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An interleaved physics-based deep-
learning framework as a new cycle
jumping approach for microstructurally
small fatigue crack growth simulations
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Conventional fracture mechanics asserts that the relevant physics governing small crack growth
occurs near the crack front. However, for fatigue, computing these physics for each crack-growth
increment over the entire microstructurally small crack regime is computationally intractable. Properly
traineddeep-learning surrogatemodels canmassively accelerate fatigue crack-growth predictions by
virtually propagating an initial crack using micromechanical fields corresponding to just the initially
cracked microstructure. As the predicted crack front advances, however, the fields no longer reflect
relevant near-crack-front physics, leading to error and uncertainty accumulation. To address this, we
present an interleaved physics-based deep-learning (PBDL) framework, where updates to the crack
representation in the physics-based model are triggered intermittently using model uncertainty,
thereby updating micromechanical fields passed to the deep-learning model. We show that this
framework, representing a novel cycle-jumping approach, effectively limits error accumulation in
history-dependent fatigue crack evolution and forms a template for other time-series applications in
materials.

Given that the early stages of fatigue-crack evolution can consume the
majority of total structural life for many technologically relevant
applications1,2, being able to predict the growth of microstructurally small
fatigue cracks (MSCs) is essential for developing next-generation fatigue
crack-resistant materials and realizing concepts like the airframe digital
twin3–5. To make such predictions accurately requires careful treatment of
the relevant microstructural features that influence crack evolution and a
sufficiently high-fidelity representation of the evolving crack surface.

Simulation frameworks that leverage crystal plasticity constitutive
models are typically adopted for MSC modeling tasks, as they accurately
capture material deformation mechanisms and resolve the resulting
micromechanicalfields at the scale ofMSCs. For instance, Castelluccio et al.6

employed a crystal plasticity-based finite element (FE) model to simulate
crack evolution using a fatigue indicator parameter while implicitly repre-
senting cracks by systematically reducing the elastic stiffness of elements in
the FE mesh. Rovinelli et al.7 used a fast Fourier transform-based crystal
plasticity model, representing static cracks in the voxelized microstructure
as voxels with void properties. Proudhon et al.8 used crystal plasticity FE
models to simulate MSC propagation in experimentally observed micro-
structures, representing cracks explicitly in themesh. Phung et al.9 employed

a voxel-based remeshing framework to explicitly represent cracks in the FE
mesh and employed crystal plasticity modeling to assess various crack
growth criteria for predicting experimentally observed crack paths. While
the aforementioned works represent progressive advancements in the
fidelity with whichMSCs can be represented, simulating MSC growth with
high fidelity over realistic cycle counts remains computationally intractable.
To illustrate, under high-cycle fatigue conditions—where cracks can spend
up to 90% of their lifetime in the MSC regime—such effort could involve
simulating MSC growth over cycle counts on the order of 104.

Cycle jumping10–12 is a popular technique in continuum damage
mechanics for accelerating fatigue simulations involving a large number of
loading cycles. This approach begins by simulating a few initial fatigue cycles
to establish the evolution of internal state variables, followed by strategically
skipping a specified number of cycles while extrapolating key variables of
interest (such as plastic strain or damage evolution) to account for the
skipped cycles13. While cycle jumping has been shown to be a computa-
tionally efficient approach to effectively accelerate fatigue predictions at the
continuumscale, its applicability tomesoscalemodels that explicitly simulate
crack growth (such asMSCgrowth simulations) remains unexplored.Unlike
continuum damage mechanics models, where damage evolves smoothly,
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MSC simulations require predicting crack front behavior within localized
fields that emerge from the interactions of the crack front with the micro-
structural features14. These interactions lead to significant variability in local
stress and strain fields and thus make simple extrapolations challenging.

