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DPmoire: a tool for constructing accurate
machine learning force fields in moiré
systems
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In moiré systems, the impact of lattice relaxation on electronic band structures is significant, yet the
computational demands of first-principles relaxation are prohibitively high due to the large number of
atoms involved. To address this challenge,We introduce a robustmethodology for the construction of
machine learning potentials specifically tailored for moiré structures and present an open-source
software package DPmoire designed to facilitate this process. Utilizing this package, we have
developed machine learning force fields (MLFFs) for MX2 (M =Mo, W; X = S, Se, Te) materials. Our
approach not only streamlines the computational process but also ensures accurate replication of the
detailed electronic and structural properties typically observed in density functional theory (DFT)
relaxations. The MLFFs were rigorously validated against standard DFT results, confirming their
efficacy in capturing the complex interplay of atomic interactions within these layered materials.

In recent years, two-dimensional twisted moiré structures have captured
significant interest due to the diverse physical phenomena they exhibit. By
varying the interlayer twist angle, researchers can tune the band structure of
thesematerials, enabling the experimental observationofnovelphenomena.
For instance, in twisted graphene,when the twist angle reaches the so-called
“magic angle”, the valence band flattens, prompting electrons to transition
fromaweakly correlated to a strongly correlated state. This shift gives rise to
a host of intriguing behaviors, including unconventional superconductivity,
Mott insulating states, and the quantum anomalous Hall effect1–12. Similar
phenomena have also been observed in moiré bilayers of transition metal
dichalcogenides (TMDs)13–19.

In twisted structures, themoiré potential narrows the bandwidth as the
periodicity of the structure increases. For instance, the bandwidth of bilayer
twisted graphene at a twist angle of 1.08° is only a few meV4,20, while the
bandwidth of bilayer twisted MoTe2 at 3.89° is just over 10 meV14. Such
narrowbands are highly susceptible to the effects of lattice relaxation, which
significantly influences their electronic properties. Theoretical calculations
reveal that the electronic band structures of rigid twisted graphene differ
markedly from those of relaxed systems20. Additionally, experimental stu-
dies using scanning tunneling microscopy have also documented the
relaxation patterns in TMDs resulting from lattice reconstruction21,22.

To accurately model the electronic properties of moiré structures,
density functional theory (DFT) is often employed, particularly for struc-
tures with large twist angles, where it is considered essential for reliable
structural relaxation14,15,19. However, despite its high level of accuracy, the
computational complexity of DFT scales cubically with the number of

atoms. The atoms in moiré structures increase dramatically as the twist
angle decreases (Table 1), rendering the DFT calculation impractical for
smaller-angle structures due to the sheer number of atoms involved.

To address this computational challenge, researchers have developed
parameterized continuum models that are better suited for structures with
small twist angles23–30. While these models provide a computationally fea-
sible alternative, they typically do not reach the accuracy levels of DFT
relaxation. For materials such as graphene31–33 and transition metal
dichalcogenides (TMDs)34, empirical force fields have been effectively uti-
lized for structural relaxation12,35–38. However, in other systems, robust and
extensively validated empirical potentials remain scarce, limiting the scope
of studies that can be conducted.

Machine learning force fields (MLFF) offer a promising solution to the
computational challenges posed by moiré structures39–50. Recent advance-
ments in universal MLFFs have shown great promise in terms of versatility,
efficiency, and accuracy for materials discovery and high-throughput
calculations51–56. Universal MLFFs typically can achieve an energy error of
several tens of millielectron volts (meV) per atom. For example, the mean
absolute energy errors of CHGNET52 and ALIGNN-FF54 are 33meV per
atom and 86meV per atom, respectively. However, in the context of moiré
systems, the energy scales of electronic bands are often on the order ofmeV,
a range comparable to the accuracy limits of these universal MLFFs. This
indicates that while universal MLFFs provide broad applicability, their
precision may be insufficient for structural relaxation tasks in moiré sys-
tems, necessitating the development of MLFFs specifically tailored to
individualmaterial systems. Algorithms such asNequIP41 andAllegro40 can
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achieve errors of approximately a fraction of a meV per atomwhen trained
on specific materials, which is accurate enough for moiré systems.

Previous efforts have successfully constructed MLFFs for twisted
structures, achieving encouraging outcomes. Some studies have developed
MLFFs for large twist angles and then applied these models to smaller
angles57,58, while others have trained MLFFs on non-twisted structures
before using them to relax twisted configurations14,59. Additionally, a few
approaches have combined initial training on non-twisted structures with
subsequent transfer learning on large twist-angle structures to efficiently
relax twisted configurations60,61. This multifaceted strategy highlights the
adaptability of MLFFs in addressing the specific challenges posed by the
diverse configurations encountered in moiré systems.

