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Multiscale computational framework
linking alloy composition to
microstructure evolution via machine
learning and nanoscale analysis
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Achieving targeted microstructures through composition design is a core challenge in developing
structural materials for high-performance applications. This study introduces a multiscale Integrated
Computational Materials Engineering (ICME) framework that combines CALPHAD-based
thermodynamic modeling, machine learning, molecular dynamics, and diffusion kinetics to link alloy
chemistry to microstructural evolution. Machine learning models trained on 750,000 CALPHAD-derived
datapoints enabled rapid screening of two billion compositions based on thermodynamic criteria. An
advanced screening step incorporated nanoscale physical descriptors that capture mechanisms
governingprecipitatecoarseninganddynamic recrystallization.Applied towroughtNi-basedsuperalloys,
the framework identified twelve compositions predicted to form fine intragranular γ′ precipitates within
coarse γ grains; one was experimentally validated, with microscopy confirming the predicted
microstructure.Whiledemonstrated forNi-basedsystems, themethodology isbroadlygeneralizable.This
work highlights the power of integrating high-throughput composition screening with atomistic-scale
evaluation to accelerate microstructure-driven materials design beyond equilibrium thermodynamics.

The performance of structural materials in demanding environments is
governed not only by their bulk composition but also by the characteristics
of their microstructure—such as phase distribution, precipitate morphol-
ogy, grain size, and defect interactions1–4. Realizing a specific, performance-
enhancing microstructure requires an in-depth understanding of the
complex, multiscale relationships between composition, thermodynamics,
kinetics, and processing conditions5–11.While traditional alloy development
has often relied on empirical experimentation or isolated modeling tech-
niques, the need for more targeted, rapid, and mechanistically informed
design strategies has driven the emergence of Integrated Computational
Materials Engineering (ICME)12.

Recent advances in machine learning (ML) and data-driven approa-
ches have further accelerated progress in computational alloy design by
enabling high-throughput screening of composition spaces13–17. In

particular, ML models trained on data from thermodynamic tools such as
CALPHAD have been used to identify candidate alloys with desired phase
stability or solidification ranges. However, many of these efforts focus
narrowly on equilibrium descriptors and overlook the evolution of micro-
structural features that ultimately govern mechanical behavior. Descriptors
such as diffusion-controlled phase transformation rates, lattice coherency,
and lattice distortion—which directly influence precipitate coarsening,
recrystallization, and phase morphology—remain underutilized in the
composition screening stage.

In this work, we present a multiscale ICME framework that explicitly
incorporates these nanoscale and kinetic factors into the alloy screening
process. By integrating CALPHAD-based thermodynamic modeling,
machine learning-driven high-throughput composition filtering, atomistic
simulations using fine-tuned machine learning interatomic potentials18,19,
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and diffusion kinetics analysis, we establish a workflow capable of selecting
compositions not only with favorable phase stability but also with micro-
structural characteristics known to enhance long-term performance20–23.
These include low lattice misfit to reduce interfacial energy and promote
intragranular γ′ precipitation, reduced atomic mobility of key precipitate-
forming elements to slow coarsening, and elevated lattice distortion to
facilitate dynamic recrystallization—together supporting the retention of a
fine, stable γ′ dispersion within the γmatrix.

While themethodology is applied here to the case of wroughtNi-based
superalloys—targeting the formation of fine, intragranular γ′ precipitates
within coarse γ grains20–23—the computational framework is not restricted
to this alloy class. The approach is broadly adaptable to other systemswhere
microstructure-directed design is critical, such as steels, Co-based alloys, or
high-entropy alloys. In particular, the use of atomistic-level screening to
evaluate local distortion and diffusion kinetics offers a generalized path
toward tailoring microstructure evolution across a wide range of materials.

This study demonstrates how advanced composition screening, driven
by integrated physics-based and data-driven models, can bridge the gap
between alloy chemistry and microstructural realization. Through this
framework, we aim to move beyond traditional screening metrics and
enable the predictive design of materials with tailored, stable micro-
structures optimized for application-specific performance.

Results
Machine learning model development for high-throughput
screening
To enable high-throughput composition screening for selecting promising
alloy candidates with tailored microstructures, machine learning models
were trained using datasets exclusively derived from CALPHAD calcula-
tions performed with Thermo-Calc using the TCNI12 thermodynamic
database24. The data were structured into two main categories: the first
focused on alloy compositions and their corresponding solidus and liquidus
temperatures (used for theTs andTlmodels), while the second incorporated
temperature-dependent phase stability information. Specifically, the second
dataset included indicators of whether a given composition formed a γ
single-phase solid solution (γ1 model), whether topologically close-packed
(TCP) phases were present (TCP model), the combined γ and γ’ phase
fractions (γ+ γ’model), and the fraction of the γ’ phase alone (γ’model).

To generate the alloy compositions, element weight percentages were
randomly assigned within predefined ranges for Cr, Ni, Co, Mo, Nb,W, Ti,
Al, Si, Fe, Mn, C, and B, as outlined in Table 1. Element-specific step sizes
were applied to reflect the typical compositional sensitivity of each element
inNi-based superalloys: 1 wt% forCr andCo, 0.5 wt% forMoandW, 0.4 wt
% for Fe, 0.2 wt% forNb, Ti, Al, andMn, 0.1 wt% for Si, 0.01 wt% for C, and
0.001 wt% for B. A total of 150,000 unique compositions were created,
ensuring that the sumof all element weight fractions was less than 100 wt%.
The remaining balancewas allocated toNi to reacha total of 100 wt%.Based
on these step sizes, a rough approximation of the total number of combi-
natorially possible compositions (without accounting for the 100 wt%
constraint) exceeds 5.9 × 10¹⁷, which underscores the importance of an
efficient screening strategy capable of navigating such a vast design space.

For the dataset involving temperature-dependent phase stability, cal-
culations were performed at five discrete temperatures: 700, 800, 900, 1000,
and 1100 °C. This resulted in a total of 750,000 data points.

The compositional boundaries used for candidate generation were
based on the limits of established commercial wrought Ni-based super-
alloys, such as Alloy 625, Alloy 230, Alloy 80A, 740H, andHaynes 282. This
ensured that generated compositions were thermodynamically plausible.