One promising avenue is the use of deep learning, which has
demonstrated remarkable success in extracting complex patterns from large
datasets across various domains, including natural language processing15,16,
image recognition17, and bioinformatics18. Its application in crack growth
prediction has gained significant attention in recent years. For instance,
Pierson et al.19,20 proposedusing convolutional neural networks (CNNs) and
XGBoost on data extracted from the micromechanical fields of uncracked
polycrystals to predict crack paths. Rovinelli et al.21 utilized Bayesian net-
works to derive analytical equations for small crack propagation.Hsu et al.22

used ConvLSTM, combining CNN and long short-term memory (LSTM),
to predict fracture patterns from 2D atomistic simulations, with input data
encoded with crystal orientation and initial crack location. In a previous
study23, the authors demonstrated the ability of bi-directional long short-
term memory (BiLSTM) networks to predict crack growth rates and pro-
pagationdirections using data fromhigh-fidelity physics-based simulations.
Despite the impressive predictive power of BiLSTM models, the reliability
over a large number of successive crack propagation increments remains a
concern due to the potential for error propagation as the predicted crack
front progresses farther away from the actual crack front (hence, deeper into
the uncracked domain of the microstructure).

In this work, we propose an interleaved, physics-based deep-learning
(PBDL) framework that leverages the rapid predictive capabilities of well-
trained deep-learning models and the high accuracy of physics-based
models within a tightly coupled loop (see Fig. 1). Uncertainty quantification
(UQ) estimates fromdeep-learning ensemble predictions are used to inform
the instant atwhich thephysics-basedmodelmust beupdated to reflectboth
the evolved crack surface and the corresponding micromechanical state
prior to resuming deep-learning predictions. TheUQ-informed interleaved
PBDL framework marks a significant advancement in the field of fatigue
modeling and also serves as a template for other time-series applications.

Results
In the previous study23, it was determined that trained BiLSTM models
effectively learned to map MSC growth parameters (viz., local crack
extension, Δa, and kink angle, Φcrit) at virtual crack front points (CFPs) to
input sequences containing microstructural and micromechanical features

extracted from the uncracked local neighborhood of the CFPs. Because the
microstructure does not evolvewith crack propagation in our physics-based
simulation, the key variables driving the accuracy of BiLSTMmodels are the
micromechanical features.

Interleaved physics-based deep-learning framework
Figure 1 illustrates thepredictionprocess for theproposed interleavedPBDL
framework. The process begins by evaluating micromechanical fields using
the physics-based framework with an assumed initial crack explicitly
represented in the FEmesh, and subsequently collecting input sequences at
CFPs along the crack front. Trained ensembles of BiLSTM models predict
Δa and Φcrit point-wise at each CFP using these input sequences. Besides
predicting the MSC growth parameters, the ensemble models also provide
associated uncertainty estimates. The predictions are accepted if the model
uncertainty estimate is below a user-specified threshold for either model.
Acceptedpredictions ofΔa andΦcrit are combined to virtually propagate the
crack front from k = 0 to k = 1.New input sequences are then collected from
the virtually updated crack front at k = 1 (shown as white dots in Fig. 1) to
predict the next crack growth increment. This way, the crack continues to
propagate virtually using only the deep-learning predictions. However, as
the virtual crack propagates farther away from the initial crack front, the
micromechanical fields extracted in the uncracked region of the k = 0
simulation become less relevant for the deep-learning model’s prediction.
With each subsequent step relying on the previous one, model error and
uncertainty accumulate over time.

Once the uncertainty accumulation reaches a user-specified threshold,
the MSC propagation process switches from deep-learning predictions to
physics-based simulation. At this point, the virtually propagated crack
surface is explicitly represented in the FE mesh, and a physics-based
simulation is conducted to update the micromechanical fields, thereby
better representing the near-crack-front driving mechanisms. After
updating the micromechanical fields, the process resumes virtual crack
propagation using the deep-learning framework, now with features
informedby the updatedmicromechanicalfields. This interleavedapproach
of the PBDL framework leverages the strengths of both deep-learning and
physics-based simulations, ensuring accurate and efficient predictions.

Demonstration of interleaved PBDL framework
In this section, we demonstrate the application of the interleaved PBDL
frameworkusingoneof themicrostructural instantiations in the test dataset.

