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Machine-learning-accelerated
mechanistic exploration of interface
modification in lithiummetal anode
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Although the electrode-electrolyte interface is a crucial electrochemical region, the comprehensive
understanding of interface reactions is limited by the time and space scales of experimental tools.
Theoretical simulations with this delicate interface also remain one of the most significant challenges
for atomistic modeling, particularly for the stable long-timescale simulation of the interface. Here we
introduce a novel scheme, hybrid ab initio molecular dynamics combined with machine learning
potential (HAML), to accelerate the modeling of electrode-electrolyte interface reactions. We
demonstrate its effectiveness in modeling the interfaces of Li metal with both liquid and solid-state
electrolytes, capturing critical processes over extended time scales. Furthermore,we reveal the role of
interface reaction kinetics in interface regulation through HAML simulations, combined with the
similarity analysis method. It is demonstrated that element (Se, F, O) doping in the Li6PS5Cl system is
an effective strategy for enhancing interface reaction kinetics, facilitating the formation of a more
stable interface protective layer faster at room temperature. Moreover, moderate structural instability
can positively contribute to interface stabilization. HAML offers a promising approach for addressing
the challenge of designing stable interfaces while reducing computational costs. This work provides
valuable insights for advancing the understanding and optimization of interface behaviors in Li metal
batteries.

The electrode-electrolyte interface is a critical regionwhere various physical
and chemical processes occur, encompassing activities from energy con-
version and storage to electrochemistry1–3. Li metal is widely regarded as an
ideal anode material for next-generation secondary batteries due to its
extremely lowelectrochemical potential (−3.04 Vvs. the standardhydrogen
electrode) and ultrahigh theoretical capacity (3860mAh g−1)4–7. However,
the commercial applicationof theLimetal anode remains challengingdue to
several key issues, including uncontrollable Li dendrite growth, irreversible
interface reactions, andmechanical instability of solid-electrolyte interphase
(SEI)7,8. These issues are closely tied to the interface between the Li metal
anode and liquid or solid-state electrolytes. The complexity of these chal-
lenges stems from the dynamic nature of the interface, which is further
complicated by the nanoscale dimensions of the involved reactions, as well
as the complex physicochemical interactions that occur. For instance, ele-
ment doping is commonly used to improve the lithium-ion conductivity of
solid-state electrolytes (SSEs). Furthermore, element doping has also been

shown to modify the interface properties such as the stability of the Li|SSE
interface, which in turn affects the overall cycling performance of the
battery9,10. However, the universal principles governing the dynamic evo-
lution of the interface after element doping remain unclear.

Experimental characterizations of the interface reactions remain
challenging due to their nanoscale dimensions, dynamic nature, and the
interplay ofmultiple physicochemical processes11,12. Theoretical simulations
have emerged as indispensable tools for investigating the mechanisms
governing interface reactions, potentially serving as realistic in situ char-
acterization techniques11,13,14. Therefore, efficiently modeling these complex
interface reactions is crucial for the development of a safe and stable Limetal
anode. There are several approaches to model interface reactions on the Li
metal anode.Ab initiomolecular dynamics (AIMD) simulations, known for
accurately describing atomic interactions, have been utilized to explore the
microscopic intricacies of the interface between Limetal and electrolyte15–18.
Nevertheless, the accessible space and time scales of simulations are
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constrained by the high computational cost19. Conversely, molecular
dynamics (MD) simulations serve as an ideal tool for investigating dynamic
processes at a higher speed.However,MDsimulations are oftenhinderedby
the limited availability and accuracy of classical force fields, which rely on
physical approximations20,21. In recent years, artificial intelligence technol-
ogies have become increasingly mature22. As an effective tool, machine
learning potential (MLP) has significantly enhanced the atomic-scale
understanding ofmechanisms behindmanyphysical phenomena20,23,24. The
MLP method has demonstrated its potential as a promising alternative,
combining speed and accuracy. It has been implemented in battery systems,
such as Li metal systems25,26, solid-state electrolytes,27,28 and liquid
electrolytes29. However, the challenges still remain in sampling the vast
configuration space and ensuring that MLP is trained on a sufficiently
diverse dataset to maintain its reliability in complex simulations, such as
distribution shift, particularly for the electrode-electrolyte interface
reactions30–33.

The active learning (AL) strategy has been proposed as an effective
sampling method, significantly advancing the development of MLP,
throughapproaches suchas on-the-flyAL34, uncertainty-drivendynamics,35

and hyperactive learning36. However, its application to interface reactions
presents several challenges31,32. Interface reactions require the simultaneous
exploration of the chemical diversity and non-equilibrium thermodynamic
pathways, such as reaction intermediates and ion migration3,37. However,
AL strategies often prioritize the exploration of high-energy or high-
variance regions, which do not necessarily align with the actual reaction
pathway, thereby introducing sampling bias38,39. Additionally, during
interface reactions, the continuous evolution of atomic configurations shifts
the distribution of training data away from the actual reaction pathway40,41.
Although adequate sampling can partially alleviate this problem, it struggles
to adapt to the abrupt structural changes in non-equilibrium processes and
leads to increased computational costs. The key contradiction lies in the
conflict between AL’s strategy of exploring unknown atomic structures and
the need to focus on key reaction pathways in interface reactions, leading to
inefficient sampling41. On the other hand, electrode-electrolyte interfaces
involve multi-element doping, solvation effects, and charge transfer,
resulting in a highly complex configuration space3. The sampling density of
AL often falls short of requirements and does not sufficiently cover enough
high-energy transition states or extreme configurations, leading to incom-
plete local fitting of the potential energy surface. This may lead to instability
in simulations and ultimately cause simulation collapse40–42. Addressing
these challenges requires refining AL strategies to focus on targeted sam-
pling aligned with interface reaction mechanisms and critical
configurations.