The actual compositions of these reference alloys are provided in the Sup-
plementary Table 1 for comparison. Furthermore, non-physical or phase-
unstable compositions were automatically filtered out during screening
using machine learning models trained to predict phase stability and soli-
dification behavior.

Although elements like Si, Mn, and Fe are often regarded as impurities
in high-performanceNi-based superalloys, theywere intentionally included
in small amounts to explore their influence on lattice misfit, local atomic
distortion, and aluminum diffusivity as part of the broader compositional
design space, without the assumption that their impact would be uniformly
negative.

The Ts and Tl models were used to identify alloy compositions with
narrow solidification ranges to improve castability25. The γ+ γ’ model
ensured that the total fractionof desirable phases remainedhigh,while theγ’
model controlled the volume fraction of γ’, a critical phase for high-
temperature strength. The γ1 model was designed to reduce excessive
coarsening of secondary phases during homogenization, and the TCP
model was employed to eliminate compositions prone to forming topolo-
gically close-packed phases, which can be detrimental to high-temperature
performance.

The regression models for Ts, Tl, γ+ γ’, and γ’ were trained using
designated training and validationdatasets andwere evaluatedon a separate
test set not used during training. Their predictive accuracy is illustrated in
Fig. 1 as actual versus predicted scatter plots, using 1500 randomly selected
nonzero data points from each set. The Tsmodel achieved a mean absolute
error (MAE) of 12.4 K for the training set, 12.8 K for the validation set, and
12.6 K for the test set. The Tl model showed MAEs of 16.6 K, 16.8 K, and
16.9 K, respectively. The γ+ γ’ model yielded a consistent MAE of 0.026
across all datasets. For the γ’model, the MAE was 0.029 for the training set
and 0.030 for both the validation and test sets. Although the γ’model’s error
visualization appears larger due to the high frequency of data points with a
target value of zero, a separate evaluation excluding these zeros revealed an
MAE of 0.046, confirming the model’s reliability in predicting nonzero γ’
fractions.

Similarly, the classification models for γ1 and TCP phase prediction
were evaluated using the independent test set. Their performance is pre-
sented in Fig. 2 as confusion matrices. The γ₁model achieved accuracies of
99.9% for the training set and99.3% for both the validation and test sets. The
TCP model achieved 99.0% accuracy for the training set, 96.2% for the
validation set, and 96.0% for the test set.

Although the γ₁ model’s overall accuracy is high, its test recall and
precision are 83.0%and95.8%, respectively. This asymmetry arises from the
extreme class imbalance in the dataset, where γ single-phase data points
comprise only ~2.8% of the total. Even though class weighting was used to
mitigate imbalance effects, some misclassification is inevitable. In contrast,
the TCP model displays more balanced precision and recall, and its con-
fusion matrices confirm stable generalization across data splits.

To contextualize ourmodel performance,wenote that previous studies
on phase classification in complex alloy systems report lower or comparable
results. For example, Huang et al. achieved up to 94.3% accuracy using
artificial neural networks for binary classification tasks in high-entropy
alloys26, while Singh et al. reported an average test accuracy of 92% using a
SMOTE-augmented random forest classifier27. Machaka showed accuracies
ranging from94.0% to 97.5% for various classifiers including random forest,
support vectormachine, and artificial neural network28.While thesemodels
differ in dataset scope and objectives, our γ₁ and TCP models demonstrate
competitive accuracy, further validating their utility in high-throughput
alloy screening.

Table 1 | Minimum and maximum weight percentages of each element used for generating alloy compositions in the dataset

Element Cr Ni Co Mo Nb W Ti Al Si Fe Mn C B

Min (wt%) 0 0 0 0 0 0 0 0 0 0 0 0 0

Max (wt%) 40 100 40 15 5 20 5 5 2 10 5 1 0.01
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These results confirm that the models exhibit strong generalization
capabilities andmaintain high predictive performance, demonstrating their
robustness and relevance for microstructure-informed alloy composition
screening.

High-throughput screening for optimized microstructure
A high-throughput composition screening was conducted using six vali-
dated machine learning models to identify optimal alloy compositions for
wrought Ni-based superalloys, with a focus on microstructure design sui-
table for high-temperature deformation processing. This effort was guided
by an ICME framework, with the objective of developing alloys that pro-
mote intragranular dynamic recrystallization (DRX) and facilitate the for-
mation of fine, intragranular γ’ precipitates within coarse γ grains. Rather
thanaiming todirectly predictmechanical properties, the screening targeted
microstructural attributes associated with improved hot workability and
stability during thermomechanical processing.

The overall workflow—from initial randomcomposition generation to
ML-based screening, advanced nanoscale filtering, and final experimental
validation—is illustrated in Fig. 3. This flowchart highlights how the inte-
gration of CALPHAD-informed ML models and atomistic simulations
efficiently reduced a vast composition space (2 billion alloys) to a final set of
experimentally promising candidates.

The initial filtering stage selected alloy compositions with a predicted
solidification range of 50 K or less, based on the outputs of the Ts and Tl
models. Only compositions predicted by the γ1 model to form a stable γ
single phase at 1100 °C were retained, as single-phase γ is favorable for
uniform deformation during hot rolling. At the target aging and processing
temperature of 800 °C, the γ+ γ’ and γ’ models were used to identify
compositions in which the combined γ and γ’ phase fractions reached at
least 99%, and the γ’ fraction fell within the range of 0.2 to 0.4. This γ’ range

reflects phase distributions commonly found in commercial wrought
superalloys such as Haynes 282, which are engineered for balanced work-
ability and thermal stability. In addition, to improve oxidation and corro-
sion resistance during processing and service, only compositions with a
minimum of 20 wt% chromium were considered.

Using these criteria, a total of 2 billion randomly generated composi-
tions, boundedby the elemental ranges inTable 1,were evaluated. From this
pool, 228 compositions satisfied all selection criteria and were retained for
further analysis. These compositions are provided in the Supplementary
Information.