Fig. 1 | Workflow of interleaved physics-based deep-learning (PBDL) framework
for predicting history-dependent propagation of microstructurally small fatigue
cracks. The framework combines a physics-based crystal plasticity model, which
evaluates micromechanical fields in a cracked microstructure, with a deep-learning

surrogate that predicts a sequence of crack-growth increments using fields from the
current state of the physics-based model. Uncertainty metrics are used to trigger
intermittent updates of the explicit crack representation in the physics-basedmodel to
maintain relevant micromechanical fields as input for the deep-learning predictions.
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We evaluate and compare the error and computational expense associated
with propagating a crack from k = 0 to k = 7 across three frameworks: the
interleaved PBDL framework, traditional physics-based simulation, and a
deep-learning-only approach. Additionally, because the decision to update
the micromechanical fields is governed by the cumulative uncertainty in
crack extension (refer to Section “Uncertaintyquantification andcalibration
procedure”), we present results from the PBDL framework under different
user-specified thresholds for cumulative uncertainty, which effectively
controls the frequency of updates to the physics-based model.

Figure 2 illustrates the evolution of the crack surface at discrete
increments as it propagates from k = 0 to k = 7, along with the micro-
mechanical fields used for predicting the next crack growth increment.
Three cases are presented for comparison in Fig. 2: (1) sequence of forward
predictions using only the deep-learning model with no updates to the
physics-based model after the k = 0 simulation (i.e., without representing
stress redistribution associatedwith formation of new traction-free surface),
(2) interleaved PBDL predictions corresponding to a cumulative uncer-
tainty threshold of T1 = 0.8 μm, and (3) interleaved PBDL predictions
corresponding to a cumulative uncertainty threshold of T2 = 0.4 μm. The
thresholds T1 and T2 are selected arbitrarily to result in updates to the
physics-based model every four and two increments of crack growth,
respectively. Of note, the threshold values are smaller than the voxel reso-
lution of 1 μm used in the physics-based simulations and therefore remain
within the intrinsic resolution error. In Fig. 2a–c, a cut-plane view shows the
predicted crack trajectory from the PBDL framework (in white) overlaid
with the corresponding reference trajectory fromphysics-based simulations
(in black) for visual comparison. In Fig. 2b, predictions from k = 0 to k = 4
rely on the micromechanical fields computed at k = 0, but once the
cumulativeuncertainty reaches thepredefined thresholdatk = 4, the explicit
crack surface is updated and the micromechanical fields are reevaluated at
k = 4, and subsequent predictions from k = 5 to k = 7 rely on the micro-
mechanical fields corresponding to the crack state at k = 4. Figure 2c illus-
trates an even more frequent update strategy, where the micromechanical
fields are updated every two crack growth increments. Predictions from
k = 0 to k = 2 are based on the initial fields at k = 0; predictions from k = 3 to
k = 4 use fields updated at k = 2; predictions from k = 5 to k = 6 are based on
fields updated at k = 4, and so on. As expected,more frequent updates of the
micromechanical fields lead to better alignment between the predicted and
reference crack trajectories.

It is important to recognize that although uncertainty is reset at each
physics-based update in the interleaved PBDL framework, error continues
to accumulate with crack propagation. Unlike long cracks, MSCs evolve as
highly tortuous 3D surfaces, and therefore, we adopt the difference in crack
surface area as the primary error metric. This choice is particularly mean-
ingful because the predicted crack surfaces in our deep-learning framework
are constructed based on both crack extension and kink angle predictions,
and thus, the surface area error naturally integrates the error arising from
both components. However, to facilitate interpretation, we define an
equivalent crack radius req by equating the error in crack surface area to that
of an idealized flat semicircular crack. This scalar measure can then be
compared to the average crack size, thus providing a basis for comparing
the error.

Figure 3 shows the absolute error in total crack surface area relative to
the corresponding high-fidelity physics-based simulation (ground truth),
plotted as a function of average crack radius. Results are shown for the deep-
learning-only frameworkand the interleavedPBDL frameworkwith the two
different uncertainty thresholds, T1 and T2. To assess long-term behavior,
the error trends are extrapolated to a crack size of 1650 μm, which corre-
sponds to the minimum reliably detectable crack size via ultrasonic
inspection24. Extrapolation is performed using polynomial regression, with
the polynomial order determined via trial and error. The interleaved PBDL
framework’s error closely followed a second-degree polynomial, whereas
the deep-learning-only framework followed a third-degree polynomial. As
shown in the inset of Fig. 3, the absolute error increaseswith crack growth in
both approaches; however, the rate of growth is more pronounced in the

deep-learning-only case. Moreover, the error associated with the PBDL
framework using the tighter threshold T2 is consistently smaller than that
using a looser threshold T1, highlighting the role of update frequency on
overall predictive accuracy.

