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Enhancing transferability of machine
learning-based polarizability models in
condensed-phase systems via atomic
polarizability constraint
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Accurate prediction of molecular polarizability is essential for understanding electrical, optical, and
dielectric properties of materials. Traditional quantum mechanical (QM) methods, though precise for
small systems, are computationally prohibitive for large-scale systems. In this work, we proposed an
efficient approach for calculatingmolecular polarizability of condensed-phase systemsby embedding
atomic polarizability constraints into the tensorial neuroevolution potential (TNEP) framework. Using
n-heneicosane as abenchmark, a training data setwas constructed frommolecular clusters truncated
from the bulk systems. Atomic polarizabilities derived from semi-empirical QM calculations were
integrated as training constraints for its balance of computational efficiency and physical
interpretability. The constrained TNEP model demonstrated improved accuracy in predicting
molecular polarizabilities for larger clusters and condensed-phase systems, attributed to the model’s
refined ability to properly partition molecular polarizabilities into atomic contributions across systems
with diverse configurational features. Results highlight the potential of the TNEP model with atomic
polarizability constraint as a generalizable strategy to enhance the scalability and transferability of
other atom-centered machine learning-based polarizability models, offering a promising solution for
simulating large-scale systems with high data efficiency.

Molecular polarizabilityα, themeasure of an electron cloud’s response to an
external electric field, plays a fundamental role in determining a material’s
dielectric and optical properties1–5. The widespread use of quantum
mechanical (QM) methods, such as the density functional theory (DFT)
allows the accurate calculations of polarizabilities for small molecules and
solids. However, when it comes to large-scale systems, such as proteins and
polymers, the calculation of their polarizabilities remains a daunting task,
mainly because the computational cost scales superlinearly with the system
size6. Traditional empirical methods like the bond polarizabilitymodel7 and
atom-dipole interaction models8 are facing rigorous challenges in accuracy
and reliability9. Fragment-based methods, which partition molecular sys-
tems into smaller subsystems for analysis10–14, improve scalability but
require significant expertise in defining partitions15 and still face resource
constraints for large-scale applications16.

The emergence of machine learning (ML)-based polarizabilitymodels
can potentially tackle this challenge as they achieve a great balance between
accuracy and efficiency17–24. The efficacy of ML-based polarizability models
for molecules and crystalline solids has been demonstrated in previous
studies17,25–28. However, predicting polarizabilities for proteins and polymers
remains challenging due to the significant computational cost and effort
required to generate accurate polarizability training data using high-
precision DFT calculations. Therefore, reducing the cost of data set pre-
paration formodel training is crucial for the efficientmodeling of large-scale
systems.

Utilizing small cluster structures extracted from large-scale systems as
training data for ML-based polarizability models may provide a viable
strategy. Previous studies have demonstrated the feasibility of simulating
bulk systems with atom-centered machine learning force fields (MLFFs)
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trainedon small fragment data asMLFFs only rely on atomic energieswith a
local environment dependence29–32. In principle, this should also be
applicable to atom-centered ML-based polarizability models as they infer
molecular polarizability from individual atomic contributions in the same
way. However, allocation of atomic polarizabilities is not unique and rig-
orous, since currentML-based polarizabilitymodels are typically trained for
predictions ofmolecular polarizabilities. It has been reported that if only the
global quantity is rigorously defined during training, the decomposition of
the global quantity into local contributions byMLmodels can take place in
numerous different ways29,33,34. For the ML-based polarizability models, the
distributed atomic polarizabilities allocated by themselves can be flexible
and arbitrary, and in some instances, incapable of characterizing the
polarization of atoms correctly. This can inevitably introduce uncertainty
into the model predictions, thus affecting the transferability of ML-based
polarizability models. To this end, further research is essential to develop
robust methodologies that address uncertainties in atomic polarizability
predictions, thereby enhancing the reliability and transferability of ML-
based polarizability models from small clusters to large systems without
target data.