While such a screening process could, in principle, be conducted using
conventional CALPHADmethods, the machine learning models—trained
on thermodynamic data—enabled a dramatic acceleration in screening
speed. For comparison, performing CALPHAD calculations for 150,000
compositions required approximately 11 days (15,840min) on an Intel(R)
Core(TM) i9-14900K processor, yielding only 4 compositions that satisfied
all selection criteria. In contrast, screening 2 billion compositions using the
trained machine learning models took only 15min on an NVIDIA RTX
A6000 GPU, identifying 228 suitable compositions. This corresponds to a
throughput of 15.2 successful candidates perminute usingML, compared to
0.00025 candidates per minute using CALPHAD, resulting in an approx-
imate 60,000-fold improvement in screening efficiency.

It is important to note that the machine learning models are not
intended to replace CALPHAD in terms of thermodynamic precision, but
rather to serve as a highly efficient pre-screening tool that enables scalable
exploration of vast compositional spaces. The four successful CALPHAD-
screened compositions are also listed in the Supplementary Information for
comparison.

Table 2 summarizes the minimum and maximum weight percentages
of alloying elements in the 228 selected compositions. The trends observed

Fig. 1 | Performance of regressionmodels used for high-throughput composition
screening. Scatter plots comparing actual versus predicted values for the four
regression models used in high-throughput composition screening: (a) Ts model
(solidus temperature, MAE in Kelvin), (b) Tlmodel (liquidus temperature, MAE in

Kelvin), (c) γ+ γ′model (sumof γ and γ′ phase fractions,MAE in absolute fraction),
and d γ′model (γ′ phase fraction, MAE in absolute fraction). Each plot includes the
coefficient of determination (R2) and mean absolute error (MAE) as performance
metrics.
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Fig. 2 | Confusion matrices for classification models predicting γ single-phase formation and TCP phase stability. Confusion matrices for the γ1 model on the training
(a), validation (b), and test sets (c), respectively. Confusion matrices for the TCP model on the training (d), validation (e), and test sets (f), respectively.

Fig. 3 | Schematic illustration of the ICME-based alloy screening workflow.
Starting from two billion randomly generated compositions, high-throughput
machine learning models trained on CALPHAD data filtered 228 candidates based

on key thermodynamic criteria. These were further refined to 12 compositions
through advanced screening using molecular dynamics and diffusion kinetics, fol-
lowed by experimental validation of one alloy composition.
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in these selected alloys provide insight into the compositional boundaries
favorable for wrought Ni-based alloy design. For example, elements such as
Mo andW, which increase the risk of forming TCP phases, were naturally
filtered out due to their negative impact on γ and γ’ phase stability at 800 °C.
Similarly, all selected alloys contained less than 0.09 wt% carbon, indicating
an avoidance of compositions prone to excessive carbide formation, which
can compromise hot workability and grain boundary integrity. The alu-
minumcontent of the selected alloys ranged from1 wt% to 5 wt%, reflecting
aluminum’s key role in γ’ formation and its influence on microstructural
evolution during thermomechanical treatment.

In summary, the compositional trends that emerged from thismachine
learning-driven screening process were not pre-assumed but resulted
organically from criteria based on thermodynamic stability, processing
compatibility, and microstructure control. These findings reinforce the
value of advanced ICME workflows in identifying alloy chemistries opti-
mized for wrought processing and tailored microstructural development,
laying the foundation for subsequent experimental validation and perfor-
mance assessment under hot working conditions.

Advanced composition screening for optimized microstructure
To further refine the 228 alloy compositions identified through high-
throughput composition screening, a second phase of screening was con-
ductedusingkinetic calculation andmolecular dynamics (MD) simulations.
This advanced screening stage aimed to identify compositions with the
targeted microstructure. The key properties evaluated in this stage were the
chemical diffusion coefficient of aluminum in the γ single phase (DNi

Al;Alð Þ,
m2/s) at 800 °C, the latticemisfit between the γ and γ’ phases, and the lattice
distortion within the γmatrix.

Among these, diffusion kinetics plays a particularly important role in
influencing γ’ evolution during thermal exposure. The γ’ phase (Ni3Al) is
critical for microstructural strengthening in Ni-based superalloys, and its
coarsening behavior over time can impact the long-term stability of the
precipitatemorphology.While themechanical implications ofγ’ coarsening
were not experimentally evaluated in this study, its control is known to be
essential for maintaining desirable microstructural features in service
environments29.

The kinetics of γ’ coarsening can be quantitatively described by the
classical Lifshitz–Slyozov–Wagner (LSW) theory:

�r3t � �r30 ¼
8γiDV

2
mCe

9RT
t ð1Þ

where �rt is the average particle radius at time t, �r0 is the initial average
particle radius, γi is the particle surface energy,D is the diffusion coefficient
of the γ’ forming element,Vm is the molar volume of the γ’ phase, Ce is the
equilibrium solubility of the γ’ forming element in the γ phase,R is the ideal
gas constant, and T is the absolute temperature. This model highlights the
dominant role of diffusion kinetics in determining precipitate coarsen-
ing rates.

The growth of γ’ precipitates is driven by the diffusion of aluminum
toward the γ/γ’ interface. Prior studies, including those by Tiley et al.30, have
shown that aluminum diffusion is the rate-controlling mechanism in γ’
evolution. Therefore, calculating the chemical diffusion coefficient of alu-
minum provides a means of comparing the microstructural stability
potential of different compositions.

The chemical diffusion coefficient Dn
k;jð Þ provides a quantitative mea-

sure of atomic mobility, where k represents the diffusing species (Al), j
represents the gradient species (Al), and n is the reference species (Ni). The

aluminum flux JAl in an alloy can be expressed as:

JAl ¼ �
X

j¼ Co;Cr;...;Al½ �
DNi

Al;jð Þ
∂cj
∂z ð2Þ

where j includes all alloying elements except Ni, and
∂cj
∂z represents the

concentration gradient of each element. However, given that the con-
centration gradients of elements other than aluminum are negligible at the
γ/γ’ interface, this equation simplifies to:

JAl ¼ �DNi
Al;Alð Þ

∂cAl
∂z

ð3Þ

While γ′ coarsening in Ni-based superalloys can be influenced by the
diffusion behavior of multiple elements—including Ti, Ta, and Nb—
aluminumis often thedominantdiffusing species inNi₃Al-typeprecipitates.
Prior studies have shown that aluminum diffusion typically governs the
initial and overall kinetics of γ′ evolution, particularly in alloys with
moderate concentrationsof otherγ′-forming elements such asTi andTa29,31.
Therefore, in thiswork, we use the aluminumchemical diffusion coefficient,
DNi

Al;Alð Þ, as a practical and representative metric for coarsening tendency
during high-throughput composition screening.

