with overlaying corresponding ground truth
masks are compared with the segmentation results
from models trained on synthetic data generated by
our method, synthetic data from a prior study, and a
model trained on real data. In comparison with the
ground truth masks, green overlays denote true
positive pixels, red overlays indicate false positives
(pixels incorrectly identified as particles), blue
overlays highlight missed particles (false negatives),
and pixels without an overlay represent true nega-
tives. Each image pair is selected based on the run
with the highest DSC for each model. a TiO2, b SiO2

in HIM fromMill et al.28. c TiO2 in SEM from Rühle
et al.23, here cropped for visualization reasons.
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ref. 5 (personal communication, unpublished). The sample consisted of
AgNWs synthesized according toKorte et al.46, whichwere drop-cast onto a
silicon substrate and coated with 100 nm of aluminum-doped zinc oxide
(AZO) via atomic layer deposition (ALD), an indium-free electrode.Details
regarding the sample preparation and the use of this material can be found
in the respective publication by Góbelt et al.5. The sample was imaged using
a Zeiss MultiSEM 505 multibeam SEM at a landing energy of 3 keV. The
MultiSEM 505 employs 61 primary electron beams for parallel SEM ima-
ging of large sample surfaces at high resolution47. For this sample, the step
sizewas set to 10 nm, and the imageswere1252 × 1092pixels. In total, 10431
individual images (171 locations × 61 beams) with a combined size of more
than 14 GPixel and an area of ~1mm2 were scanned within less than
5 minutes. From the dataset, twelve images were randomly selected for this
study. Of these, ten images were used for training DiffRenderGAN, while
the remaining two images were reserved for testing.

Rühle et al. 2021 used TiO2 nanomaterial from the Horizon 2020
project ACEnano, which was ultrasonicated in ultrapure water and drop-
cast onto conventional carbon TEM grids and subsequently analyzed using
a FEG-SEM (Supra 40, Zeiss) with an In-Lens detector and in transmission
mode (not used inDiffRenderGANevaluation). Real datawas sourced from
the repository specified in the supplementary section of Rühle et al.23,
comprising 40 SEM images with 1024 × 768 pixels. Out of these, 32 images
were used for training our approach andRühle et al’s approach.While eight
images were reserved for testing, 1000 annotated synthetic images were
generated using the available software from their repository23. Each syn-
thetic image had a resolution of 512 × 312 pixels and was created following
the original procedure.

InMill et al., SiO2 nanoparticles with two different diameters and food
grade TiO2 nanoparticles (E171) with a size distribution of 20 to 240 nm,
bothdepositedon silicon chips (referenceAGAR:G3390-10),were obtained
from the “Laboratoire National de métrologie et d’Essais”. Secondary
electron images of the particles were obtained on a Zeiss ORIONNanoFab
using the helium-ion beam at an energy of 25 keV and a beam current of 0.5
pA. The NanoFab used a side-mounted secondary electron detector similar
to an Everhardt-Thornley type detector. Synthetic datasets included 180
SiO2 and 180 TiO2 annotation-paired images at a resolution of 2031 × 2031

pixels. Additionally, eight real TiO2 (six used for training DiffRenderGAN,
two reserved for testing) and nine real SiO2 (seven used for training Dif-
fRenderGAN, two reserved for testing) annotation-paired images, eachwith
a resolution of 2031 × 2031 pixels, were provided upon request.

Model design
Our GANmodel employs a three-layer PatchGAN discriminator based on
the CycleGAN architecture25. The generator consists of three key modules:
• Regression model: A five-layer deep neural network, where the first

four layers consist of Dropout, a Fully Connected Layer (in = 128, out
113128), andReLU activation.Thefinal layer is aFullyConnectedLayer
with Sigmoid activation, responsible for regressing BSDF parameters
and the noise scale.Weight normalization is applied across all layers.

• Differentiable rendering function: Utilizing Mitsuba 3.4 cuda_ad_-
mono Variant45, this module processes the current virtual scene state
and the parameters predicted by the regression model to generate
rendered images.

• Noise-adding function: After rendering, zero-centered scalable
Gaussian noise is added to the images to simulate realistic imaging
conditions.

Virtual scene design
Before conducting experiments, a virtual scene (utilized byMitsuba 345) was
designed. This scene consists of a rectangular mesh acting as a stage, a
toroidal light source surrounding the stage mesh, and a camera aligned
perpendicularly to the center of the stage. An additional rectangular mesh
light source is positioned above the camera. Nanoparticle meshes should be
centrally locatedwithin the torus and stagemesh and are dynamically scaled
and translated during training. After each image generation, the nano-
particle meshes reset to their initial position in the center of the stage mesh.
The scene is rendered using a Perspective Sensor, a Stratified Sampler, and a
Gaussian Reconstruction Filter. Both the stage and the nanoparticle meshes
utilize a Principled BSDF. All BSDF parameters not involved in the opti-
mization process remainfixed at their default values. The scene integrator is
set to Direct Reparam, and the Area Light plugin is used for both emitters.
The optimized BSDF parameters for the nanoparticle mesh in the