The tensorial neuroevolution potential (TNEP) models for molecular
polarizability, proposed and implemented in our previous work28, have
shown high accuracy and extraordinary efficiency and were successfully
applied to liquid water and perovskite BaZrO3. In this work, the transfer-
ability of TNEPmodels trained on cluster data to condensed-phase systems
was investigated, after which the atomic polarizability constraint was
manually introduced into the TNEP framework. First, an original TNEP
model was trained on cluster data truncated from bulk systems of n-
heneicosanewithamaximumcutoff radius of 7 Å,whichwasdeterminedby
the convergence test based on theQMmethod. Subsequently, a constrained
TNEP model (referred to as the TNEP-C model) was trained on the same
training data set augmented with atomic polarizabilities derived from the
semi-empirical QM method (referred to as GFN2-computed atomic
polarizabilities). Test data sets, including cluster data of varying sizes, were
constructed to evaluate the extrapolative performance of these two models.
Comparisons of schemes for partitioning molecular polarizability into
atomic contributions from these two TNEP models and the QM method
using theHirshfeld partitioning schemewere conducted to further elucidate
the key improvement by incorporating the atomic polarizability constraint
into the TNEPmodel. Finally, the performance of these twomodels on bulk
systemswas also investigated using committee error estimates (CEEs) as the
indicator.

Results
Performance of the original TNEPmodel
The extrapolative performance of the original TNEP model was evaluated
on a series of test data sets, including structures of varying sizes (truncated
frombulk systems ofn-heneicosanewith cutoff radii ranging from6 to 13 Å
in 1 Å increments). The test data sets were labeled as “R6~R13”, where “R”

stands for the “cutoff radius” used in data sets constructions. Performance
metrics, including root mean square error (RMSE) and the coefficient of
determination (R2), were calculated to evaluate the model’s accuracy in
predicting per-atom diagonal and off-diagonal elements of molecular
polarizabilities for configurations in test data sets, using DFT reference
values as the benchmark standard.

While the original TNEP model achieved high consistency with DFT
reference values in predicting molecular polarizabilities for small data sets
such as R6 and R7, the prediction errors increased significantly when
extrapolating to much larger clusters. As shown in Fig. 1, a systematic
increase in RMSEs of the per-atom diagonal elements of molecular polar-
izability (�αTNEP;mol

xx ; �αTNEP;mol
yy ; �αTNEP;mol

zz ) was observed for configurations
exceeding the size of those in the training data set, accompanied by a
corresponding decrease in R2 values. In contrast, the predictions for per-
atom off-diagonal elements of molecular polarizabilities
(�αTNEP;mol

xy ; �αTNEP;mol
yz ; �αTNEP;mol

xz ) remained relatively stable, with slight
increases in RMSEs and minor decreases in R2.

Parity plots of the diagonal elements of the predicted molecular
polarizabilities versus the DFT reference values in Fig. 2 confirmed the large
prediction errors by the original TNEPmodel for clusters much larger than
those in the training data set. As the size ofmolecular clusters increased, the
diagonal elements of molecular polarizabilities predicted by the TNEP
model (αTNEP;mol

diag ) gradually deviated from the DFT reference values
(αref ;mol

diag ), with significant overestimations for large clusters such as those in
R12 and R13 test data sets. Conversely, the off-diagonal components pre-
dictedby theTNEPmodelwere in good correlationwith those calculated by
the DFT method (Supplementary Fig. 1).

The opposite trends of prediction errors for diagonal and off-diagonal
elements of molecular polarizability tensors may originate from their
intrinsic characteristics. Diagonal elements of molecular polarizability
tensors in ML-based polarizability models are typically divided into local
atomic contributions modulated by the chemical environments, however,
the schemes to assign atomic contributions by the TNEP model are closely
related to the differences in the configurational features of the training and
test data sets, and this will be discussed in the next section. On the contrary,
for an isotropic system, the off-diagonal elements of polarizability tensors
are mainly affected bymolecular symmetry such as rotational operations35,3
6, weakening the influence of differences in configurational features between
the training and test data sets.

Analysis of key factors affecting the transferability of the original
TNEP model
The significant discrepancy between predicted diagonal elements of mole-
cular polarizabilities and reference values in Fig. 2 suggests that the original
TNEP model tends to uniformly overestimate the polarizabilities of giant
clusters unseen in the training data set. Due to the atom-centered structure
of TNEP models, the discrepancy in molecular polarizabilities necessitates
the inspection of the local atomic contributions to the total polarizability.