We acknowledge, however, that this is a first-order approximation.
Incorporatingmulticomponent diffusionwould require calculating a full set of
cross-diffusion coefficients—such as DNi

Al;Tið Þ, D
Ni
Al;Tað Þ, D

Ni
Al;Nbð Þ, and reciprocal

terms—as well as resolving concentration gradients for each relevant species.
Additionally, the individual and combined contributions of each species to γ′
coarsening would need to be quantified and modeled, which remains a com-
plex and computationally intensive challenge. While such detail is important
for fully resolved kinetic modeling, it is not feasible within the scope of large-
scale, high-throughput screening of millions or billions of compositions.

Thus, our use of DNi
Al;Alð Þ strikes a balance between physical relevance

and computational efficiency. It enables robust and scalable filtering based
on relative coarsening resistance while maintaining tractability across the
large composition space examined. In future work, we plan to extend the
framework to include multicomponent diffusion effects for more detailed
evaluation of selected candidate compositions, particularly those with
higher Ti or Ta contents.

By calculating DNi
Al;Alð Þ for each candidate alloy using DICTRA simu-

lations coupled with the TCNI12 thermodynamic and mobility databases,
we assessed the relativemobility of aluminumatoms,whichprovides insight
into the potential γ’ coarsening behavior. Lower values of DNi

Al;Alð Þ indicate
reduced diffusion-driven growth, supporting the formation of finer and
more stable precipitate distributions. Therefore, in the context of micro-
structure optimization, compositions with lower aluminumdiffusivity were
prioritized for their potential to support thermally stable γ’ morphologies
under expected service conditions.

The next key parameter in the advanced composition screening pro-
cess is the lattice misfit (δ) between the γ’ and γ phases, which quantifies
coherency strain at the interface. It is defined as:

δ ¼
2 aγ0 � aγ
� �

aγ0 þ aγ
� � ð4Þ

where aγ0 and aγ are the lattice parameters of the γ’ and γ phases, respec-
tively. These parameters were calculated using thermodynamic equilibrium

Table 2 | Minimum and maximum weight percentages of elements in the 228 selected Ni-based superalloy compositions

Element Cr Ni Co Mo Nb W Ti Al Si Fe Mn C B

Min (wt%) 20 51.7 0 0 0 0 0 1 0 0 0 0 0

Max (wt%) 24 76.4 21 2.5 5 4.5 3 5 2 7.2 5 0.09 0.01
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compositions derived from CALPHAD at 800 °C, ensuring that the eval-
uated misfit reflects phase-stable, service-relevant conditions.

Lattice parameters were obtained using MD simulations with a fine-
tuned machine learning interatomic potential, which was validated against
density functional theory (DFT)-calculated lattice constants with high
accuracy, as detailed in the “Methods” section. In this study, MD simula-
tions are employed specifically for the estimation of static structural prop-
erties, and not for modeling microstructural evolution, defect interactions,
or interface behavior. This targeted use of MD enables efficient nanoscale
property evaluation across a broad compositional space, consistent with the
primary objective of high-throughput, multiscale composition screening.

To evaluate lattice distortion,which supportsDRX throughdislocation
accumulation, we calculated the mean squared atomic displacement
(MSAD)32–34:

MSAD ¼ 1
N

XN

i¼1

x ið Þ
fully�relaxed � x ið Þ

ideal

���
���
2

ð5Þ

where x ið Þ
fully�relaxed is the position of the i-th atom in the relaxed configura-

tion, x ið Þ
ideal is the correspondingposition in the ideal FCC reference structure,

andN is the total number of atoms. The square root of theMSAD, denoted
as MSAD1/2, was calculated and expressed in picometers (pm) to facilitate
comparison among different alloy compositions.

In this study, MSADwas used as a scalar, system-wide approximation
of lattice distortion. It reflects the overall configurationalmismatch induced
bymulticomponent alloying and serves as a computationally efficient proxy
for the degree of local lattice irregularity. This type of distortion is known to
influence dislocation storage behavior and DRX nucleation under hot
working conditions35.

Wenote thatmoredetailed descriptors, such as per-atomstrain tensors
or Voronoi volumes, could offer higher spatial resolution or species-specific
insights. However, these methods introduce significant complexity and
sensitivity to local structural noise, and they are not easily reducible to a
scalar metric suitable for high-throughput screening. In contrast, MSAD
provides a consistent and interpretable metric that can be rapidly evaluated
across thousands of candidate structures. While it does not capture local
variations or explicitly resolve chemical species, it enables effective early-
stage filtering of alloy compositions with enhanced DRX potential.

It is important to note that this study focuses on the design and
identification of alloy compositions with favorable microstructural indica-
tors, rather than on the experimental verification of DRX or the simulation
of its kinetics. Assumptions regarding DRX potential are based on widely
accepted physical principles and supported by indirect evidence. Specifi-
cally, elevated lattice distortion increases resistance to dislocation motion,
leading to the accumulation of dislocations within grains36. These
dislocation-rich regions serve as preferential nucleation sites for DRX,
thereby facilitating the formation of fine-grained microstructures35. In the
context of Ni-based superalloys, such intragranular DRX is particularly
advantageous for promoting the uniform precipitation of fine γ′ particles
within large γ grains22. In this study, the relationship between composition,
lattice distortion, and DRX behavior is leveraged as part of a computational
screening framework to down-select promising compositions for future
validation, rather than as a mechanistic model of recrystallization.