Herein, we introduce a hybrid framework that combines AIMD and
MLP tomodel the electrode-electrolyte interface. The innovation ofHAML

lies in its ability to guide reaction pathways in situ, with the coupled AIMD
steering the MLP toward physically relevant configurations. This archi-
tecture enables HAML to achieve stable long-timescale simulations of
interface reactions, addressing the distribution shift challenge inMLPwhen
dealing with complex interface configurations. HAML significantly
enhances efficiency and streamlines the simulation process. We applied the
method to model interface reactions between Li metal and both liquid
electrolytes and solid-state electrolytes, demonstrating its high accuracy and
efficiency in capturing key reaction processes and products over extended
time scales. Furthermore, we highlight the role of element doping in
modifying the interface properties and improving the cycling stability of the
Limetal anode. Similarity analysis was employed to assess the severity of the
interface reaction, revealing that the changes in the interface reaction
kinetics are the essential reason for interfacemodification. These efforts will
deepen the understanding of the Li metal anode interface and facilitate the
design of more stable electrode-electrolyte interfaces for safer Li metal
batteries.

Results
HybridAIMD-MLPmethod for addressingchallenges in interface
modeling
Several challenges exist in modeling electrode-electrolyte interfaces due to
the inherent complexity of the system, as illustrated in Fig. 1a, b. The
primary challenges arise from distribution shift, inefficient sampling of
interface configurations, and direction bias. These may result in unrealistic
interface behaviors, ultimately leading to the collapse of MD simulations42.
To address these challenges, we propose a hybrid approach that combines
AIMD with MLP, termed HAML, which is primarily inspired by the
architecture of HAIR43. The workflow of HAML, as illustrated in Fig. 1c,
consists of several steps including geometry optimization, AIMD, MLP
training, andMLP-driven molecular dynamics (MLP-MD). The essence of
HAML lies in the iterative cycles between AIMD,MLP training, andMLP-
MD. In each cycle, the final configuration from AIMD serves as the initial
configuration for MLP-MD, while the final configuration from MLP-MD
becomes the initial configuration forAIMD.This iterative process continues
until the predefined simulation time or number of cycles is reached.

In this method, the purposes of AIMD are to provide training data for
subsequent MLP training and enhance the accuracy of critical steps in the
reaction process. The role of MLP-MD is to accelerate the reaction process,
with its main focus on ensuring the reliability of the MLP-MD simulations.
To ensure reliability,we adopt theMaxvol algorithmused inmoment tensor
potential (MTP)44,45, which monitors the reliability of MLP predictions
during MLP-MD simulations to determine whether the MLP-MD should
be interrupted. During MLP-MD, the extrapolation grade, denoted as γ, is
computed for each assessed configuration. Configurations well-represented

Fig. 1 | Schematic of the HAML method.
a Schematic illustrating the challenges in under-
standing the interfaces between Li metal anode and
liquid or solid-state electrolytes. b Schematic
depicting the challenges in modeling these inter-
faces. c Schematic of the HAML, the workflow
comprises geometry optimization as well as the
iterative cycle of AIMD, MLP training, and
MLP-MD.
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in the training dataset, and thus likely well described byMTP, exhibit a low
value of γ. When γ exceeds a predefined threshold γbreak, the MLP-MD
simulation is interrupted to prevent unreasonable configurations and
reactions. This treatment ensures the accuracy and reliability of the HAML
approach.

The key innovation of HAML lies in its ability to guide the reaction
pathway in situ, with AIMD steering the MLP toward physically relevant
configurations. Therefore, HAML offers accuracy similar to that of AIMD
while significantly improving efficiency. Compared to pure MLP/AL,
HAML eliminates the need for repeated exploration of the configuration
space, significantly enhancing efficiency. Moreover, it can conveniently
predict the interface evolution through a single simulation. Thus, HAML
provides a new opportunity to achieve efficient in situ observation of
interface reactions while ensuring high accuracy.

Demonstration of the advancements of the HAMLmethod
In this section, we demonstrate the advantages, accuracy, and efficiency of
the HAML through its application to interface reactions between Li metal
and both liquid and solid-state electrolytes. The LiFSI, DMEmixed solution
system, the Li6PS5Cl (LPSC) system, and their element-doped systemswere
selected as research subjects. The initial structures are shown in Supple-
mentary Figs.1 and 2. Tohighlight the advantages of theHAMLmethod,we
compared the computational time required for these simulations. We
recorded the total CPU time for HAML and AIMD in each simulation
(Supplementary Tables 1–5). For comparison, we further calculated the
average time used by HAML and AIMD and plotted the acceleration ratio
curve. As shown in Fig. 2, the real-time computational cost relative to the
simulation time was reduced to 0.558 h ps−1 compared to the AIMD
simulation cost of 7.398 h ps−1 for the interface between Li metal and LiFSI,
DMEmixed solution system. For the interfaces between Li metal and LPSC
system as well as their element-doped variants (LPSC_Se, LPSC_F,
LPSC_O), the real-time computational cost relative to the simulation time
was reduced to 0.13~0.16 h ps−1 compared to the AIMD simulation cost of
3.29~4.79 h ps−1. The results indicate that HAML achieved a speedup of
more than 10 times compared to AIMD for the Li metal and liquid elec-
trolyte system, while for the solid-state electrolyte system, a speedup of over
20 times is achieved. The accelerationperformance ofHAMLsimulations in
these interfaces demonstrates the generality of the HAML method. Addi-
tionally, the temperature stability of AIMD and MLP-MD during HAML
simulations shows smooth transitions between the cycles, indicating that the
HAML simulations are continuous and smooth (Supplementary Figs. 3–7).