While these innovative approaches have shown promise, their vali-
dationhas oftenbeen limited to specificmaterials, and a comprehensive tool
for constructing MLFFs tailored to twisted structures is still lacking. Moiré
systems offer a unique platform for exploring novel phenomena such as
strong correlations and topological states, with numerous experimental and
theoretical advances highlighting their potential. Given the rapid develop-
ment in this field, there is a pressing need for a universal tool that can
conveniently and efficiently constructMLFFs for such complex systems. To
bridge this gap, we propose a new methodology and introduce an open-
source software,DPmoire, designed specifically formoiré systems.DPmoire
leverages non-twisted structures to construct training datasets, facilitating

the automated generation of MLFFs tailored to the unique challenges of
moiré systems. This tool aims to streamline theMLFF construction process,
enabling researchers to more effectively study and model the intricate
behaviors exhibited by twisted materials.

Results
MLFF for moiré systems
To develop an MLFF for moiré superlattice structures, we initially con-
structed 2 × 2 supercells of non-twisted bilayers and introduced in-plane
shifts to generate various stacking configurations. Subsequently, structural
relaxationswere performed for each configuration, ensuring that the x andy
coordinates of a reference atom from each layer remained fixed to prevent
structural drift toward energetically favorable stackings. The lattice con-
stants were also held constant throughout the simulations. The relaxation
data were compiled into a training dataset.

Following the relaxation phase, Molecular Dynamics (MD) simula-
tions were conducted under the aforementioned constraints to augment the
training data pool. For these simulations, we employed the VASP MLFF
module to explore a wide range of atomic configurations. VASP MLFF
module is an on-the-flyMLFFalgorithm,whichwill be described in detail in
section “Machine learning force fields”. Then, we selectively incorporated
data solely fromDFT calculation steps. Given the potential instability when
initiating MD simulations with VASP MLFF from an untrained state, we
initially established a baseline MLFF using single-layer structures before
proceeding with the full simulations. To ensure the MLFF’s applicability to
moiré systems and to mitigate overfitting to non-twisted structures, we
constructed the test set using large-angle moiré patterns. These were sub-
jected to ab initio relaxations, with the resultant data serving as the test set.

Finally, the compilation of the aforementioned datasets facilitated the
training of a robust and accurate MLFF. While we utilized the Allegro
framework forMLFF training in this study, otherMLFF algorithms, such as

Table 1 |Numberof atoms inmoirécell of twistedbilayer TMDs

Twist angle (°) 21.79 13.17 9.43 7.34 6.01 5.09

Number of atoms 42 114 222 366 546 762

Twist angle (°) 4.41 3.89 3.48 3.15 2.88 2.65

Number of atoms 1014 1302 1626 1986 2382 2814

Fig. 1 | Schematic overview of the process for constructing theMLFF. Initially, an
MLFF is generated for monolayer structures to stabilize subsequent molecular
dynamics (MD) simulations for bilayer systems.We then create non-twisted bilayer
structures with various stacking configurations, relax these structures, and run MD
simulations using the VASP MLFF module to construct the training dataset. The

coordinates (x and y) of a selected atom from each layer are maintained constant
during relaxation to preserve the integrity of the stacking order. Subsequently, the
twisted structures are relaxed using density functional theory (DFT) to generate the
test dataset. The MLFF is ultimately trained on these collected datasets, ensuring it
can accurately predict the physical behaviors of moiré systems.
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DeepMD42, could also be effectively trained on these datasets to potentially
enhance predictive accuracy and transferability across similar complex
structures (Fig. 1).

Eventually, the procedure described above was implemented in
DPmoire. As shown in Fig. 2, DPmoire is structured into four functional
modules: DPmoire.preprocess, DPmoire.dft, DPmoire.data, and DPmoir-
e.train. Firstly, as provided the unit cell structures of each layer, DPmoir-
e.preprocess module will automatically combine two layers and generate
shifted structures of a 2 × 2 supercell. The twisted structure for the building
test set will also be prepared. The preprocess module will take care of the
input files for VASP according to the provided templates. After that, the
DPmoire.dft module will submit VASP calculation jobs through slurm
system. When all the calculation is done, the DFT-calculated data (Energy,
Force, and Stress) will be collected by DPmoire.data module. Then,
DPmoire.data will merge the data into training set and test set. DPmoire.-
trainmodulewillmodify the system-dependent settings in the configuration
file according to given template for training Allegro or NequIP MLFF, and
submit the training job. After the training is done, the trainedMLFF can be
used in ASE62 or LAMMPS63 to perform structural relaxation.