These three parameterswere chosen because they collectively influence
the key microstructural processes required to achieve the desired γ/γ′
morphology. In the context of Ni-based superalloy processing, a low alu-
minum diffusion coefficient helps suppress γ′ coarsening during high-
temperature exposure, preserving precipitate fineness. A low lattice misfit
between γ and γ′ reduces interfacial energy and promotes coherent phase
boundaries37, discouraging grain boundary γ′ formation, which can be
detrimental to creep resistance. Concurrently, high lattice distortion
enhances dislocation accumulation during deformation, creating favorable
sites for DRX nucleation. The newly recrystallized grains that form through
this mechanism subsequently act as preferential zones for intragranular γ′
precipitation during aging. Together, these factors reinforce a morphology

of fine, well-dispersed γ′ precipitates within coarse γ grains, which is known
to enhance structural stability during high-temperature service.

Taken together, lattice misfit, lattice distortion, and aluminum diffu-
sivity provide a physicallymotivated and computationally tractable basis for
advanced composition screening. Used in conjunction with thermo-
dynamic phase predictions, these nanoscale parameters enable the identi-
fication of alloys that are not only stable and castable but also structurally
optimized to support the formation of high-performance microstructures
under typical industrial processing conditions. This integrated, multiscale
approach reflects the core objective of this work: to accelerate the design of
Ni-based superalloys by linking composition to nanoscale phenomena that
influence final microstructural outcomes.

For the 228 previously selected compositions, additional calculations
were performed to determine the chemical diffusion coefficient, lattice
misfit, and latticedistortion (expressedasMSAD¹/² inpm).These results are
provided in the Supplementary Information.

To assess the capability of the computational framework in realizing
the desired microstructure, 12 representative compositions were selected
from the 228 screened candidates based on combined thresholds of alu-
minumdiffusion coefficient, latticemisfit, and lattice distortion. Specifically,
selected compositions exhibited aluminum diffusion coefficients below
1.04 × 10−16 m2/s, lattice misfit below 1.01%, and lattice distortion above
4.55 pm. These thresholds were statistically determined from the overall
distribution of computed values and aimed to isolate compositions with the
highest potential for promoting fine, stable intragranular γ′ precipitation.
The compositions and corresponding property values of the selected alloys
are summarized in Table 3.

Among the 12 selected compositions, alloy #65 was chosen for
experimental validation not solely for its individual property values, but
because it demonstrated a well-balanced combination of the lowest lattice
misfit (0.65%), moderate aluminum diffusivity (7.83 × 10⁻¹⁷m²/s), and the
highest lattice distortion (5.69 pm). Although other alloys, such as #42,
showed lower aluminum diffusivity, their overall microstructural profiles—
suchashigher latticemisfit or lowerdistortion—made themless favorable in
the context of achieving the desired γ/γ′morphology. Therefore, alloy #65
was selected as a representative candidate that reflects the integrated out-
come of the multiscale screening framework, balancing diffusion kinetics,
interfacial strain, and DRX-promoting lattice distortion.

Experimental validation
The experimental validation of alloy #65 was conducted to assess whether
the integrated computational framework could accurately predict and rea-
lize the targeted microstructure. As illustrated in Fig. 4 and Supplementary
Fig. 1,microstructural analysis of both as-rolled and heat-treated specimens
confirmed the formation of fine, intragranular γ′ precipitates, in agreement
with computational predictions.

SEM imaging demonstrated the presence of ultrafine, dispersive pre-
cipitates approximately 10 nm in size within the grains of the as-rolled
specimen.Uponheat treatment at 800 °C for 2 h, these features coarsened to
approximately 50 nm, while maintaining a uniform intragranular dis-
tribution. Although electron backscatter diffraction (EBSD) and energy-
dispersive spectroscopy (EDS) could not distinctly differentiate γ and γ′
phases due to crystallographic and spatial resolution limitations, the mor-
phology, size scale, and thermal evolution of these precipitates are strongly
consistent with secondary γ′, as previously confirmed by transmission
electron microscopy (TEM) in similar microstructures reported by Lee et
al.23. These findings also align with the equilibrium γ′ phase fraction pre-
dicted by CALPHAD (Fig. 4c), further reinforcing the validity of the
computational predictions. While TEM analysis would provide definitive
structural identification, the objective of this work is to validate the reali-
zation of the targeted microstructure using an ICME-guided pathway. In
this context, the current SEM-based evidence is considered sufficient to
confirm that the designed γ/γ′morphology was successfully achieved.

To evaluate the coarsening behavior of the observed γ′ precipitates, we
applied the classical LSW theory (Eq. (1)) to predict the expected growth
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after aging. The interfacial energy between γ and γ′ was calculated via
molecular dynamics using the fine-tuned SevenNet potential, yielding
γi ¼ 0:156J=m2. The chemical diffusion coefficient of aluminum was
determined as D ¼ DNi

Al;Alð Þ ¼ 7:83 × 10�17m2=s, while the molar volume
of the γ′ phase was computed as Vm ¼ 6:795 × 10�6m3=mol from the
relaxed atomic structure. The equilibrium solubility of aluminum in the γ
matrix was calculated as Ce ¼ 11468mol=m3 using CALPHAD thermo-
dynamic analysis. Using R ¼ 8:314J=mol � K, T = 1073.15 K (800 °C), and

an aging time of t = 7200 s, we estimated �r3t � �r30 ¼ 4:62× 10�24m3, where
�r0 was assumed to be 10 nm based on the as-rolled specimen. This yields a
predicted average precipitate radius of approximately 17.8 nm after aging.