As an example, we demonstrate the application ofHAML tomodel the
interface reactions between Li metal and LiFSI, DME mixed solution. We
conducted 90 cycles of HAML, extending the reaction time to 420 ps (Fig.
3a), with the NVT canonical ensemble at 300 K. Figure 3b, c presents the
trajectory snapshots at 12 ps and 420 ps, respectively. The results show that
while some decomposition of the salt occurs at 12 ps, it is incomplete, and
many Li atoms at the bottom have not yet participated in the reaction. In
contrast, at the extended timescale of 420 ps, the system undergoes a more
complete reaction. Combining the radial distribution functions (Fig. 3d–f),
the deep reaction products of LiFSI, such as Li2S and Li3N, are observed at
420 ps. The complete product statistics and comparison are listed in Sup-
plementary Table 6. These products have been observed in previous
experimental studies46–48. The results confirm the accuracy and efficiency of
HAML. Furthermore, they emphasize the necessity of long-timescale
simulations for studying the interface.

These results demonstrate that HAML has the potential to become a
comprehensive framework that can achieve stable long-timescale simula-
tions of interface reactions and efficiently predict the interface evolution in
various scenarios. This would be essential for optimizing interface proper-
ties and the ultimate battery performance in practical applications.

Interface reaction kinetics for promoting interface stability
SSEshavebeen extensively studied as key componentsof solid-state Limetal
batteries due to their enhanced safety and energy density. Among them,
LPSC is a widely used SSE, owing to its high ionic conductivity
(~10−2 S cm−1 at room temperature) and cost-effectiveness49–51. However,
the cycling performance of LPSC in Li metal batteries is limited due to
interface side reactions,which can lead to an increase in interfacial resistance
and poor electrochemical performance51–54. The detailed and accurate
micro-mechanism of these interface reactions remains unclear, primarily
due to the lack of characterization tools. Consequently, AIMD simulations
have been employed to investigate the dynamic reaction mechanism at the
interface between Li metal and SSEs55,56. However, AIMD simulations are
computationally expensive and unsuitable for long-term simulations. To
address this limitation, we apply the proposedHAMLmethod to investigate
the reactions at the interface between Li metal and LPSC.

We constructed a Li|LPSC interface model consisting of 112 atoms
with a mismatch rate of 3.9%. The detailed construction of the model is
described in the SupplementaryNote 1. Following theHAML simulation at
300 K, completed528 psHAMLsimulationwithin 20 cycles (Fig. 4a), theLi|
LPSC interface underwent significant reactions. As shown in Fig. 4b–d, the
structure of the LPSC layer near the Li metal slab exhibited continuous
distortion and decomposition, leading to the formation of products. The
PS₄²⁻ polyhedron underwent significant breakdown, as evidenced by the
disappearance of P–S bonds and the P–S peak at approximately 2 Å after
528 ps (Fig. 4e, f), which alignswithXPS characterizationfindings that show
the instability of P–S bonds57. The number of Li–Cl bonds and Li–S bonds is
also reduced after 528 ps simulation as a result of the decomposition of
LPSC. As shown in Supplementary Fig. 8, the newly formed Li–Cl peak at
around 4.5 Å indicates the presence of a Li–Cl interaction in the second
coordination sphere, which corresponds to the LiCl product at the interface.
Additionally, the increase in Li–P bond number after the reaction corre-
sponds to the formation of Li3P. The observed final products include Li3P,
Li2S, and LiCl, consistent with previous computational and experimental
studies55–58. Furthermore, we extended the simulation time from 528 ps to
1 ns but observed no obvious change in the interface structure (Supple-
mentary Fig. 9). This phenomenon is similar to former computational
researches55,58,59, which indicates the uncomplete reaction between LPSC
and Li and the failure in constructing a stable SEI to avoid side reactions,
thus make the interface intrinsically unstable when cycling at high rate. In
addition, we calculated the ionic conductivity of LPSC (Supplementary Fig.
10), providing quantitative validation for the accuracy of the HAML
method.

One of themodificationmethods to modify the interfacial structure of
Li|LPSC is to introduce doping elements. Among the doping elements, Se

Fig. 2 | Comparison of HAML and AIMD in terms of the average time used and
acceleration ratio. The tested systems include interface between Li metal and LiFSI,
DMEmixed solution (Li|LiFSI,DME), interfaces between Li metal and LPSC system
(Li|LPSC), Se-doped system (Li|LPSC_Se), F-doped system (Li|LPSC_F), O-doped
system (Li|LPSC_O).
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Fig. 3 | Demonstration of HAML for simulation of Li metal and LiFSI, DME
mixed solution interface system. a The relationship between HAML cycles and
simulation time. The snapshots of HAML simulations for Li metal and LiFSI, DME

mixed solution interface system after 12 ps (b) and after 420 ps (c). The comparison
of radial distribution functions for Li–F (d), Li–O (e), and Li–S (f) after 12 ps
and 420 ps.