Fig. 1 | Performance of the original TNEP model
for predicting the per-atom molecular polariz-
abilities of configurations in test data sets. Per-
formance of the original TNEPmodel for predicting
per-atom diagonal and off-diagonal elements of
molecular polarizabilities of configurations in
R6~R13 test data sets, evaluated by a RMSEs and
b R2 values.
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Atomicpolarizability inTNEPmodels is calculated from individual artificial
neural networks (ANNs) by using local chemical environments consisting
of all atoms inside a cutoff sphere of radius as inputs. Therefore, the dif-
ferences in atomic environments between the training and test data sets
(input to the ANNs) and the distributions of atomic polarizabilities (output
to the ANNs) were both analyzed to investigate the main factors that may
affect the validity of the TNEP model trained on small molecules when
applied to larger systems.

For the inspection of the inputs of ANNs, the similarity in atomic
environments across different data sets was first compared by using the
descriptor space analysis for carbon atoms and hydrogen atoms in the
training and test data sets. Supplementary Figs. 2 and 3 suggested that the
projections of the training data set almost entirely covered those of R6~R13
test data sets. This revealed that transferring from the training data set to test
data sets should not introduce significant changes to the diversity of local
atomic environments.

For the inspection of the outputs of ANNs, atomic polarizability dis-
tributions for hydrogen and carbon atoms in clusters of varying sizes cen-
tered on a certain carbon atomwere calculated by the original TNEPmodel
and the QM method using the Hirshfeld partitioning scheme,

respectively. Note that only averaged isotropic polarizability
(�αatomic

iso ¼ ðαatomic
xx þ αatomic

yy þ αatomic
zz Þ=3) was considered here, and QM

calculationswere implemented on clusterswith cutoff radii ranging from3 to
9Å due to the computational costs. The results from the QMmethod using
the Hirshfeld partitioning scheme (referred to as QM-based atomic polar-
izabilities) were scaled to ensure consistency with the reference data for the
TNEPmodel at the computational level. Fig. 3 shows that the original TNEP
model tends to allocate polarizabilities to hydrogen and carbon atoms in a
manner that differs markedly from the QM-based atomic polarizabilities.
Specifically, hydrogen atoms were assigned excessively higher values, while
carbon atoms were assigned substantially lower values. As the size of the
clusters increased, the polarizabilities assigned to carbon andhydrogen atoms
by the original TNEP model gradually approached a common value, indi-
cating a diminishing capability of themodel to differentiate between different
elements. In addition, the instability of the predicted atomic polarizabilities
wasgenerallyon the rise (theanomalyobserved inclusterswithacutoff radius
of 3 Å may be due to the limited number of atoms in the cluster). This
indicated that for atoms of a given type, new atomic environmentsmay have
emerged while the model failed in representing them, and the proportion of
atoms in such environments increased accordingly as the clusters expanded.

Fig. 2 | Parity plots of the diagonal elements of the molecular polarizabilities
predicted by the original TNEP model versus the DFT reference values for
configurations in test data sets. Parity plots of the diagonal elements of the
molecular polarizabilities predicted by the original TNEP model versus the DFT

reference values for configurations in a R6 test data set, b R7 test data set, c R8 test
data set, d R9 test data set, e R10 test data set, f R11 test data set, g R12 test data set,
and h R13 test data set.

Fig. 3 | Comparisons of atomic polarizability
distributions calculated by the QM method using
theHirshfeld partitioning scheme and the original
TNEP model for clusters of varying sizes centered
on a certain carbon atom. Comparisons of dis-
tributed atomic polarizabilities of a hydrogen and
b carbon atoms in clusters of varying sizes centered
on a certain carbon atom calculated by the QM
method using theHirshfeld partitioning scheme and
the original TNEP model.
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This limitation arose because the original TNEPmodel only accounted
for the loss function of total polarizability during the training process, which
led to internal flexibility of atomic polarizability contributions. The scheme
for decomposing total polarizability into atomic contributions is sensitive to
the configurational features of training data sets, including chemical com-
positions andproportions of atoms in various chemical environments. Table
1 shows that the stoichiometric ratios and the fractions of carbon atoms in
bulk-like environments rose accordingly as the size of the configurations in
data sets increased. First, the differences in the stoichiometric ratios between
the training and the test data sets hinder the model’s ability to distinguish
between chemical elements in such transfer, similar to findings demon-
strated in previous work on MLFF29. Second, the limited fraction of carbon
atoms in bulk-like environments within the training data set contributes to
the original TNEP model being undertrained in representing bulk-like
atomic environments. To this end, when applied to much larger structures,
theTNEPmodel insists onmaking predictionswith physically unreasonable
schemes, leading to an overall overestimation of molecular polarizabilities.