Although this is smaller than the experimentally observed value
(~50 nm), the LSWmodel serves as a simplified, first-order approximation
under idealized conditions. Its purpose here is not to predict exact coar-
sening rates, but to enable rapid, comparative evaluation of candidate
compositions in terms of their relative resistance to γ′ coarsening. The

Table 3 | Compositions and calculated properties of the 12 selected Ni-based superalloys

# Composition (wt%) Chemical diffusion coefficient (m2/s) Lattice misfit (%) MSAD1/2 (pm)

42 Cr20Ni57.2Co13Nb0.8Al4.4Si0.2Fe4.4 4.26 × 10−17 0.9 4.58

65* Cr20Ni67.065Co5Nb1W2.5Al4Mn0.4C0.03B0.005 7.83 × 10−17 0.65 5.69

71 Cr20Ni57Co14Al4.8Fe2.8Mn1.4 7.22 × 10−17 0.67 5.15

76 Cr20Ni66.8Mo0.5W4.5Ti1.2Al2.8Si0.2Mn4 6.23 × 10−17 0.78 5.45

86 Cr20Ni66.18Co7Nb1W1Al4.8C0.02 9.54 × 10−17 0.72 5.29

139 Cr20Ni52.7Co21Mo0.5Ti0.2Al4.4Fe1.2 4.82 × 10−17 0.75 4.81

157 Cr20Ni74.899Ti1Al2.8Si1.3B0.001 1.01 × 10−16 1.01 4.77

165 Cr20Ni70.66Ti0.8Al3.4Si0.1Mn5C0.04 8.03 × 10−17 0.77 4.57

166 Cr21Ni73.4Ti1Al3Fe1.6 4.2 × 10−17 0.87 4.67

185 Cr21Ni73.18Nb1.8Al4C0.02 9.81 × 10−17 0.79 4.94

196 Cr22Ni64.2Co7Nb0.8Ti0.2Al4.4Mn1.4 8.75 × 10−17 0.83 4.92

224 Cr20Ni56.2Co14Al5Fe4.8 7.44 × 10−17 0.69 4.81

Compositions are expressed in condensed formusingweight percent (wt%) for each element. Theproperties include the chemical diffusion coefficient of aluminum (DNi
Al;Alð Þ ) inm

2/s, latticemisfit (δ) in%, and

lattice distortion, expressed as MSAD1/2 in pm. An asterisk (*) indicates the composition chosen for experimental validation.

Fig. 4 | Experimental validation of microstructure in alloy #65. a Scanning elec-
tronmicroscope (SEM) image (×50,000) of the as-rolled specimen showing ultrafine
precipitates (~10 nm) within grain interiors. b SEM image (×50,000) of the heat-

treated specimen (800 °C for 2 h), revealing fine intragranular precipitates (~50 nm).
c Phase fraction vs. temperature profile for alloy #65. d Backscatter electron (BSE)
image with corresponding EDS elemental maps for the as-rolled specimen.
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smaller-than-measured prediction reflects the ideal assumptions of the
model (e.g., constant diffusion field, no particle interactions), whereas the
experimental datamay include additional effects such as elastic interactions
or solute drag.

TheEDSmaps in Fig. 4d confirmhomogeneous elemental distribution
across the observed region, with no evidence of compositional segregation
or coarse intermetallic phases. This uniformity supports the conclusion that
the observed precipitates are not primary γ’ or TCP phases but are instead
secondary, nanoscale γ’ formed via dynamic recrystallization and sub-
sequent aging. Due to the extremely fine scale of these precipitates and the
spatial resolution limits of SEM-based EDS, performing a meaningful line
scan across individual γ′ features was not feasible. We therefore rely on
morphology and comparative literature evidence to support the identifi-
cation. These limitations are acknowledged, and future high-resolution
studiesmay further validate thesefindings using techniques such as TEMor
diffraction analysis.

Grain structure analysis using inverse pole figure (IPF) maps in Sup-
plementary Fig. 1 revealed that both the as-rolled and heat-treated speci-
mens exhibit large, equiaxed grains. The average grain size wasmeasured to
be 146 μm in the as-rolled condition and slightly increased to 152 μm after
heat treatment, indicating limited grain growth during the aging process.
The dark regions in the IPFmaps correspond to non-FCCphases, which are
likely fine carbides such as NbC or Cr23C6, consistent with thermodynamic
predictions and commonly observed secondary phases in Ni-based
superalloys.

Importantly, the increase in γ’ precipitate size after heat treatment
suggests continuedgrowthbeyond theDRX-inducednucleation stage. Since
excessive coarsening can eventually degrade long-term creep resistance, one
of the critical challenges for further optimizing the alloy is to suppress γ’
coarsening during post-deformation heat treatment. One promising strat-
egy to achieve this is by selecting alloy compositions in which the γ’ phase
fraction remains relatively stable across service temperatures. As shown in
Fig. 4c, alloy #65 exhibits noticeable variation in γ’ phase fraction with
temperature, indicating limited thermal stability. Refining this composi-
tional behavior—specifically by minimizing temperature-dependent chan-
ges in the γ’ fraction—could be an effective approach to achieving sustained
microstructural stability during long-term service.

While alloy #65 was the only composition experimentally validated in
this study due to practical constraints, we further assessed the robustness
and generalizability of our framework by retrospectively applying our
screening criteria to two high-entropy alloy systems reported in the litera-
ture: one by Daoud et al. (Al10Co25Cr8Fe15Ni36Ti6) and another by Detrois
et al. (ASC2 alloy)38,39. Although these alloys were not explicitly designed
through our ICME workflow, they exhibit microstructures similar to our
design target—fine, intragranular γ′ precipitates within a coarse γmatrix—
and have demonstrated excellent tensile performance at both room and
elevated temperatures. Using our computational approach, we evaluated
each alloy’s key nanoscale descriptors. Specifically, Daoud’s alloy yielded a
chemical diffusion coefficient of aluminum 8.86 × 10−17 m2/s, lattice misfit
of 1.00%, and MSAD1/2 of 4.64 pm. Detrois’ ASC2 alloy showed values of
7.18 × 10−17 m2/s, 0.83%, and 5.08 pm, respectively. These values fall within
the thresholds set by our advanced screening criteria: aluminum diffusion
coefficients below 1.04 × 10−16 m²/s, lattice misfit below 1.01%, and lattice
distortion above 4.55 pm. The fact that these independently developed,
high-performance alloys satisfy our predictive criteria provides strong
indirect validation of the framework. Moreover, their agreement with our
screening metrics supports the potential generalizability of this methodol-
ogy to alloy classes beyond Ni-based systems. These results suggest that
integrating thermodynamic, kinetic, and atomistic descriptors offers a
broadly applicable strategy for microstructure-directed alloy design.