Fig. 4 | HAML simulation of the interface between
Li metal and Li6PS5Cl system. a The relationship
between HAML cycles and simulation time.
b–d The snapshots during the simulation process.
e The comparison of bond numbers for P–S, Li–P,
Li–S, and Li–Cl bonds at initial time and after 528 ps.
fThe comparison of radial distribution functions for
P–S at initial time and after 528 ps.
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has been found to improve interface stability and ionic conductivity inLPSC
SSEs9,10, while F60 and O61 are also recognized as beneficial doping elements
for protecting the interface. Thus, we used the HAML method to system-
atically study the interfaces between Li metal and three element-doped
LPSC electrolytes. The HAML simulation process for these doped systems,
including detailed structural evolution and corresponding RDFs, is illu-
strated in Supplementary Figs. 11–13.

The pristine LPSC remains partially unreacted after 280 ps of simu-
lations (Fig. 5a), while its doped variants, LPSC_Se, LPSC_F, and LPSC_O,
exhibit enhanced interface reactivity at room temperature (Fig. 5b–d). This
difference in reactivity is quantitatively corroborated by similarity analysis
in Fig. 5e. The LPSC demonstrates the highest structural fidelity (>93%)
among all systems, indicating that the LPSC interface structure remains
relatively stable in theHAML simulation. This stability aligns with previous
discussions. In contrast, the doped interfaces undergo significant structural
evolutions throughout the simulation. The structural variations during
HAML simulation reveal that dopant incorporation (Se, F, O) introduces
structural perturbations that destabilize the native equilibrium configura-
tion, which further promote progressive electrolyte decompositions. This
inherent instability in the interface structure contributes to rapid reaction
kinetics during the early stages of SEI formation at the interfaces of Li metal
and LPSC_Se, LPSC_F, and LPSC_O. Despite the disappearance of P–S
bonds across all LPSC interfaces indicating the breakdown of the PS₄²⁻
polyhedron, the doped interface structures exhibit significant variations in
bonding configurations. As shown in Fig. 5f, the doped systems (LPSC_Se,
LPSC_F, and LPSC_O) exhibit a more pronounced increase in Li–S, Li–P,
and Li–Cl bond formations compared to the pristine LPSC after 280 ps of
HAML simulation. Additionally, the F-doped interface forms stable Li–F
bonds, contributing to the formation of a robust SEI. Besides, we analyzed
the time-dependent evolution of bond formation to compare interfacial
kinetics between doped and undoped systems. As shown in Supplementary
Figs. 14 and 15, dopants accelerate interfacial reactions, leading to faster
bond-breaking and associated processes.

During the HAML simulation of Li|LPSC_Se interface for 566 ps at
300 K (SupplementaryFig. 11a), theLi atoms inLi layerswere foundactively
diffused into Li6PS4.75Se0.25Cl layer and reacted obviously, forming Li2S,
LiCl, Li3P, and Li4Se (Supplementary Fig. 11b–d), which is further
demonstrated by the radial distribution functions in Supplementary Fig.
11e–h. The reactivity is more obvious compared to Li6PS5Cl|Li, and is
similar to previous AIMD simulations, indicating that the dopant Se
accelerated the reaction kinetics and helped to form ordered SEI62. In detail,
Se promoted the diffusion of P and Cl into Li layers and the formation of
relatively stable SEI containing more Li3P than in Li|LPSC. The rapid
degradation of PS₄²⁻ polyhedron, diffusion of P atoms into Li layers, and
formation of Li3P was also observed in F-doped and O-doped interfaces
(Supplementary Figs. 12 and 13). These metastable doped configurations
facilitate rapid interface reaction kinetics during the initial cycling stages.
However, reactivity at the early stages of SEI formation may benefit the
overall interfacial stability. The Se-doped, F-doped, andO-doped LPSC lead
to the establishmentofpassive SEI as protection layers at the SSE|Li interface
and ensure better electrochemical performance60,61,63.

In addition to the metastable doped structures, the unstable crystal
facets at the interface region also facilitate the formation of a relatively stable
protective layer. An AIMD study by Golov et al. revealed distinct coordi-
nation environments across different crystallographic orientations58. The
Li(110)|LPSC(110) and Li(111)|LPSC(111) interfaces exhibit higher inter-
facial degradation rates compared to Li(100)|LPSC(100) and Li(221)|
LPSC(100)models. Specifically, the LPSC(111) facet exhibits higher surface
energy than other orientations64, and this observed variation in degradation
behavior implies that interfacial degradation rates correlate with surface
stability anisotropy. Furthermore, the Li(111)|LPSC(111) interface exhibits
a reduced Li-ion migration barrier, facilitating enhanced ionic diffusion
across the interface and thereby lowering interfacial resistance. Interestingly,
despite LPSC’s thermodynamic instability under standard conditions,
experimental studies have successfully used it as a protective interlayer
between high-entropy Li2.75Y0.16Er0.16Yb0.16In0.25Zr0.25Cl6 and Li-In

Fig. 5 | Comparison of interface reactions in four researched systems (Li|LPSC,
Li|LPSC_Se, Li|LPSC_F, and Li|LPSC_O). Atomic configurations of Li|LPSC (a),
Li|LPSC_Se (b), Li|LPSC_F (c), and Li|LPSC_O (d) interfaces after 280 ps HAML
simulations. e The quantitative comparison of interface structure similarities

between initial (interfaces before relaxation and AIMD simulation) and post-
simulation interface configurations (after 280 ps). f The variations in bond numbers
at the interfaces during the 280 ps HAML simulations.
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anodes65. This implementation indicates that reactivity at the LPSC|Li-In
interface could contribute to stable solid-electrolyte interphase (SEI) for-
mation, ultimately enhancing lithium battery cycling performance.