Fig. 5 | Qualitative evaluation of segmentation performance and local thickness
estimation for AgNW in SEM. This figure presents a visual analysis of AgNW
segmentation and local thickness estimation using a segmentation model trained
exclusively on synthetic data generated by the DiffRenderGAN framework. The left
column displays two randomly selected SEM images of AgNWs used for testing. The
second column shows a green overlay representing the segmentation results, with

notable false negatives highlighted in blue and false positives outlined in red. The
third column shows a local thickness estimation overlaid as a heatmap based on the
segmentation results, where brighter values represent thicker regions. The right
column depicts the corresponding local thickness distributions for each scan, pro-
viding insights into morphological variations and potential applications in
nanotechnology.
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experiments includeRoughness,Base Color, Sheen, Sheen Tint, and Specular
Tint, while the stage BSDF optimizes only the Base Color parameter.
Emission values remain fixed during optimization, with the toroid mesh
intensity set to 1.0 and the rectangle mesh intensity set to 0.1.

Nanoparticle mesh modeling
Prior to training DiffRenderGAN, nanomaterial meshes were modeled
using Blender version 3.6. Predesigned meshes were adapted to match the
morphologies of real particles across different domains: cubes for TiO2,
cones for Ag, and spheres for SiO2. For eachmaterial, a collection ofmeshes
was duplicated and, where necessary, deformed through bending, vertex
translation, and rotation.

The following configurations were used in our experiments:
• 10 bent and randomly rotated cones for AgNW SEM
• 20 non-deformed spheres for SiO2 HIM
• 15 deformed and smoothed cubes for TiO2 HIM
• 40 deformed and smoothed cubes for TiO2 SEM

To achieve smoother mesh surfaces, the Blender Remeshmodifier was
applied. Eachmesh was positioned at the origin (0, 0, 0) and exported using
the Mitsuba-Blender plugin to ensure compatibility with the differentiable
rendering software. This workflow was designed to require minimal
expertise in 3D rendering.

Transformation computation
To simulate realistic particle sizes and spatial distributions in synthetic
images, a size distribution (bimodal, lognormal, or normal) and a spatial
arrangement model (random or agglomerated) are selected based on expert
analysis of real images prior to training. Once the size and positional dis-
tributions are chosen, along with the synthetic image sample size, a trans-
formation tensor is computed. This tensor is generated by sampling from the
selected size and positional distributions for each image optimized during
training, assigning a scaling factor and positional coordinates to each mesh.

It is critical that the size and spatial distributionmodel parameters align
with the exported sizes of the nanoparticle meshes. Otherwise, synthetic
images may contain nanoparticles that are either too large or too small. For
random spatial arrangements, the meshes are uniformly distributed within
the virtual scene, either in a planar configuration (e.g., AgNW SEM) or in
three-dimensional space. For agglomerated arrangements, a Poisson disk-
based sampling algorithm was employed to simulate clusters39.

Model training
All DiffRenderGAN models were trained using PyTorch48. The generator’s
learning ratewas set to 0.0002, while the discriminator’s learning ratewas set
to 0.0001, both optimized using Adam38. Xavier initialization was applied to
both the generator and discriminator49. For all experiments, Dif-
fRenderGAN was trained on 256 × 256 pixel image patches for 50 epochs.
Each trainingdatasetwas cropped into overlapping patches of size 256 × 256
pixels. DiffRenderGAN was then trained on image patches containing at
least three fully displayed particles while avoiding repetitive particle patches.
Each experiment utilized a batch size of 1. The image patches included in the
training were as follows: 82 for AgNW, 56 for SiO2 in HIM, 126 for TiO2 in
HIM, and 124 for TiO2 in SEM. As real data augmentation techniques, we
employed random flipping, rotation, and transposing. To monitor the
qualityof synthetic images, after eachepoch, a synthetic datasetmatching the
size of the real dataset was generated, and the FID score was calculated. The
best epoch was selected as detailed in the main text.

Model inference
After training, the generator was loadedwith the respective best epoch state.
During runtime, an additional duplicate scene, without the stagemesh, was
created, where an AOV integrator was used. This integrator enables the
rendering of labeled images displaying unique identifiers for each mesh
observed in the camera’s field of view, necessitating the removal of the stage
mesh. The generated label images were processed through rounding to

ensure discrete label values. Subsequently, these label imageswere binarized,
and an additional contour class was added. For TiO2 and SiO2 in HIM and
AgNW in SEM, a contour thickness of four pixels was used, while for TiO2

inSEM, a thickness of onepixelwas applied.Toensuremeaningful synthetic
images during inference, only images where particles exhibited sufficient
contrast against the background were rendered. Specifically, based on the
mask information, we automatically removed images during inference
where themean intensity of the particleswas less than15% in comparison to
the mean intensity of the background. Following this automated strategy
during inference, each experiment produced 1000 paired synthetic images
with their respective annotated masks.