Performance of generated MLFF
The accuracy ofMLFF is critically dependent on the precision of underlying
density functional theory (DFT) calculations. Particularly in layered mate-
rials, the vanderWaals (vdW) interactions play a crucial role indetermining

the DFT-calculated interlayer distances, making their inclusion indis-
pensable. Over the years, a plethora of vdW correctionmethodologies have
been developed64–80. Despite these developments, the predicted interlayer
distances using different vdW corrections can vary by a few tenths of an
Ångstrom.

Given this variation, it is crucial to identify the most appropriate vdW
correction for eachmaterial prior to the training of MLFFs. To this end, we
evaluated the lattice constants obtained under various vdW corrections,
comparing them against experimental measurements to ascertain the
optimal vdW correction for each material. The details of this comparative
analysis and the optimal vdW corrections are documented in Section I of
Supplementary Information, providing a rigorous foundation for the sub-
sequentMLFF training. These tailored corrections are crucial for enhancing
the accuracy of DFT calculations, thereby improving the robustness of the
developed MLFFs for different TMD materials.

Then, the MLFF is constructed utilizing the previously determined
optimal vdW corrections for both AA and AB stacking configurations of
MX2 (M=Mo, W; X = S, Se, Te) materials, as thoroughly discussed in
Section I of Supplementary Information. Settings used to train the MLFFs
are shown in Table 2. We specifically examined AAWSe2 and AAMoS2 as
representative examples. The efficacy of theMLFF is demonstrated through
a comparison of predicted and DFT-calculated forces within the test set, as
illustrated in Fig. 3. The comparison shows a strong alignment between the

Fig. 2 | Overview of the DPmoire package workflow. Initially, the preprocess
module utilizes the provided structural files for each layer along with an input
template to generate the necessary input files for subsequent VASP DFT calcula-
tions. The dft module then orchestrates these calculations using the Slurm man-
agement system. Upon completion, the data module collects the results and

compiles them into datasets. Subsequently, the train module begins training a
machine learning force field using these datasets, adhering to the parameters spe-
cified in the MLFF configuration template file. Once trained, the MLFF can be
integratedwith software packages such as LAMMPS63 orASE62 to facilitate structural
relaxation.

Table 2 | Settings in training MLFFs

Settings lmax nlayer learning rate optimizer lr scheduler schduler patience schduler factor

Values 2 2 0.001 Adam ReduceLROnPlateau 50 0.5

lmax denotes the maximum order of irreducible representation in E(3) equivariant networks, and nlayer denotes the number of equivariant layers in allegro MLFF.
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MLFF predictions and the DFT calculations, with root mean square errors
of 0.007 eV/Å and 0.014 eV/Å for WSe2 and MoS2, respectively, under-
scoring the accuracy of the MLFF in capturing the essential physical
interactions in these materials.

We further evaluated the performance of the trained MLFFs by
relaxing a structure with a 7.34° twist angle, followed by a comparison
relaxation using DFT. As depicted in Fig. 4, the relaxation outcomes
from the MLFF are nearly indistinguishable from those obtained via

DFT, with no significant deviations observed. The maximum differ-
ences in atomic positions were found to be 0.039Å in WSe2 and
0.003 Å in MoS2. In the relaxed structures, regions characterized by
MX and XM stacking exhibited lower interlayer distances compared to
the AA regions. Throughout the relaxation process, atoms near the AA
regions tend to rotate counterclockwise, which intensifies the local
twist effect. Conversely, atoms in proximity to theMX and XM regions
rotate clockwise. This differential rotation behavior strategically

Fig. 3 | Force error of generated MLFF. aMLFF-
predicted versus DFT-calculated forces for AA
WSe2 in test set of 7.34° twist. b Similar comparison
for AA MoS2 in test set including 9.34°, 7.34°, and
6.08° twists.

Fig. 4 | Relaxation pattern of 7.34° AA WSe2 and
MoS2. a, c correspond to the interlayer distance and
intralayer displacement in MLFF-relaxed WSe2,
respectively. b, d correspond to the interlayer dis-
tance and intralayer displacement in DFT-relaxed
WSe2. e, g correspond to the interlayer distance and
intralayer displacement in MLFF-relaxed MoS2.
f, h correspond to the interlayer distance and
intralayer displacement in DFT-relaxed MoS2.