Although the difference in absolute error between the two methods
may appearmodest initially, the difference becomes increasingly significant
with propagation. In the deep-learning-only framework, the error can
eventually lead to highly unreliable predictions (error in equivalent crack
radius, req, translates to≈ 318%of the actual average radius). In contrast, the
interleaved PBDL framework, through periodic physics-based updates,
limits error propagation. The quadratic error growth observed in the PBDL
framework translates to a more reasonable deviation, with errors limited to
≈ 41% and ≈ 29% of the average crack radius for thresholds T1 and T2,
respectively.

Figure 4 shows the projected computational costs incurred when
predicting the evolution of a microstructurally small crack using the inter-
leaved PBDL framework compared to purely physics-based simulation and
deep-learning only approach (following the initial state, k = 0). The inset
shows data points from a specific microstructural instantiation, which are
used to extrapolate to afinal crack size thatwould be detectable byultrasonic
testing. The results indicate that while the interleaved PBDL framework is
more computationally expensive than thedeep-learning-only approach, it is
significantly less expensive than the traditional physics-based framework,
reducing computational cost by a factor of four using threshold T1 and by a
factor of three using threshold T2. As shown in Fig. 4, the computational
savings of the interleaved PBDL framework depends on the user-specified
tolerance of cumulative uncertainty.

Discussion
The interleaved PBDL framework proposed in this study exemplifies a
synergistic approach whereby physics-based and deep-learning models
complement each other to enhance predictive performance25. This strategy
leverages the strengths of both methodologies, addressing their respective
limitations. In the proposed framework, deep-learningmodels help physics-
based models by rapidly predicting the local crack growth parameters,
which is a crucial advantage given the high computational cost associated
with physics-based simulations. Conversely, physics-based models con-
tribute by providing high-fidelity micromechanical fields that are essential
for accurate predictions. The intermittent updating of micromechanical
fields ensures that the deep-learning model’s input remains relevant and
reasonably accurate, thus mitigating the degradation of prediction quality
over time.

Results from Figs. 2 and 3 show that, for this history-dependent
application, updating the physics-based model using deep-learning pre-
dictions that contain slight errors provides better overall accuracy than
making no updates at all (i.e., using only a sequence of deep-learning pre-
dictions). Specifically, as shown in Fig. 3, the interleaved PBDL framework
with uncertainty thresholds T1 and T2, which triggermicromechanical field
updates at different frequencies, offers a consistent decrease in prediction
error compared to deep-learning-only models (albeit at a slightly higher
computational cost). The trend suggests that the error difference between
the interleaved PBDL framework and the deep-learning-only approach will
becomemore pronounced as the crack grows in size.We expect the benefits
of incorporating updatedmicromechanical fields to outweigh the additional
computational expense as the error accumulation in deep-learning-only
models becomes more pronounced. Moreover, the ability to adjust the
cumulative uncertainty threshold provides a flexible mechanism to balance
accuracy and computational expense. By setting a tighter threshold, the
framework can ensure more frequent updates to micromechanical fields,
leading to more accurate predictions (but with additional computational
expense). Therefore, the interleaved PBDL framework allows users to tailor
the trade-off between accuracy and computational cost based on specific
needs and constraints.

In conclusion, the interleaved PBDL approach effectively combines the
rapid prediction capabilities of deep learning and the high fidelity of the
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Fig. 2 | Influence of cumulative uncertainty threshold on the interleaved PBDL
predictions. Illustration of interleaved PBDL framework predictions of micro-
structurally small crack growth over eight increments (k) within a 3D polycrystalline
microstructure. A representative micromechanical field used for making forward
predictions is overlaid at each increment. a Fields not updated after k = 0 (i.e., deep-
learning-only case), b thresholdT1 resulting inmicromechanical field update at k = 4

(refer to Supplementary Movie 1 for an animated version), and c threshold T2
resulting in micromechanical field updates at k = 2, k = 4, and k = 6. In each cut-
plane view, the predicted crack trajectory from the PBDL framework (in white) is
overlaidwith the corresponding reference trajectory fromphysics-based simulations
(in black) for visual comparison.
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physics-based simulations to predict MSC growth. By leveraging calibrated
uncertainty estimates, the framework provides a reliable way to trade-off
between speed and accuracy of predictions. The interleaved PBDL frame-
work demonstrated here not only advancesMSC growthmodeling but also
holds potential for broader applications in computational simulations
across various time-series domains.