Performance of the TNEP-C model
Since the original TNEP model failed to give a reliable decomposition of
molecular polarizabilities among the constituent atoms, GFN2-computed
atomic polarizabilities were introduced into the training process of the
TNEPmodel as constraints. Before integrating, a systematic error correction
of atomic polarizabilities was necessary according to the previous work37,
and a quadratic fit with the zero intercept provided the best match between
theGFN2-computed andDFT-computed polarizabilities of the labeled data
(Supplementary Fig. 4).

The extrapolative performance of the TNEP-C model demonstrated
advantages over the original TNEP model. While maintaining the perfor-
mance for training data set (Supplementary Fig. 5) andR6~R7 test data sets,
the RMSEs of the per-atom diagonal elements of molecular polarizabilities
predicted by the TNEP-C model decreased substantially for large data sets
from R8 to R13 (Fig. 4 and Supplementary Table 1). The parity plots of the
diagonal and off-diagonal elements of the predicted molecular polariz-
abilities versus the DFT reference values shown in Supplementary Figs.
6 and 7 also confirmed that by learning GFN2-computed atomic polariz-
abilities, the TNEP-Cmodel exhibited improved accuracy on large clusters.

Atomic polarizability distributions for hydrogen and carbon atoms in
clusters of varying sizes centered on a certain carbon atom were also cal-
culated to investigate the improvement of the TNEP-Cmodel. As shown in
Fig. 5a, b, the results from the TNEP-Cmodel were in good agreement with
QM-based atomic polarizabilities and remained robust when extrapolating.
Take a cluster with a cutoff radius of 6 Å as an example, distributed atomic
polarizabilities were plotted as polarizability ellipsoids and atoms were
colored based on their contributions to molecular polarizability. The values
of the polarizability tensors for hydrogen atoms should be substantially
smaller comparedwith those of carbonatoms, due to their smaller electronic
population (Fig. 5c). However, the original TNEP model itself tended to
allocate comparable values to carbon and hydrogen atoms (Fig. 5d). In
contrast, the TNEP-Cmodel can correctly differentiate between carbon and
hydrogen atoms (Fig. 5e). This indicated that the TNEP-C model has
embedded a physics-compliant partitioning strategy for partitioning total
polarizabilities into atomic contributions. Consequently, the constrained
model delivered enhanced robustness in extrapolation compared with the
unconstrained counterpart, as evidencedby reduced errorswhen predicting
diagonal elements ofmolecular polarizabilities for larger clusters beyond the
training domain.

Extrapolating the original TNEP and TNEP-C models to bulk
systems
In addition to the evaluationon largemolecular clusters,we also assessed the
transferability of the original TNEP and TNEP-C models on bulk systems.
The bulk data set contains 125,000 configurations sampled from the MD
trajectories of n-heneicosane with an interval of 2 fs. Since calculations of
polarizabilities at the DFT level for such a large system are unattainable,
alternative uncertainty estimation metrics are required to evaluate the
prediction errors instead of RMSE.Here, we employed theCEE algorithm38,
which can provide a metric to quantify the generalization error in the form
of the committee disagreement. CEE has been previously used to evaluate
the performance of ML models39–42, including its application to TNEP
models43. In this work, five instances of both the original TNEP and TNEP-
C models were independently trained. The corresponding CEEs were
computedon the test data set and comparedwithRMSEs for validation.The
results indicated that while CEE tended to underestimate RMSE, the overall
consistency between these two metrics suggested that CEE can serve as a
reasonable approximation for evaluating prediction errors on systems that
pose challenges to the DFT methods, and this correlation has also been
reported in previous studies 43.