Workflow for deep learning-based segmentation of
nanoparticles
For performance comparisons, we employed the nnUNet framework50,
which automatically configures model parameters based on the character-
istics of each individual dataset. This approach eliminates potential per-
formance bias that could arise from manual model selection and
configuration. All segmentation models were trained for multiclass seg-
mentation using nnUNet’s default training procedure, classifying pixels into
three categories: particle, contour, and background. The contour class
specifically aids in distinguishing overlapping particles. During the addition
of the contour class for real data and synthetic data from othermethods, we
ensured that no particle information in the respective masks was over-
written by the addition of contour class pixels.

To ensure robust evaluation of our models and mitigate potential
biases introduced by artifact-rich environments in original scans, we sup-
plemented our synthetic image datasets with 200 real background patches
(i.e., images without particles) randomly sampled fromoverlapping patches
of the corresponding real training data, used during DiffRenderGAN
training. The rationale behind this supplementation was to encourage our
synthetic datamodels to accurately distinguish true particles from irrelevant
artifacts, such as dirt or preparational anomalies, during segmentation tasks.
Since our proposedmethod does not provide additionalmeshes for artifacts
and only generates “clean” images, this strategy introduces additional
robustness under varying imaging conditions. We note that this aspect is
explicitly or implicitly considered across all approaches: Mill et al. supple-
mented their data by including dirt textures as synthetic backgrounds,
partially addressing artifact-related challenges. Rühle et al.’s GAN-based
approach inherently integrates the generationof background andartifacts as
long as they are present in the training dataset. Therefore, we follow these
methods as proposed by the original authors.

The datasets used for nnUNet training included the following:
• TiO2HIM: Our segmentation model was trained on our synthetic

dataset (1000 images, 256 × 256 pixels) supplemented with real back-
ground patches (200 images, 256 × 256 pixels; total: 1200 images).Mill
et al.’s model was trained on their synthetic dataset (180 images,
2031 × 2031pixels). The real-datamodelwas trainedon294, 256 × 256
image patches extracted from six real images in the training split,
utilizing the available respective ground truth masks for training.

• SiO2HIM: Our segmentation model was trained on our synthetic
dataset (1000 images, 256 × 256 pixels) supplemented with real back-
ground patches (200 images, 256 × 256 pixels; total: 1200 images).Mill
et al.’s model was trained on their synthetic dataset (180 images,
2031 × 2031pixels). The real-datamodelwas trainedon343, 256 × 256
image patches extracted from seven real images in the training split,
utilizing the available respective ground truth masks for training.

• TiO2SEM: Our segmentation model was trained on our synthetic
dataset (1000 images, 256 × 256 pixels) supplemented with real back-
ground patches (200 images, 256 × 256 pixels; total: 1200 images) and
tested on eight real images. Rühle et al.’s model, trained on their syn-
thetic dataset (1000 images, 512 × 312 pixels). The real-datamodel was
trained on 256, 256 × 256 image patches extracted from 32 real images
in the training split, utilizing the available respective ground truth
masks for training.

https://doi.org/10.1038/s41524-025-01702-6 Article

npj Computational Materials |          (2025) 11:197 9

https://github.com/mitsuba-renderer/mitsuba-blender
www.nature.com/npjcompumats


• AgNW SEM: Our segmentation model was trained on our synthetic
dataset (1000 images, 256 × 256 pixels) supplemented with real back-
ground patches (200 images, 256 × 256 pixels; total: 1200 images).

Eachmodelwas trained for three runs. After training, eachmodel from
each run within its respective domain was tested on the same real test data,
using a step size of 0.1 (TiO2 HIM: two image scans; SiO2 HIM: two image
scans;TiO2 SEM: eight image scans).After testing, each imagewas binarized
using only the particle class information. We then computed the mean test
performance for each model within each run and calculated the mean and
variance of the test performance across all runs using the evaluationmetrics
introduced in “Deep learning-based segmentation of nanoparticles trained
on synthetic images”.

Technical notes
All experiments involving DiffRenderGAN and nnUNet were conducted
using Python 3.9.18 on an NVIDIA A40 GPU with CUDA 12.3.

Data availability
Real and synthetic HIM images reported by Mill et al., as well as real SEM
images from Göbelt et al., can be obtained from the corresponding authors
of the respective studies upon request. TheSEMdataset introducedbyRühle
et al. can be accessed through the repository detailed in the respective
supplementary information. The synthetic images used in this study were
produced using the original code provided by the authors in their publicly
accessible repository.

Code availability
TheDiffRenderGAN source code, including fully trainedmodel weights for
each case, is publicly available at GitHub. All necessary dependencies and
detailed usage instructions are provided in the repository documentation.
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