Fig. 5 | Band structure comparison of 7.34° AA
WSe2 and MoS2. a Comparison of electronic band
structure between MLFF-relaxed structure and
DFT-relaxed structure in 7.34° AA WSe2.
b Comparison of electronic band structure between
MLFF-relaxed structure and DFT-relaxed structure
in 7.34° AA MoS2.
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maximizes the area of MX and XM regions while minimizing the AA
region. These findings align well with previous theoretical studies23.

To further investigate how different relaxation approaches affect the
computed band structures, we also performed band structure calculations
on both MLFF-relaxed and DFT-relaxed structures for AA WSe2 and AA
MoS2, as shown in Fig. 5. The band structures of the twomethods are nearly
identical, with only minor differences, demonstrating that the MLFF is
sufficiently accurate to capture the essential physical phenomena in moiré
structures without the need for additional DFT relaxation. As detailed in
Section II of Supplementary Information, MLFFs for other materials also
exhibited robust performance. For MoS2, WS2, AB MoTe2, and WTe2, the
structures relaxed by MLFF and DFT methods were nearly identical, and
their corresponding band structures closely matched. However, for mate-
rials like MoSe2 and AA-stacked MoTe2, slight variations in interlayer
distances led to minor differences in their band structures. We further
analyzed the 5.09° twist angle inAAandAB stackedMoSe2 (Supplementary
Fig. 13), where the discrepancies between DFT-relaxed and MLFF-relaxed
structures were reduced, suggesting that the observed suboptimal perfor-
mance in thesematerialsmay be due to the larger twist angles. In large-angle
structures, the lattice mismatch between layers is not negligible, and such
atomic configurations rarely appear in the training dataset.

Moreover, we evaluated the transferability of ourMLFF with 7.34° AB
MoS2 as an example. The rootmean squared errors (RMSE) under different
temperatures and stresses are shown in Fig. 6. For the temperature tests, we
conducted 1-picosecond MLFF-MD simulations at each temperature and
sampled 10 structures evenly from the trajectories to compute the force
errors against DFT references. For the stress tests, we performed structural
relaxations starting from a rigid structure and similarly sampled 10 struc-
tures from each relaxation trajectory. Stresses in the z-direction are applied
by imposing forces on the top and bottom sulfur atoms. The results
demonstrate excellent transferability of the MLFF across varying tem-
peratures and stresses. This indicates that ourMLFF is not only suitable for
structural relaxation but also robust for MD simulations under diverse
conditions.

Discussion
In this work, we introduced a universal methodology and developed an
open-source tool, DPmoire, for constructing MLFF tailored to moiré
structures.Utilizing theVASPMLFFmodule,DPmoire effectively generates
training sets and constructs validation sets based on large-twist-angle
configurations.We successfully trained accurateMLFFs forMX2 (M=Mo,
W; X = S, Se, Te) systems, which precisely replicate both the relaxation
patterns andelectronic band structures observed inDFTrelaxations, but at a
significantly reduced computational cost.

This innovative tool enables the effective relaxation of moiré systems
across a broader range of smaller angles and varied materials. Additionally,
it facilitates phonon calculations within these complex systems. We
anticipate that DPmoire will significantly enhance the understanding of
physical phenomena influenced by relaxation effects and spur the discovery
of novel moiré materials.

Moreover, we found that for moiré systems, carefully constructing
the training set can significantly improve the accuracy of MLFF. We
believe that for other systems, designing the training set according to
the common characteristic might also be a promising approach to get
an accurate model.

Methods
Moiré structures
Moiré twistedmaterials couldbe constructed by eitherapplying a twist angle
between layers of two layered materials or stacking two materials with a
slight lattice constant mismatch. Generally, the smaller the twist angle, the
larger the resulting moiré supercell. Different regions of a moiré structure
exhibit various stacking arrangements. Taking twisted AA WSe2 as an
example (Fig. 7), in the AA region, the W/Se atoms in the top layer are
aligned with the correspondingW/Se atoms in the bottom layer. In theMX
region, the W atoms in the top layer align with the Se atoms in the bottom
layer, while in the XM region, the Se atoms in the top layer align with theW
atoms in the bottom layer. In non-twisted structures, various stacking
configurations correspond to different energy states, as illustrated in Fig.