Table 1 | Results of configurational features including
stoichiometric ratios and fractions of carbon atoms in bulk-
like environments inside the cutoff radius of the symmetry
functions for the training and test data sets, and the periodic
system of n-heneicosane

Data sets Stoichiometric
ratios of
configurations

Fractions of carbon atoms in
bulk-like environments for
configurations (%)

Min Max Min Max Average

R6 test data set 0.330 0.444 0 0 0

R7 test data set 0.359 0.451 0 0.391 0.004

R8 test data set 0.370 0.450 0 1.61 0.085

R9 test data set 0.390 0.454 1.23 2.62 1.94

R10 test data set 0.401 0.460 2.03 4.51 3.01

R11 test data set 0.409 0.464 3.42 7.93 5.72

R12 test data set 0.418 0.466 7.75 12.2 10.4

R13 test data set 0.425 0.466 10.6 14.4 12.3

Training data set 0.273 0.450 0 0.439 0.002

Periodic system 0.477 100

Fig. 4 | Performance of the TNEP-C model for
predicting the per-atommolecular polarizabilities
of configurations in test data sets. Performance of
the TNEP-C model for predicting per-atom diag-
onal and off-diagonal elements of molecular polar-
izabilities of configurations in R6~R13 test data sets,
evaluated by a RMSEs and b R2 values. Dashed lines
represent the results from the original TNEP model
and the solid lines represent the results from the
TNEP-C model.
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Significant enhancements were observed in the predictions for the
per-atom diagonal elements of molecular polarizabilities. Figure 6a pre-
sents that the CEE can reach as high as 0.1 a.u. per atom when extra-
polating to the bulk systems for the original TNEP model, while for the
TNEP-C model, this error is reduced to 0.03 a.u. per atom (Fig. 6b). This
result further demonstrates that, if only the molecular polarizabilities are
fitted, TNEP models can achieve high accuracy on the training data set
with several internal schemes to partition total polarizabilities into atomic
contributions. While the atom-specific polarizabilities assigned by the
original TNEP model itself can vary greatly with changes in configura-
tional features of training data sets, and sometimes these atomic

predictions are physically inconsistent44. This uncertainty can lead to poor
transferability across different test data sets, and can be substantially
reduced via the implementation of constraints on atomic polarizabilities.
In contrast, the original TNEP andTNEP-Cmodels exhibited comparable
accuracy in predicting the off-diagonal elements of molecular polariz-
abilities (Fig. 6c, d), even when transferring to the bulk systems. The
reason for this lies in the fact that the isotropic GFN2-computed atomic
polarizabilities incorporated into the TNEP-C model do not impose
constraints on the off-diagonal components. Consequently, the predic-
tions for the off-diagonal components remain primarily governed by the
original TNEP model’s inherent capability, which is less affected by the

Fig. 5 | Comparisons of atomic polarizability
distributions calculated by the QM method using
the Hirshfeld partitioning scheme, the original
TNEP model and the TNEP-C model for clusters
of varying sizes centered on a certain carbon atom.
Comparisons of distributed atomic polarizabilities
of a hydrogen and b carbon atoms in clusters of
varying sizes centered on a certain carbon atom
calculated by the QM method using the Hirshfeld
partitioning scheme, the original TNEP model and
the TNEP-C model; graphical representation of
distributed atomic polarizabilities calculated by c the
QM method using the Hirshfeld partitioning
scheme,d the original TNEPmodel and e theTNEP-
C model for a cluster with a cutoff radius of 6 Å.

Fig. 6 | Comparisons of prediction errors of per-
atom molecular polarizabilities for the test data
sets and the bulk data set of n-heneicosane
obtained by the original TNEP model and the
TNEP-C model. Comparisons of prediction errors
for per-atom (a, b) diagonal and (c, d) off-diagonal
elements of molecular polarizabilities for the test
data sets and the bulk data set of n-heneicosane,
obtained by the original TNEP model and the
TNEP-C model, respectively.
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variations in the system sizes and configurational features compared with
the diagonal elements.

Rooms for further enhancement remain in this approach. For instance,
while the GFN2-computed atomic polarizabilities are generally reasonable
and readily obtainable, the current model may be limited when applied to
systems with intense anisotropic effects due to the absence of contributions
from off-diagonal components. Introducing atomic polarizabilities
obtained from the partitioning of ground-state and field-perturbed electron
densities of a molecular system such as quantum theory of atoms in
molecules (QTAIM)45–47 as training constraints in TNEP models may
potentially yield better results, but it also poses a challenge in terms of the
computational costs.

Discussion
We demonstrated that incorporating atomic polarizability constraints into
the TNEP model can significantly enhance its transferability, enabling
accurate predictions of polarizabilities for condensed-phase systems based
only on small molecular cluster data. By integrating atomic polarizabilities
derived from semi-empiricalQMcalculations, theTNEP-Cmodel learneda
physically grounded partitioning scheme to divide atomic contributions,
especially for configurations with increased stoichiometric ratios and pro-
portions of atoms in bulk-like environments. Consequently, the TNEP-C
model showed boosted performance in extrapolation, with largely reduced
errors in predicting polarizabilities of large clusters and bulk systems.