Methods
MSC growth dataset
The MSC growth data comprise two distinct datasets for developing pre-
dictive models for Δa and Φcrit, respectively. Each dataset contains 18,000
data points collected from physics-based MSC growth simulations con-
ducted in 40 statistically similar yet unique microstructures. A representa-
tive microstructure is illustrated in Fig. 5a. The physics-based simulations
employ a high-fidelity FE framework to explicitly model 3D crack propa-
gation at the microscale. For comprehensive details regarding the high-
fidelity framework and the 40 simulations, the reader is referred to our
previous work14. A summary is provided here for completeness. The high-
fidelity framework integrates: (1) a voxel-based remeshing code that facil-
itates explicit representation of the evolving crack surface within the
microstructure26; (2) an in-housemeshing tool, Crackmesher27, for adaptive
mesh refinement along the evolving crack front; and (3) a crystal plasticity
constitutive model, implemented as a user-defined subroutine in Abaqus®,
to capture the anisotropic plastic behavior in face-centered cubic materials.
The crystal plasticity model governs the plastic response through shear
deformations on 12 octahedral slip systems, with the slip rate on each slip
system, α, evolving as a function of the resolved shear stress τ and slip
resistance g. Detailed constitutive equations are provided in the Supple-
mentary Information.

Eachmicrostructural instantiation is initializedwith aflat, semicircular
crack of radius 24 μm, oriented for mode-I loading, which propagates
incrementally under prescribed cyclic loading conditions. At each crack
growth increment, micromechanical quantities such as the cyclic crack tip
displacement range (ΔCTD) and the direction of localization of the D5

fatigue indicator parameter28 are evaluated at each node along the crack
front, which is thenused to determine the local crack extension and the kink
angle, respectively. The functional relationships used for these evaluations
are described in the Supplementary Information under MSC Growth
Criteria.

Five crack growth increments are simulated in each microstructural
instantiation, resulting in 200 crack growth increments across all 40
microstructural instantiations. As illustrated in Fig. 5b, the crack front at
each crack growth increment is discretized uniformly into 90 CFPs
(although only 19 points are shown for each crack front in Fig. 5b for
illustration). From each CFP, input sequences and corresponding ground
truth labels for both Δa and Φcrit models are extracted. These input
sequences contain microstructural (e.g., maximum Schmid factor) and

Fig. 3 | Comparison of error in predicted crack surface area. Projected absolute
error in total crack surface area relative to a corresponding physics-based simulation
(ground truth), plotted as a function of nominal crack size. Results are shown for
deep-learning-only framework and the interleaved PBDL framework with two dif-
ferent cumulative uncertainty thresholds, T1 and T2. The inset shows actual data
points from a specificmicrostructural instantiation, which are used to extrapolate to
a final crack size that would be detectable by ultrasonic testing.

Fig. 4 | Comparison of computational expense. Projected computational costs for
predicting the evolution ofmicrostructurally small crack using the interleaved PBDL
framework (with two different cumulative uncertainty thresholds, T1 and T2), in
comparison to purely physics-based simulations and a deep-learning-only
approach. The inset shows actual data points from a specific microstructural
instantiation, which are used to extrapolate to a final crack size that would be
detectable by ultrasonic testing.