Discussion
In summary, thisworkpresents anovel approach that combinesAIMDwith
MLP, enabling accurate and efficient modeling of electrode-electrolyte
interfaces. By applying HAML to representative systems involving both
liquid and solid-state electrolytes reactingwithLimetal,wedemonstrated its
advantages in both accuracy and computational efficiency. HAML effec-
tively addresses key challenges in interface modeling and enables stable
long-timescale simulation of interface reactions. For exploring interface
reactions, an accurate MD simulation is typically sufficient to capture the
reaction process and products, while AL may introduce unnecessary
complexity.AL strategies still face challenges in exploringunknownreaction
configurations and often lead to excessive computational costs. In contrast,
HAML is an in situ approach, leveraging AIMD simulations to guide the
reaction pathway accurately. This approach eliminates redundant config-
uration space exploration, allowing researchers to concentrate on key sci-
entificquestionswithin a single simulation.Webelieve thekeyadvancement
of HAML lies in its ability to achieve the desired outcome, regardless of the
complexity of the interface reactions,with relatively low cost and effort. This
is especially crucial for future high-throughput screening of electrolyte
systems or doping elements that enhance interface stability, an area often
neglected in previous work due to its high cost. High-throughput screening
often involvesmultiple elements and systems,making it extremely complex
and time-consuming when relying on traditional methods. Thus, HAML is
well-positioned as a comprehensive framework for efficiently predicting
interface evolution across diverse scenarios, playing a crucial role in opti-
mizing interface properties and enhancing overall battery performance in
practical applications.

Moreover, we employed HAML to gain deeper insights into the com-
plex mechanisms governing interface reactions in Li metal anode. For liquid
electrolytes, HAML accurately captured the dynamic evolution of SEI
components with high temporal and spatial resolution. For solid-state elec-
trolytes,HAML revealed the formation and stabilization of interphase layers,
providing insights into their compatibility with Li metal. Specifically, for the
chloride solid-state electrolyte LPSC, we introduced dopants such as Se, F,
and O to modify the interfacial structure and reactivity between the elec-
trolyte and Li metal anode. The intrinsic instability of the doped LPSC
structure accelerates interface reaction kinetics and promotes the formation
of the interface protection layer, thereby improving the overall stability of the
full-cell system. In conjunction with previous studies58,64, unstable crystal
facets at the interface can facilitate the formation of a more stable protective
layer, with degradation behavior varying across different crystallographic
orientations due to surface stability anisotropy. Thus, introducing moderate
lattice instability could serve as an effective strategy for modulating interface
reaction kinetics, generating the stable SEI layer, and mitigating further
degradation. These findings not only deepen our understanding of interface
processes but alsopave theway for the rational designof strategies to enhance
the stability and performance of next-generation energy storage systems.

Despite thepromising capabilities ofHAML, several considerations are
crucial for ensuring its reliable application.Among these, careful selectionof
key parameters, such as the maximum level levmax and the break threshold
γbreak of MTP, is essential for ensuring the accuracy and robustness of
HAML. Proper tuning of these parameters is essential before applying
HAML in practice. In particular, the break threshold may need to be set as
small as possible for certain systems tomaintain simulation accuracy. In this
work, we primarily used the MTP as an example to demonstrate the
effectiveness of the HAML framework. It is acknowledged that HAML still
has certain limitations. In future research, HAML could be further refined
and expanded for broader applications. By coupling alternative potential
models, with magnetic or charge information, into the framework while
retaining the uncertainty-based thresholding scheme, the performance and
applicability of HAML could be further enhanced. Another promising

direction is integrating HAML with universal large atomic models, poten-
tially enhancing the transferability among a wide range of systems and
eliminating the need for extensive MLP training. This advancement would
significantly enhance the efficiency and adaptability of HAML, enabling its
rapid application to novel chemistries or interfaces. As for potential appli-
cations,HAMLsimulations can be leveraged for high-throughput screening
to identifymaterials or doping elements from extensive candidate databases
that could enhance interface properties.

Methods
AIMD
The core ofHAML lies in the iterative cycles betweenAIMD,MLP training,
andMLP-MD.All theAIMDsimulationswere performed by theVienna ab
initio simulation package (VASP)66,67. The generalized gradient approx-
imation (GGA) with a parametrized exchange-correlation function
according to Perdew, Burke, and Ernzerhof (PBE) was used in the
calculations68. The valence electron wave functions were expanded in the
plane wave basis sets, and the projector augmented wave (PAW) method
was used to describe the core-electron interactions69. The Grimme’s D3
method was used to account for dispersion effects70. The energy cutoff for
these simulations was 520 eV, and a 1 × 1 × 1 k-point mesh was used. The
NVT ensemble was used in all the simulations, and the Nose–Hoover71

thermostat was applied for temperature control. A timestep of 1 fs was used
in all AIMD simulations.