In principle, this approach can be extended to organic systems with
higher complexity at the chemical composition level, such as systems that
include elements like oxygen and nitrogen. For systems involving metallic
atoms, more sophisticated methods for assigning atomic polarizabilities
(likeQTAIM)will be essential and necessitate further testing and validation
to ensure accuracy and reliability. Importantly, thismethodology could also
be applied to other atom-centeredML-based polarizability models, thereby
providing a robust strategy for scalable, data-efficient predictions of mole-
cular polarizability in complex condensed-phase materials. This would
potentially pave the way for more insightful simulations of molecular
properties, particularly in understanding electronic and spectroscopic
characteristics of various materials.

Methods
The trainingdata setwas composedofmolecular clusters truncated fromthe
configurations extracted from the MD trajectories of n-heneicosane
(C21H44) with varying cutoff radii from 3 to 7 Å in 1 Å increments. To
improve the efficiency of the data set construction, we started with the
smallest clusters truncated with a cutoff radius of 3 Å, and continuously
supplemented the clusters with larger cutoff radii through the farthest point

sampling (FPS) method iteratively. This section was organized as follows:
First, the method to construct the clusters from the bulk system was
introduced, followed by the computational details of calculating molecular
polarizabilities for the initial training dataset. Subsequently, the principle of
the original TNEP model was briefly outlined. The explorations of larger
clusters through the FPS method were detailed afterwards, and this section
finally ended with the calculations of atomic polarizabilities and refactoring
of TNEP models for atomic polarizabilities.

Construction of molecular clusters
An orthogonal structure of n-heneicosane with a bilayer of 6 × 8 unit cells
(6240 molecules) was constructed as the initial configuration for MD
simulations48–50. The temperature was held at 301 Kusing theNosé–Hoover
thermostat51,52 with a time constant of 0.1 ps, and the pressure was main-
tained at 1 bar using the Parinello-Rahman barostat53. The MD simulation
was performed using the COMPASS force field54 in LAMMPS55. Snapshots
were dumped every 25 ps from anMDproduction run of 250 ps, and a total
of 11 snapshots were obtained.

Molecular clusters of different sizes were truncated from the bulk
structures ofn-heneicosane by extracting atomswithin cutoff radii from3 to
13 Å in 1 Å increments surrounding each carbon atom. Carbon atoms
outside a certain radiuswill be kept if the valencywas situatedon ahydrogen
or bonded to two carbon atoms within the radius, as illustrated in Fig. 7.
Subsequently, free valencies were saturated with hydrogen atoms56. Con-
strained optimizations were performed for every cluster using the COM-
PASS forcefield to adjust the positions of hydrogen atomswhile keeping the
carbon skeleton fixed.

Calculations of molecular polarizability
Molecular polarizabilities were calculated for each structure in the
training data sets using the DFT method. Molecular polarizabilities
were calculated by solving the coupled perturbed self-consistent field
equations using the GTH-PBE pseudopotential and the DZVP-
MOLOPT-SR-GTH basis set (400 Ry cutoff, Γ point)57–59. All DFT
calculations were carried out using the Gaussian Plane Waves method
(GPW) in CP2K 60,61.

Principle of the original TNEP model
The TNEP model for predicting tensorial properties is developed based on
theNEP framework,which is implemented in theGPUMDpackage62. In the
NEP-based potential energy surface (PES) model, the total energy of one
system is given by the sum of atomic site energies Ui, which are computed
using individual ANNs and depend on the local atomic chemical envir-
onments. Following the work of Behler and Parrinello63, the input layer

Fig. 7 | Schematic representation of molecular
clusters derived from the bulk structure of n-
heneicosane. The central carbon atoms of the
clusters are highlighted in blue and orange, respec-
tively, and the red sticks represent the atoms artifi-
cially introduced to saturate the free valences.
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consists of descriptor vectors of high dimensions constructed from Che-
byshev and Legendre’s polynomials64,65. Explicit expressions of the
descriptor vector and more detailed information on the NEP-based PES
model are introduced in refs. 66–69.