Fig. 5 | Meshed microstructure and crack front discretization strategy. a A
representative microstructural instantiation used in physics-based simulations of
crack growth, shown after conformal and adaptive meshing. The inverse pole figure
(IPF) colors indicate the crystallographic orientations of grains in the micro-
structure. The highlighted crack surface nodes represent the initial semicircular

crack explicitly introducedwithin themesh. bA schematic illustration of crack front
evolution from k = 0 to k = 4, along with the radial discretization strategy used to
generate crack front points (CFPs). These CFPs serve as the basis for extracting
input sequences used to train the deep-learning models.
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micromechanical features (e.g., equivalent plastic strain) extracted both
locally from the CFP location and from nonlocal points in the neighbor-
hood, effectively encoding themicrostructural dependence ofMSC growth.
It is worth noting that the micromechanical features used for training the
deep-learning model are extracted solely from the crystal-plasticity FE
simulation containing the initial crack (i.e., k = 0). While the process of
generating input sequence is identical for both Δa and Φcrit datasets, they
primarily differ in the type of features collected: the Δa dataset includes
magnitude-dependent features, whereas theΦcrit dataset includes direction-
dependent features. A list of all features used for training the Δa and Φcrit

models is provided in Tables 1 and 2, respectively, and is detailed further in
the authors’ previous work14,23.

The 18,000 data sequences from 40 MSC growth simulations are split
instantiation-wise into training (12,600 sequences from 28 microstructural
instantiations), validation (2700 sequences from 6 microstructural instan-
tiations), and testing (2700 sequences from6microstructural instantiations)
datasets. The sequences in the training datasets of Δa and Φcrit are used to
train two separate BiLSTMmodels for predicting Δa andΦcrit, respectively.

Leveraging the BiLSTM network’s ability to capture dependencies in
sequential data, the models are trained to learn microstructure-sensitive
behavior encoded in the input sequences extracted from spatially ordered
CFPs. The network architecture consists of forward and backward LSTM
layers that process the sequence in both directions, enabling the model to
learn context from the entire neighborhood of a given CFP. Dropout is
applied to both layers to reduce overfitting, followed by a time-distributed
dense layer for dimensionality reduction, andafinal dense layer that outputs
the prediction.

Model training is performed using TensorFlow’s Keras API, with the
Adam optimizer minimizing the mean squared error between predictions
and ground truth values. Key hyperparameters, including the number of
LSTMunits, learning rate, and dropout rate, are tuned using theHyperband
algorithm in theKeras Tuner library. The optimized parameters are listed in
Table 3. The training and validation loss curves for the BiLSTM models
predicting Δa and Φcrit, trained using their respective tuned hyperpara-
meters, are shown in Fig. 6. Once trained, themodels can rapidly predictΔa
and Φcrit at any given CFP, given its corresponding input sequence. Addi-
tionally, each model is trained ten times with different random initializa-
tions, resulting in an ensemble of BiLSTMmodels. The arithmetic mean of
the ensemble predictions provides the final predicted output. This ensemble
approach not only enhances model accuracy but also provides meaningful
uncertainty estimates. Performancemetrics, includingR2, rootmean square
error (RMSE), andmedian absolute error (MDAE), are reported in Table 4.

While MSC growth is simulated for five crack growth increments
(from k = 0 to k = 4) in 40 instantiations, for one of the microstructural
instantiations in the test dataset, MSC is propagated for three additional
increments (up to k = 7). These extended simulations provide ground truth
data to assess the accuracy of the interleaved PBDL framework.

Uncertainty quantification and calibration procedure
The BiLSTM ensemble predictions are used not only to estimate the crack
growth parameters but also to quantify the associated uncertainty. We
assume a Gaussian posterior predictive distribution for each model pre-
diction, with the ensemble’s mean and standard deviation parameterizing

Table 1 | A list of features used to train BiLSTM model for
predicting Δa23

Feature Description

mmax Maximum of the Schmid factors evaluated across 12 slip systems
P5

1 m Sum of the five largest Schmid factors out of those evaluated across
12 slip systems

dx
fs;d

y
fs

Nearest distance to the free surface in X and Y directions

a Half-crack length

∣γ∣ Absolute angular position of CFP

ωavg Disorientation angle

E[001] Elastic modulus along the loading direction [001]

Γ A binary variable indicating whether a CFP is at the intersection of a
grain boundary

Δak−1 Crack extension at crack growth increment k− 1

Davg
5 Fatigue indicator parameter extracted using the micromechanical

fields at k = 0

ϵavgeq Equivalent plastic strain extracted using the micromechanical fields
at k = 0