Discussion
This study demonstrates an ICME framework that integrates CALPHAD
modeling, machine learning, molecular dynamics, and diffusion kinetics to
realize targetedmicrostructures inNi-based alloys. Unlike prior approaches

focused solely on thermodynamic stability, our method incorporates
atomistic-level descriptors—such as aluminum diffusion coefficients, γ/γ′
lattice misfit, and lattice distortion—to predict and guide the formation of
fine, intragranular γ′ precipitates. Through high-throughput screening of
two billion compositions and multiscale refinement, we identified 12 can-
didate alloys, one of which was experimentally validated to exhibit the
predicted γ/γ′morphology.

The significance of thiswork lies in its ability to bridge thermodynamic
predictions with nanoscale structural evolution, offering a robust pathway
for microstructure realization. While high-temperature mechanical testing
was not performed, this study focuses on validating microstructure pre-
diction as a critical first step toward performance-based alloy design.
Notably, independent studies on high-entropy alloys byDaoud andDetrois
have reported similar microstructures with superior mechanical properties,
and their compositions satisfy our screening criteria fordiffusion,misfit, and
distortion38,39. These findings provide indirect support for the relevance and
broader applicability of our framework.

Although in situ TEM heating would provide valuable real-time vali-
dation of γ′ coarsening kinetics, such experiments require specialized
instrumentation and significant effort. Given the scale and scope of the
current study, we consider in-situ TEM a promising direction for future
research rather than a necessary component of the present work. Future
efforts will incorporate both mechanical testing and advanced micro-
structural analysis across a broader range of compositions and alloy systems
to further validate and extend the predictive power of the proposed
framework.

Methods
Machine learning model development
Todevelop amachine learningmodel capable of identifyingpromising alloy
candidates with tailored microstructures, we constructed a comprehensive
dataset using CALPHAD calculations performed in Thermo-Calc with the
TCNI12 database24. TCNI12was selected due to its extensive validation and
widespread use in Ni-based alloy design. It includes all assessed binary
subsystems relevant to the compositional space explored in this study (Cr,
Ni, Co, Mo, Nb, W, Ti, Al, Si, Fe, Mn, C, and B), as well as many critically
assessed ternary subsystems involving key alloying elements such as Ni, Cr,
Co, andAl—for example, Co-Cr-Ni, Al-Co-Ni,Al-Cr-Ni,Al-Co-Cr, Cr-Fe-
Ni, and Co-Ni-W. This level of thermodynamic assessment ensures reliable
extrapolation into multicomponent phase fields and supports the accuracy
of phase stability predictions for high-throughput screening.

Furthermore, TCNI12 incorporates magnetic contributions to ther-
modynamic properties through a mean-field model implemented within
the compound energy formalism. This model captures the effects of mag-
netic entropy and enthalpy, including transitions such as the anti-
ferromagnetism of chromium. However, as all CALPHAD calculations in
this study were conducted at elevated temperatures (≥700 °C), which are
well above the Néel temperature of chromium (~311 K), the influence of
long-range magnetic ordering is expected to be negligible. Thus, while
magnetic effects are implicitly included in the thermodynamic formulation,
they are not expected to significantly affect the results under the high-
temperature conditions considered here.

To ensure data integrity and completeness, entries with calculation
errors were removed. This process resulted in two datasets: one containing
148,710 data points for liquidus and solidus temperatures, and anotherwith
746,009 data points capturing temperature-dependent phase stability. The
full dataset used in this study is available via the link provided in the “Data
availability” section.

The machine learning models were developed using manually
hyperparameter-tuned XGBoost and a fully connected neural network
implemented in PyTorch40,41. Given that XGBoost is a decision tree-based
model, input data remained unnormalized, as normalization does not sig-
nificantly affect its performance. However, for the neural network, each
featurewas normalized using its respectiveminimumandmaximumvalues
to ensure stable training and improved accuracy.
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The predictive models consisted of both regression and classification
tasks. Neural network regression models were used to predict solidus
temperature (Tsmodel), liquidus temperature (Tlmodel), the sum of γ and
γ’ phase fractions (γ+ γ’ model), and the γ’ fraction (γ’ model). These
modelswere trained using theMean Squared Error (MSE) loss function and
the Adam optimizer42. For classification tasks, XGBoost-based logistic
regression models were employed to predict whether a given composition
forms a γ solid solution single phase (γ1 model) and whether it forms TCP
phases (TCP model). The γ1 model assigned a label of 1 when the γ mole
fraction was at least 0.999 and 0 otherwise, while the TCPmodel assigned a
label of 1 if TCP phases were stable and 0 otherwise.

The dataset was divided into 80% training, 10% validation, and 10%
test sets. The training set was used to fit the models, the validation set was
utilized for early stopping, and the test set, which remained unseen during
training, was used for final evaluation.

For XGBoost models, hyperparameters were set with a maximum tree
depth of 10, a learning rate of 0.1, 500 boosting iterations, and an early
stopping criterion of 10. Class imbalance was addressed by adjusting class
weights based on the ratio of positive to negative labels. The neural network
models were configured with a hidden layer size of 2048, a depth of 4 layers,
and leaky ReLU activation functions. Training was conducted over 1000
epochs with a batch size of 128, applying an early stopping criterion of 5. To
mitigate data imbalance in the γ’model, where approximately two-thirds of
the dataset had a label of 0, a weight factor of 10 was applied to the loss
function for nonzerodata points, enhancing themodel’s predictive accuracy
for values within the range of 0 to 1.

Diffusion coefficient calculation
The diffusion coefficient used for advanced composition screening was
calculated using Thermo-Calc and DICTRA24. Since diffusion coefficients
depend on bothmobility and thermodynamic factors, it was essential to use
a mutually compatible mobility and thermodynamic database to ensure
accurate calculations43. To achieve this, the mobility database was specifi-
cally organized based on the TCNI12 thermodynamic database, ensuring
consistency between the two.

To enhance the reliability of the calculated diffusion coefficients,
mobility parameters fromavailable literature sourceswere incorporated44–64.
These parameters were then calibrated to match experimental diffusion
coefficient data, ensuring that the computed values accurately reflected real
diffusion behavior in Ni-based superalloys.

Molecular dynamics
In this study, MD simulations were conducted using the machine learning
potential SevenNet (version 11July2024) within the LAMMPS simulation
package65,66. SevenNet is based on the Neural Equivariant Interatomic
Potentials (NequIP) framework, which has demonstrated high accuracy in
predicting atomic interactions67. Although SevenNet performed well in the
Matbench Discovery benchmark for universal force fields68, it was fine-
tuned in this study to more accurately describe the γ and γ’ phases in Ni-
based superalloys.