Fig. 6 | RMSE of forces of 7.34° AB MoS2 in dif-
ferent temperatures and stresses. a RMSE under
different temperatures. For each data point, we
sampled 10 structures evenly from 1-ps MLFF-MD
simulation to calculate the error. b RMSE under
different stresses. For each data point, we sampled
10 structures evenly from the relaxation trajectories.
Stresses in the z-direction are applied by imposing
forces on the top and bottom sulfur atoms.

Fig. 7 | Characteristic of moiré structures. aMoiré
crystal structure of WSe2 with a 2.13° AA stacking
twist, resembling the atomic layout of non-twisted
bilayerWSe2. bEnergy profile of non-twisted bilayer
WSe2 based on relative in-plane shifts between lay-
ers, where X and Y axes represent shift vectors, and
color indicates unit cell energy. Energy at MX and
XM stackings is zeroed. Interlayer distance is 6.8Å.
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7(b). When the interlayer twist angle is minimal, the lattice vectors of both
layers closely match, making the local atomic configurations in the moiré
structure similar to those in non-twisted structures. By modeling the
potential energy surfaces of these non-twisted configurations, we can
effectively reconstruct the potential energy landscape of twisted structures,
thereby advancing our understanding of their unique properties.

Machine learning force fields
MLFF39–50 refers to machine learning algorithms for predicting the
energy and forces of crystal structures. Typically, to train an MLFF, it
needs a dataset consisting of a set of crystal structures along with their
corresponding energies and forces. Once training is complete, the
MLFF can rapidly predict the energies and forces of similar structures.
The computational cost of MLFF prediction scales linearly with the
number of atoms, making the cost of relaxation manageable even for
very large structures.

However, constructing a comprehensive dataset can be a time-
consuming endeavor. Directly using ab-initio MD simulations to build
datasets is a relatively inefficient approach, as structures that are close in time
within an MD trajectory are very similar. This similarity results in a
redundancy that offers little added value to the training dataset, posing a
challenge for efficient MLFF deployment.

On-the-flyMLFF approaches likeDP-GEN81 and theMLFFmodule of
the Vienna Ab initio Simulation Package (VASP)39,82 provide effective
solutions formanaging computational costs inMD simulations. This article
focuses on the MLFF module within VASP. This module automates the
process of data collection, MLFF training, and its immediate application to
accelerate MD simulations within a continuous loop. The MLFF module
operates based on Bayesian linear regression, which allows it to directly
estimate the error in its predictions without needing to compare them
against ab-initio results.During anMDsimulation, if themodule estimates a
small error, it applies the MLFF-predicted results directly. Conversely, if a
large error is estimated, it discards these results and performs a density
functional theory (DFT) step to obtain accurate data. This ab-initio data is
then added to the training dataset for refining the MLFF. The error criteria
also evolvewith the averaged predicted error. The initial error criteria in our
calculations are set to 2meV. This iterative process repeats throughout the
MD simulation, allowing for extensive sampling from MD trajectories,
which could involve tens of thousands of steps, while only requiring DFT
calculations for several hundred steps. In our test cases, around twohundred
DFT steps were computed during the 10,000-step molecular dynamics
simulation. As a result, a high-quality dataset can be constructed with
minimal computational expense, optimizing both resources and time.

The MLFF algorithm in VASP is designed to be relatively lightweight,
which significantly reduces the training time required during the simulation
loop. However, this streamlined approach means that the accuracy of the
VASP MLFF may not rival that of more complex neural network-based
MLFF algorithms. Consequently, we first utilize VASP MLFF and collect
only the DFT data generated in this iteration, subsequently employing a
more accurate neural network-basedMLFF to fit the collectedDFT dataset.

One such advanced approach isNequIP, amachine learning forcefield
based on an E(3)-equivariant graph neural network41. This method ensures
covariance among the inputs, outputs, and hidden layers, leading to
enhanced data efficiency and model accuracy. Another notable E(3)-
equivariant algorithm is Allegro, which is particularly well-suited for large
structures and optimized for parallel computing40. While this article pri-
marily focuses on the application of Allegro, the dataset generated using our
approach is versatile and can be employed to train other MLFF models as
well. This flexibility facilitates the exploration and application of various
advanced MLFF techniques in computational material science.

Data availability
MLFFs for TMDs can be accessed in the Electronic Laboratory forMaterial
Science https://in.iphy.ac.cn/eln/link.html#/125/F3p0.

Code availability
The code for DPmoire is publicly available on GitHub at this link https://
github.com/JiaxuanLiu-Arsko/DPmoire.
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