σavgtriax
Stress triaxiality extracted using the micromechanical fields at k = 0

ϵavg33
Strain along Z-direction extracted using the micromechanical fields
at k = 0

∇ϵavg33
Strain gradient along Z-direction extracted using the
micromechanical fields at k = 0

Table 2 | A list of features used to train BiLSTM model for predicting Φcrit 23

Feature Description

λ1, λ2, λ3, λ4 Angles formed by the trace of the slip planes 1 to 4 with r! on the radial plane

Ωmax, Ωmin Maximum and minimum tilt angles of the four slip planes relative to the crack orientation

Γ A binary variable indicating whether a CFP is at the intersection of a grain boundary

λmax(Ω), λmin(Ω) Slip plane angle having the maximum and minimum tilt angles

∣γ∣ Absolute angular position of CFP

ngrains Number of grains intersecting the radial probe

λmax1(m), λmax2(m), λmax3(m), λmax4(m) Slip plane angles sorted based on the maximum Schmid factor of the respective slip plane

Φk−1 Kink angle at crack growth increment k− 1

ω1, ω2, ω3, ω4 Disorientation angle between the grain containing the CFP and the grain containing a probe point that intersects with the trace of the
slip planes 1 to 4

Φmaxðϵpeq Þ Angle along the radial probe having the maximum equivalent plastic strain extracted using the micromechanical fields at k = 0

ΦmaxðMmicro Þ Angle along the radial probe having the maximummicromechanical Taylor factor extracted using the micromechanical fields at k = 0

Table 3 | Tuned hyperparameters of the BiLSTM models that
predict Δa and Φcrit 23

Hyperparameter Δa
BiLSTM model

Φcrit

BiLSTM model

Learning rate 0.006 0.0009

No. of units in the hidden state of
LSTM cell

21 13

Dropout rate 0.01 0.3
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the Gaussian distribution. Using the quantile function of this Gaussian
distribution, we evaluate the confidence interval (CI) for each prediction,
which serves as the measure of uncertainty. However, ensemble methods,
while providing a way to estimate confidence levels, often result in inac-
curate predictive intervals. For instance, a 90% confidence interval should
ideally contain the true outcomes 90% of the time, but this is not always the
case. To address this, we apply a calibration procedure proposed by Kule-
shov et al.29 to improve the quality of the uncertainty estimates. The cali-
bration is performedon the validationdataset to develop a calibration curve,
which is then used to correct the uncertainties in the test dataset. The
calibration procedure involves determining the cumulative distribution
function (CDF) of the ground truth relative to the model’s predictive dis-
tribution for a particular output (predicted CDF) and comparing it with the
CDF of that output relative to all other ground truths in the validation
dataset (empirical CDF). A calibration curve is obtained by fitting the
predicted and empirical CDFs of all validation data points using isotonic
regression. The calibration curve is then used to adjust the quantiles for the
predicted confidence intervals in the test dataset. While we use isotonic
regression as a post hoc calibration method to improve predictive coverage
of BiLSTM ensemble outputs after training, we note for the reader’s refer-
ence that other calibration techniques exist with more intrinsic uncertainty
quantification approaches, which are directly tied to the model’s training
objective. For instance, quantile regression has been widely used not only to
quantify uncertainty by directly estimating prediction intervals30,31, but also
as a post-processing calibration tool to adjust predictive coverage32,33.
Similarly, conformal prediction34 is another technique that provides valid
uncertainty bounds with minimal assumptions about the underlying data
distribution. It can also be combined with quantile regression35 to yield
calibrated and sharp uncertainty bounds.

The calibrated uncertainty estimates based on BiLSTM ensemble
predictions are recorded for each CFP at each crack growth step. As the
crack grows in increments, the cumulative uncertainty (CU) at any given
crack growth increment, k, on the radial plane is evaluated using the fol-
lowing equation:

CUk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk
i

CI2i

vuut ; ð1Þ

where i is the crack growth increment relative to the most recent physics-
based representation of the crack.

Data availability
Themicrostructural dataset used to generate the physics-based simulations
for training data are reported in our previous work23 and are available from
the corresponding author upon request.

Code availability
All non-commercial codes to reproduce the findings of this study are
available from the corresponding author upon reasonable request.
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