MLP
Weadopted theMTP44,45 as theMLPmodule in theHAML framework. The
rotationally covariant tensors are as follows,

Mμ;vðniÞ ¼
X

j

f μðjrijj; zi; zjÞ rij � � � � � rij|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
v times

where f μðjrijj; zi; zjÞ is the radial function

f μ jrijj; zi; zj
� �

¼
X

k

c kð Þ
μ;zi;zj

T kð ÞðjrijjÞðjrijj � rcÞ2

T kð ÞðjrijjÞ are the Chebyshev polynomials, k is the degree of poly-
nomial, c kð Þ

μ;zi;zj
is the radial coefficients, and rc is the cutoff radius. rij �

� � � � rij is a tensor of rank ν encoding angular information.
The basis functions BαðniÞ are formulated by contracting the moment

tensors Mμ;v to a scalar. The linear regression model is built for the con-
tracted basis functions BαðniÞ and the atomic energy VðniÞ:

V ni
� � ¼

X

α

CαBαðniÞ

where Cα is the linear coefficient.
For MLP training, parameters levmax was set as 12, and the rc was

chosen to be 5.0 in all cases. These settings are designed to balance accuracy
and efficiency. For MLP-MD simulations, the break threshold γbreak was
selected as 10 and 20 in the systems of Limetal and solid-state electrolytes as
well as Li metal and liquid electrolytes, respectively. All the MLP-MD
simulations were conducted using the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS)72. The NVT ensemble was used in all
the simulations, and the temperaturewas controlledusing theNose–Hoover
algorisms71. A timestep of 0.5 fs was used in all MLP-MD simulations. All
the configurations were visualized using the VESTA software73.

Data availability
The authors declare that all data supporting the findings of this study are
available from the corresponding author upon reasonable request.

Received: 21 April 2025; Accepted: 19 July 2025;

https://doi.org/10.1038/s41524-025-01747-7 Article

npj Computational Materials |          (2025) 11:245 6

www.nature.com/npjcompumats


References
1. Seh, Z.W. et al. Combining theory and experiment in electrocatalysis:

Insights into materials design. Science 355, eaad4998 (2017).
2. Salanne, M. et al. Efficient storage mechanisms for building better

supercapacitors. Nat. Energy 1, 1–10 (2016).
3. Scalfi, L., Salanne, M. & Rotenberg, B. Molecular simulation of

electrode-solution interfaces. Annu. Rev. Phys. Chem. 72, 189–212
(2021).

4. Tarascon, J.-M. & Armand, M. Issues and challenges facing
rechargeable lithium batteries. Nature 414, 359–367 (2001).

5. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and
challenges in enabling the lithiummetal electrode for high-energy and
low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

6. Liu, J. et al. Pathways for practical high-energy long-cycling lithium
metal batteries. Nat. Energy 4, 180–186 (2019).

7. Liu, B., Zhang, J.-G. & Xu,W. Advancing lithiummetal batteries. Joule
2, 833–845 (2018).

8. Qian, J. et al. High rate and stable cycling of lithiummetal anode.Nat.
Commun. 6, 6362 (2015).

9. Epp, V., Gün, Ö, Deiseroth, H.-J. & Wilkening, M. Highly mobile ions:
low-temperature NMR directly probes extremely fast Li+ hopping in
argyrodite-type Li6PS5. Br. J. Phys. Chem. Lett. 4, 2118–2123 (2013).

10. Chen, H. M., Maohua, C. & Adams, S. Stability and ionic mobility in
argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem.
Phys. 17, 16494–16506 (2015).

11. Xu, Y. et al. Promoting mechanistic understanding of lithium deposition
and solid-electrolyte interphase (SEI) formation using advanced
characterization and simulation methods: recent progress, limitations,
and future perspectives. Adv. Energy Mater. 12, 2200398 (2022).

12. Wagner-Henke, J. et al. Knowledge-driven design of solid-electrolyte
interphases on lithium metal via multiscale modelling. Nat. Commun.
14, 6823 (2023).

13. Yao, N., Chen, X., Fu, Z.-H. & Zhang, Q. Applying classical, ab initio,
and machine-learning molecular dynamics simulations to the liquid
electrolyte for rechargeable batteries.Chem. Rev. 122, 10970–11021
(2022).

14. Qi, J., Ko, T.W.,Wood, B. C., Pham, T. A. &Ong, S. P. Robust training
of machine learning interatomic potentials with dimensionality
reduction and stratified sampling. npj Comput. Mater. 10, 43 (2024).

15. Young, J., Kulick, P.M., Juran, T. R. & Smeu,M. Comparative study of
ethylene carbonate-based electrolyte decomposition at Li, Ca, and Al
anode interfaces. ACS Appl. Energy Mater. 2, 1676–1684 (2019).

16. Leung, K. Electronic structure modeling of electrochemical reactions
at electrode/electrolyte interfaces in lithium ion batteries. J. Phys.
Chem. C117, 1539–1547 (2013).

17. Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Effects of high
and low salt concentration in electrolytes at lithium–metal anode
surfaces. J. Phys. Chem. C121, 182–194 (2017).

18. Camacho-Forero, L. E. &Balbuena, P.B. Effects of charged interfaces
on electrolyte decomposition at the lithium metal anode. J. Power
Sources 472, 228449 (2020).

19. Behler, J. Perspective. Machine learning potentials for atomistic
simulations. J. Chem. Phys. 145, 170901 (2016).

20. Mishin, Y. Machine-learning interatomic potentials for materials
science. Acta Mater. 214, 116980 (2021).

21. Zuo, Y. et al. Performance and cost assessment of machine learning
interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020).

22. Liu, Y. et al. Data quantity governance for machine learning in
materials science. Natl. Sci. Rev. 10, nwad125 (2023).

23. Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic
potentials as emerging tools for materials science. Adv. Mater. 31,
1902765 (2019).

24. Qi, J. et al. Machine learning moment tensor potential for modeling
dislocation and fracture in L1 0-TiAl and D0 19-Ti 3 Al alloys. Phys.
Rev. Mater. 7, 103602 (2023).

25. Lai, G. et al. The mechanism of external pressure suppressing
dendrites growth in Li metal batteries. J. Energy Chem. 79, 489–494
(2023).

26. Lai, G. et al. The mechanism of Li deposition on the Cu substrates in
the anode-free Li metal batteries. Small 19, 2205416 (2023).

27. Lee, T. et al. Atomic-scale origin of the low grain-boundary resistance
inperovskite solid electrolyte Li0. 375Sr0. 4375Ta0. 75Zr0. 25O3.Nat.
Commun. 14, 1940 (2023).

28. Qi, J. et al. Bridging thegapbetweensimulatedandexperimental ionic
conductivities in lithium superionic conductors.Mater. Today Phys.
21, 100463 (2021).

29. Gong, S. et al. A predictivemachine learning force-field framework for
liquid electrolyte development. Nature Machine Intelligence 7,
534–552 (2025).

30. Holekevi Chandrappa, M. L., Qi, J., Chen, C., Banerjee, S. & Ong, S. P.
Thermodynamics and kinetics of the cathode–electrolyte interface in all-
solid-state Li–S batteries. J. Am. Chem. Soc. 144, 18009–18022 (2022).

31. Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges
for machine learning interatomic potentials. Nat. Comput. Sci. 3,
998–1000 (2023).

32. Liu, Y. & Mo, Y. Learning frommodels: high-dimensional analyses on
the performance of machine learning interatomic potentials. npj
Comput. Mater. 10, 159 (2024).

33. Sundararaman, R. & Schwarz, K. Evaluating continuum solvation
models for the electrode-electrolyte interface: Challenges and
strategies for improvement. J. Chem. Phys. 146, 084111 (2017).

34. Vandermause, J. et al. On-the-fly active learning of interpretable
Bayesian force fields for atomistic rare events. npj Comput. Mater. 6,
20 (2020).

35. Kulichenko, M. et al. Uncertainty-driven dynamics for active learning
of interatomic potentials. Nat. Comput. Sci. 3, 230–239 (2023).

36. van der Oord, C., Sachs, M., Kovács, D. P., Ortner, C. & Csányi, G.
Hyperactive learning for data-driven interatomic potentials. npj
Comput. Mater. 9, 168 (2023).

37. Yang, Y., Zhang, S., Ranasinghe, K. D., Isayev, O. & Roitberg, A. E.
Machine learning of reactive potentials. Annu. Rev. Phys. Chem. 75,
371–395 (2024).

38. Tharwat, A. & Schenck, W. A survey on active learning: State-of-the-
art, practical challengesand researchdirections.Mathematics11, 820
(2023).

39. Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-
learned potentials for next-generation matter simulations.Nat. Mater.
20, 750–761 (2021).

40. Fu, X. et al. Forces are not enough: Benchmark and critical evaluation
for machine learning force fields with molecular simulations. Preprint
at https://arxiv.org/abs/2210.07237 (2022).

41. Cui, T. et al. Online test-time adaptation for better generalization of
interatomic potentials to out-of-distribution data. Nat. Commun. 16,
1891 (2025).

42. Xu, L., Shao, W., Jin, H. & Wang, Q. Data Efficient and stability
indicated sampling for developing reactivemachine learning potential
to achieve ultralong simulation in lithium-metal batteries. J. Phys.
Chem. C127, 24106–24117 (2023).

43. Liu, Y. et al. Effects of high and low salt concentrations in electrolytes
at lithium–metal anode surfaces using DFT-ReaxFF hybrid molecular
dynamics method. J. Phys. Chem. Lett. 12, 2922–2929 (2021).

44. Shapeev, A. V. Moment tensor potentials: a class of systematically
improvable interatomic potentials.Multiscale Model. Simul. 14,
1153–1173 (2016).

45. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The
MLIP package: moment tensor potentials with MPI and active
learning.Mach. Learn. Sci. Technol. 2, 025002 (2020).

46. Wan, C. et al. Multinuclear NMRstudy of the solid electrolyte interface
formed in lithium metal batteries. ACS Appl. Mater. Interfaces 9,
14741–14748 (2017).

https://doi.org/10.1038/s41524-025-01747-7 Article

npj Computational Materials |          (2025) 11:245 7

https://arxiv.org/abs/2210.07237
https://arxiv.org/abs/2210.07237
www.nature.com/npjcompumats


47. Chen, Y. et al. Origin of dendrite-free lithium deposition in
concentrated electrolytes. Nat. Commun. 14, 2655 (2023).

48. Zhang, H., Shen, C., Huang, Y. & Liu, Z. Spontaneously formation of
SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME
electrolytes. Appl. Surf. Sci. 537, 147983 (2021).

49. Deiseroth, H. J. et al. Li6PS5X: a class of crystalline Li-rich solids with
an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758
(2008).

50. Rao, R. P. & Adams, S. Studies of lithium argyrodite solid electrolytes for
all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011).

51. Deng, Z., Zhu, Z., Chu, I.-H. & Ong, S. P. Data-driven first-principles
methods for the study and design of alkali superionic conductors.
Chem. Mater. 29, 281–288 (2016).