Themolecular polarizability tensor is a second-order symmetric tensor
with nine components for a given structure withN atoms28. Components of
α can be expressed as:

αμν ¼
XN

i

Uiδμν �
XN

i

X

j≠i

rμij
∂Ui

∂rvij
ð1Þ

where ν refers to thedirectionof the applied external electricfield (e.g.,x; y; z
in Cartesian coordinates), while μ denotes the direction of the induced
dipole moment (e.g., x; y; z in Cartesian coordinates). The polarizability
tensor component αμν quantifies the linear response between the external
electric field applied in the ν-direction and the induced dipole moment in
theμ-direction.Whenμ ¼ ν,αμν corresponds to thediagonal element of the
molecular polarizability tensor, while μ≠ν represents the off-diagonal
component. δμν is the Kronecker delta. r

μ
ij is the μ-component of the vector

rij � rj � ri, and rj is the position of neighboring atom j around atom i.Ui
here has the dimension of polarizability.

The loss function of the original TNEPmodel is given by the weighted
sum of the RMSEs of the molecular polarizability Lmol zð Þ as well as two
regularization terms, as:

L zð Þ ¼ Lmol zð Þ þ λ1
1

Npar

XNpar

n¼1

jznj þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Npar

XNpar

n¼1
z2n

s
ð2Þ

where z is a set of trainable parameters from the descriptors and the ANN
model, and Npar is the total number of tunable parameters. The last two
terms represent L1 and L2 regularizations. The weights λ1 and λ2 are
tunable hyperparameters.

The loss term accounting for molecular polarizability is defined as:

Lmol zð Þ ¼ 1
6Nstr

PN str

n¼1

P
μ¼ν

αTNEP;mol
μν ðn; zÞ � αref ;mol

μν ðnÞ
� �2

"(

þ λmol
s

P
μ > ν

αTNEP;mol
μν ðn; zÞ � αref ;mol

μν ðnÞ
� �2

 !#)1
2

ð3Þ

where Nstr is the number of structures in the whole training data set.
αTNEP;mol
μν n; zð Þ is the molecular polarizability component predicted by the

original TNEP model with parameters z for the nth structure while
αref ;mol
μν nð Þ is the corresponding reference molecular polarizability compo-

nent typically obtained by theDFTmethod. Sincemolecular polarizability is
a symmetric second-order tensor (αμν ¼ ανμ), we utilize the lower-
triangular off-diagonal components (μ > ν) of αTNEP;mol

μν n; zð Þ and
αref ;mol
μν nð Þ for implementation. λmol

s is introduced as a regularization
parameter to balance the contributions from the diagonal and off-diagonal
components.

For the radial components of the original TNEPmodel, a cutoff radius
of 7 Å and seven radial functions (each being a linear combination of 11
basis functions) were used in this work. For the angular components, a
cutoff radius of 4 Å and seven radial functions (each being a linear com-
bination of 11 basis functions) were used. The maximum expansion order
for the three, four, and five-body terms of angular descriptor components is
4, 2, and 1, respectively. The fitting component is an ANN composed of one
hidden layer with 30 neurons. For the regularization parameters, λmol

s was
set to 1, λ1 and λ2 both were set to 0.03. The original TNEP model was
trained for 300,000 generations using the SNESalgorithmwith a population
size of 80.

Iterative explorations of larger clusters through the FPS method
To improve computational efficiency, for the smallest cutoff radius (3 Å),
only one structure for each stoichiometric ratio of hydrocarbon was ran-
domly selected and labeled as the training data set to train the pre-TNEP
model. On this basis, clusters left were labeled as the unselected data, and the
completeness of the current training data set in relation to the unselected one
was evaluated by descriptor space analysis with the pre-TNEPmodel70. New
sampleswere added via the FPSmethod if needed to build the initial data set.

New samples were further added using the FPS method based on the
initial data set, its corresponding TNEP model, and all cluster structures
constructedwith a cutoff radius of 4 Å represented as theunselecteddata set.
This iteration continueduntil the cluster structures constructedwitha cutoff
radius of 7 Å were supplemented. The schematic representation of sup-
plementing the training data set by the FPSmethod is demonstrated in Fig.
8. The final training data set contains 1980 configurations, with 380 con-
figurations constructed with a cutoff radius of 3 Å, and every 400 config-
urations constructed with cutoff radii ranging from 4 to 7 Å in 1 Å
increments. The reason for choosing a converged cutoff radius of 7 Å was
discussed in Supplementary Information.