Thefine-tuningprocess involved generatingNi-richγ andγ’ structures
with various compositions, each containing 32 atoms. A total of 32 γ-phase
compositions and 42 γ’-phase compositions were randomly selected, and
for each composition, three different atomic distributions were generated,
resulting in 96 γ structures and 126 γ’ structures used for training. To
validate the fine-tuned SevenNet, an additional set of 48 γ structures and
54 γ’ structures with compositions not used in the training process were
generated as test structures. In the γ’ structures, Ni was enriched at site 1,
while Al was enriched at site 2. The details of these compositions are pro-
vided in the Supplementary Information.

To ensure accurate energy and force calculations, all generated struc-
tures were fully relaxed using DFT with the Vienna Ab initio Simulation
Package (VASP). The Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional within the Projector Augmented-Wave (PAW)
method was used. A 4 × 4 × 4 k-point mesh and a 520 eV energy cutoff for

the plane-wave basis set were applied. The electronic self-consistency con-
vergencewas set to 10−5eV,while the ionic relaxation forceswere converged
to −0.02 eV/Å. Spin polarization was enabled to account for magnetic
effects, and a smearing method with a width of 0.1 eV was used. Structural
relaxations were performed using the conjugate gradient algorithm with a
time step of 0.3 fs and a maximum of 100 ionic relaxation steps.

While the MD simulations using SevenNet do not dynamically model
magnetic ordering, the potential implicitly reflects the influence of local
magnetic effects—particularly those associated with Cr—through its
training on spin-polarized DFT reference data. This allows the potential to
account for magnetic contributions to local atomic environments and
structural distortion, which are important in high-Cr compositions.

To evaluate the accuracy of thefine-tuned SevenNet in reproducing the
structural properties of Ni-based superalloys, the lattice constants of both
the training and test structures were computed using LAMMPS and com-
pared to the DFT results (Fig. 5). To mitigate errors from random alloying
element distributions, the lattice constants were averaged over the three
generated structures per composition before comparison. For the training
structures, R2 was 0.9629, with a mean absolute error (MAE) of 0.003 Å,
while for the test structures, R2 was 0.9231, with anMAE of 0.005 Å. These
results confirm that the fine-tuned SevenNet accurately reproduces the
structural properties of superalloys as calculated by DFT.

The fine-tuned SevenNet was subsequently used inMD simulations to
calculate lattice misfit and lattice distortion, which are critical factors in
optimizing compositions for the targeted microstructure. To perform these
calculations, 228 compositions were selected from an initial pool of 2 billion
randomly generated compositions based on thermodynamic screening and
machine learning predictions. For each selected composition, FCC (γ) and
L12 (γ’) structures containing 4000 atoms each were generated, with their
compositions determined based on equilibrium phase compositions from
CALPHAD calculations at 800 °C. Given the low fraction of interstitial
elements (C and B) in FCC and L12 phases, their contributions were
neglected.

To account for the variations in results due to different atomic
arrangements, three distinct atomic configurations were generated for each
composition. The final lattice misfit and lattice distortion values were then
obtained by averaging the results across these configurations.

To evaluate the interfacial energy (γi) between the γ and γ′ phases,MD
simulations were performed using the fine-tuned SevenNet machine
learning interatomic potential. The interfacial energy is defined as the excess

Fig. 5 | Validation of the fine-tuned SevenNet potential against DFT-calculated
lattice constants. Comparison of lattice constants predicted by MD simulations
using the fine-tuned SevenNet machine learning potential versus DFT calculations
for both training and test structures. Each data point represents the average lattice
constant of three atomic configurations per composition to account for random
element distributions.
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energy required to form an interface between two phases compared to their
respective bulk states. It was calculated using the relation:

γi ¼
Eγ=γ0

total � nγE
bulk
γ � nγ0E

bulk
γ0

2A
ð6Þ

where Eγ=γ0

total is the total energy of the relaxed γ/γ′ interface structure, Ebulk
γ

and Ebulk
γ0 are the energies per atom of bulk γ and γ′ phases respectively, and

nγ and nγ0 are the number of atoms of each type in the interface system. The
denominator 2A accounts for the presence of two interfaces due to periodic
boundary conditions, where A is the cross-sectional area of one γ/γ′
interface.

To construct the interface model, a supercell was created by joining
fully relaxed γ and γ′ structures along the x-direction, ensuring coherent
latticematching at the interface to reflect realistic epitaxial conditions. After
joining, the combined structurewas fully relaxed to eliminate artificial strain
at the interface. All simulations were repeated three times using different
randomatomic arrangements for eachphase to ensure statistical robustness,
and the final value of γi was taken as the average.

Microstructural characterization
A 5 kg ingot was fabricated using a Vacuum Induction Melting Furnace
(VIM) with a composition of 20%Cr, 5% Co, 1%Nb, 2.5%W, 4%Al, 0.4%
Mn, 0.03% C, and 0.005% B by weight. The ingot was processed into a
rectangular shape with dimensions of 80mm in width, 100mm in length,
and 19mm in height for subsequent hot rolling. Prior to rolling, the ingot
was homogenized at 1100 °C for 1 h. It was then hot-rolled with a 20%
reduction per pass, achieving a total reduction of 60%. The hot-rolled
specimens underwent an aging treatment at 800 °C for 2 h, followed by
water quenching.

Microstructure characterizationwasperformedusing aField-Emission
Scanning Electron Microscope (FE-SEM, JSM-7100F, JEOL, Japan)
equipped with BSE, EDS, and EBSD detectors. Samples were mechanically
polished up to 1200 SiC grit paper and electropolished in a solution of 92%
CH₃COOH+ 8% HClO₄ at 20V to reveal the microstructure.

Data availability
The raw data generated in this study are available in the main article, the
Supplementary Materials, and at the following link: https://drive.google.
com/file/d/1o48uA-QYTvHL8tS4skP0JBISLc2PonPT/view?usp=sharing.
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