52. Holekevi Chandrappa,M. L., Qi, J., Chen, C., Banerjee, S. &Ong, S. P.
Thermodynamics and kinetics of the cathode-electrolyte interface in
all-solid-state Li-S batteries. J. Am. Chem. Soc. 144, 18009–18022
(2022).

53. Jalem, R., Chandrappa, M. L. H., Qi, J., Tateyama, Y. & Ong, S. P.
Lithium dynamics at grain boundaries of β-Li3PS4 solid electrolyte.
Energy Adv. 2, 2029–2041 (2023).

54. Richards,W.D.,Miara, L. J.,Wang, Y., Kim, J. C. &Ceder, G. Interface
stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015).

55. Cheng, T., Merinov, B. V., Morozov, S. & Goddard, W. A. Quantum
mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-
electrolyte interface. ACS Energy Lett. 2, 1454–1459 (2017).

56. Yu,C. et al. UnravellingLi-ion transport frompicoseconds to seconds:
bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-
Ion battery. J. Am. Chem. Soc. 138, 11192–11201 (2016).

57. Wenzel,S.,Sedlmaier,S.J.,Dietrich,C.,Zeier,W.G.&Janek,J. Interfacial
reactivity and interphase growth of argyrodite solid electrolytes at lithium
metal electrodes. Solid State Ion. 318, 102–112 (2018).

58. Golov, A. & Carrasco, J. Molecular-level insight into the interfacial
reactivity and ionic conductivity of a Li-argyrodite Li6PS5Cl solid
electrolyte at bare and coated Li-metal anodes. ACS Appl. Mater.
Interfaces 13, 43734–43745 (2021).

59. Chaney, G., Golov, A., van Roekeghem, A., Carrasco, J. & Mingo, N.
Two-step growth mechanism of the solid electrolyte interphase in
argyrodyte/Li-metal contacts. ACS Appl. Mater. Interfaces 16,
24624–24630 (2024).

60. Arnold, W. et al. Synthesis of fluorine-doped lithium argyrodite solid
electrolytes for solid-state lithium metal batteries. ACS Appl. Mater.
Interfaces 14, 11483–11492 (2022).

61. Wu, M., Liu, G. & Yao, X. Oxygen doped argyrodite electrolyte for all-
solid-state lithium batteries. Appl. Phys. Lett. 121, 203904 (2022).

62. Golov, A. & Carrasco, J. Unveiling solid electrolyte interphase
formation at the molecular level: computational insights into bare Li-
metal anode and Li6PS5-xSexCl argyrodite solid electrolyte. ACS
Energy Lett. 8, 4129–4135 (2023).

63. Kim, H.-M., Subramanian, Y. & Ryu, K.-S. Improved electrochemical
and air stability performance of SeS2 doped argyrodite lithium
superionic conductors for all-solid-state lithium batteries.
Electrochim. Acta 442, 141869 (2023).

64. Camacho-Forero, L. E. & Balbuena, P. B. Elucidating interfacial
phenomena between solid-state electrolytes and the sulfur-cathode
of lithium–sulfur batteries. Chem. Mater. 32, 360–373 (2019).

65. Song, Z. et al. Promoting high-voltage stability through local lattice
distortion of halide solid electrolytes. Nat. Commun. 15, 1481 (2024).

66. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Phys. Rev. B
54, 11169–11186 (1996).

67. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy
calculations formetals and semiconductors using a plane-wavebasis
set. Comput. Mater. Sci. 6, 15–50 (1996).

68. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

69. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50,
17953–17979 (1994).

70. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132,
154104 (2010).

71. Martyna, G. J., Klein, M. L. & Tuckerman,M. Nosé–Hoover chains: the
canonical ensemble via continuous dynamics. J. Chem. Phys. 97,
2635–2643 (1992).

72. Plimpton, S. Fast parallel algorithms for short-range molecular
dynamics. J. Comput. Phys. 117, 1–19 (1995).

73. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of
crystal, volumetric and morphology data. J. Appl. Crystallogr. 44,
1272–1276 (2011).

Acknowledgements
This work was supported by the National Natural Science Foundation of
China (No. 12426301), Shenzhen Science and Technology Research Grant
(No. 20231117083459001), and AI for Science (AI4S)-Preferred Program,
Peking University, Shenzhen, China.

Author contributions
G.L. andR.Z. contributed equally to thiswork. J. Zheng andY. Z. supervised
the project. G.L. conceived the idea and designed the HAML method. G.L.
andR.Z.performed theHAMLsimulations.G.L.,R.Z.,C.F., J.Zhao,T.C.,and
Y.Z. analyzed the data and interpreted the results. J. Zheng, Y.Z., and B.X.
offered insight and guidance throughout the project. G.L. andR.Z.wrote the
manuscript. J. Zheng and Y.Z. revised the manuscript. All authors
contributed to the scientific discussion and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01747-7.

Correspondence and requests for materials should be addressed to
Yunxing Zuo, Bo Xu or Jiaxin Zheng.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41524-025-01747-7 Article

npj Computational Materials |          (2025) 11:245 8

https://doi.org/10.1038/s41524-025-01747-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjcompumats

	Machine-learning-accelerated mechanistic exploration of interface modification in lithium metal anode
	Results
	Hybrid AIMD-MLP method for addressing challenges in interface modeling
	Demonstration of the advancements of the HAML method
	Interface reaction kinetics for promoting interface stability

	Discussion
	Methods
	AIMD
	MLP

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