Every 100 structures were randomly selected from the unselected data
sets with a certain cutoff radius from 6 to 13 Å in 1 Å increments, and were
labeled as R6~R13 test data sets. The extrapolative performance of the
TNEP models was evaluated on the test data sets.

Calculations of atomic polarizability
Atomic polarizabilities of structures in the training data set were calculated
by the GFN2-xTB method71. GFN2-computed atomic polarizabilities were
selected as training constraints because they were derived based on atom
types including the element number, hybridization state of carbon atoms,
and somebasic structural information, andwerepotentially physicallymore
motivated to be transferred. GFN2-computed atomic polarizabilities
depend on pre-computed atomic polarizabilities at a certain molecular
geometry, i.e., with the atom having a GFN2-xTB computed atomic partial
charge qr and a covalent coordination numberCNr

cov (the index r indicates
values for the reference structures) 71–73.

In addition, amore accurate approach based on theQMdetermination
and Hirshfeld partitioning scheme was employed. This approach served as
an independent benchmark for evaluating the ability to partition isotropic
molecular polarizability into atomic contributions of TNEP models for
comparison. This method relies on the observation that atomic polariz-
ability is proportional to the fuzzy atomic volume of the electron cloud74–77:

αeff 0ð Þ � αfree 0ð Þ Veff

V free
ð4Þ

whereαeff ð0Þ andαfreeð0Þ are static polarizability for the atom-in-a-molecule
(effective atomic polarizability) and the free-atom, Veff and V free are
measures of the “volume” of the atom in a molecule and the free atom,
respectively.

By employing the Hirshfeld partitioning scheme based on the electron
density calculated from DFT calculations76,78,79, the ratio of the atom-in-a-
molecule volume to the free-atom volume of each atom can be derived, and
the QM-based atomic polarizability can be deduced by Eq. 4 subsequently.

Principle of the TNEP-C model
The architecture of the TNEP-C model is shown in Fig. 9. To pose a con-
straint on atomic polarizability, an additional term is included in the loss
function of the TNEP-C model as:

Latomic zð Þ ¼ 1
6Nstr

XNstr

n¼1

XNa

i¼1

X

μ¼ν

αTNEP�C;atomic
μν ðn; i; zÞ�αref ;atomic

μν ðn; iÞ
� �2

"(

þ λatomic
s

P
μ > ν

αTNEP�C;atomic
μν ðn; i; zÞ�αref ;atomic

μν ðn; iÞ
� �2

 !#)1
2

ð5Þ
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whereNstr is the number of structures in thewhole training data set andNa is
the number of atoms in the nth structure. αTNEP�C;atomic

μν ðn; i; zÞ is the atomic
polarizability component predicted by the TNEP-Cmodelwith parameters z
for the ith atom in the nth structure. αref ;atomic

μν ðn; iÞ is the corresponding
reference atomic polarizability component, which is obtained by the GFN2-

xTB method in this work. Since the GFN2-computed atomic polarizabilities
are inherently isotropic, the contributions from the off-diagonal components
are zero in the training process. Consequently, λatomic

s , which is designed to
balance the contributions fromdiagonal and off-diagonal elements, is set to a
default value with no tuning required.

Fig. 8 | Schematic representation of supplement-
ing the training data set by the FPSmethod. Points
in different colors in the projection represent con-
figurations in different data sets.

Fig. 9 | Schematic representation of the TNEP-C architecture. The section highlighted in red represents the introduced loss function term enforcing the atomic
polarizability constraint.
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The total loss function for the TNEP-C model is thus defined as:

L zð Þ ¼ Lmol zð Þ þ λatomic �Latomic zð Þ þ λ1
1

Npar

XNpar

n¼1

jznj þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Npar

XNpar

n¼1
z2n

s

ð6Þ

where λatomic is the weight of the atomic polarizability term to balance the
contributions from the molecular polarizability and atomic polarizability.

For the TNEP-C model, λatomic was set to 0.2 and other settings were
kept identical to those implemented in the original TNEP model. The
TNEP-C model was trained for 400,000 generations to ensure that the loss
terms for molecular polarizability in the training and test data sets had
largely converged.

Data availability
The data supporting the findings of this study are available at https://github.
com/Daisy315/citable-data-yigroup/tree/main/npj_2024.
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