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Shaping freeform nanophotonic devices
with geometric neural parameterization
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Nanophotonic freeform design has the potential to push the performance of optical components to
new limits, but there remains a challenge to effectively perform optimization while reliably enforcing
design andmanufacturing constraints. We present Neuroshaper, a framework for freeform geometric
parameterization in which nanophotonic device layouts are defined using an analytic neural network
representation. Neuroshaper serves as a qualitatively new way to perform shape optimization by
capturingmulti-scalar, freeformgeometries in anoverparameterized representation scheme, enabling
effective optimization in a smoothened, high dimensional geometric design space. We show that
Neuroshaper can enforce constraints and topology manipulation in a manner where local constraints
lead to global changes in device morphology. We further show numerically and experimentally that
Neuroshaper can apply to a diversity of nanophotonic devices. The versatility and capabilities of
Neuroshaper reflect the ability of neural representation to augment concepts in topological design.

Free space and on-chip nanophotonic systems have emerged as revolu-
tionary platforms for controlling, routing, filtering, and transducing pho-
tons using subwavelength-scale structured media1–10. The immense
versatility of these platforms largely derives from the strong relationship
between device geometry and optical response at subwavelength scales,
which enables an exponentially large design space for optical manipulation.
Traditionally, these structure-function relations have derived from the use
of simple, physically intuitive geometries in the form of nanoscale wave-
guides and resonators, together with their tailored coupling11–16. Such sim-
plifications have led to robust and scalable design rules for many classes of
photonic systems, however, these concepts also pose fundamental limita-
tions in performance and device footprint. To overcome these limits, a wide
range of freeform inverse design algorithms have been proposed that utilize
a much larger design space of possible device geometries to achieve an
objective17–20. The most advanced and computationally efficient algorithms
utilize gradients calculated using the adjoint variables method or automatic
differentiation to perform iterative optimization21–27.

A core feature of all inverse designmethodologies is the specification of
a geometric parameterization scheme that describes the device layout. The
choice of parameterization scheme is critical to reliably enforce constraints
to the device geometry, in a manner that enables reliable device manu-
facturability and electromagnetic mode engineering control, and to ensure
proper convergence of the optimization algorithm. Constraints of interest
range from feature size and curvature tolerances to specification of the
layout topology and connectivity. There are currently three primary classes
of parameterization schemes used in freeform inverse design. One is pixel-

based representations28,29, in which the device is described as an ultra-fine
grid of pixels, each with a distinctly tailored dielectric constant value. The
second is level sets30,31, in which layouts are implicitly represented as iso-
contours of scalar functions31. The third is explicit geometric
parameterization32–34, inwhich simple analytic functions are defined tomap
latent variables to constrained geometric shapes.

While these parameterization concepts have been utilized effectively in
certain design limits, each presents distinct trade-offs between optimization
capability and constraints compliance. Pixel-based methods are the most
straightforward to adapt to gradient-based optimizers such as the adjoint
variables method. However, the use of spatial filters35, density filters, and
projection methods36 to impose constraints lead to either poor fabrication
compliance or the imposition of overly restrictive constraints. Traditional
level set methods offer improved topology control, but they struggle with
multi-scale features, require careful numerical schemes to maintain
stability37, and are limited in performance by their reliance on local shape
derivatives38. Explicit parameterization schemes have the benefit of hard
coding strict design constraints in the parameterization functions them-
selves, but they are ultimately overly restrictive and suffer from limited
topology control. Qualitatively new geometric parameterization concepts
are needed to generally and robustly enforce multiple competing objectives
and constraints in the device, whilemaintaining access to the large freeform
design landscape.

In this work, we present Neuroshaper, a neural network-based
approach to freeform geometric representation that can streamline with
existing gradient-based freeform optimizers. Neuroshaper is inspired by
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recent work in computational imaging and computer graphics on neural
representations39,40 and specifically the development of multi-resolution
techniques for representing complex signals41. Unlike traditional deep
learningmodels that are trained on large datasets, Neuroshaper functions as
a differentiable geometric parameterization scheme; its neural network
parameters directly define the device geometry and are optimized using
physics-based gradients and constraint penalties. It addresses limitations
with existing parameterization schemes in photonics inmultipleways. First,
it takes advantage of the immense expressivity of neural networks paired
with learnable coordinate encoding to capture a wide range of multi-scalar
freeform shapes. Second, it is differentiable and uses network loss function
engineering and backpropagation to robustly and flexibly enforce con-
straints. Third, by capturing geometric device parameters using large
numbers of neural network weights, Neuroshaper serves as an over-
parameterized representation scheme that captures a smoothened, high-
dimensional geometric design space. In this manner, gradient-based opti-
mizers are able to more easily traverse the design space and detour around
forbidden zones when constraints are encountered (Fig. 1a). An example of
this optimization trajectory is included in Supplementary Movie 1. Fourth,
Neuroshaper captures a global representationof geometric shapes, such that
local geometric constraints map onto global modifications to the device
layout. With these collective advantages, devices designed using Neuro-
shaper exhibit better handling and enforcement of constraints, and also
similar or better performance, compared to conventionally parameterized
freeform devices.

The full framework for Neuroshaper-enabled freeform inverse design
is illustrated in Fig. 1b. Freeform layouts are produced using a novel neural
architecture that combines multi-resolution hash encoding with multilayer
perceptrons to generate continuous level set functions. These functions
undergo level set operations to produce binary or grayscale patterns suitable
for both constraint evaluation and simulation. The ability for Neuroshaper
to support multi-resolution representations enables high resolution repre-
sentations to be used for geometric constraint evaluation (M1) and low
resolution versions for electromagnetic simulations (M2). Global loss
functions accounting for feature size, curvature, and connectivity con-
straints are aggregated together with electromagnetic performance to
properly balance these different competing objectives. All aspects of the
algorithm are differentiable, enabling direct compatibility with auto-
differentiation packages on GPU hardware and efficient gradient-based
optimization of the complete system. The ’electromagnetic performance’
objective function (J(M2)) is flexible and can be tailored to various goals,
including maximizing transmission/conversion efficiency (as shown in Fig.
5),minimizing reflection, or optimizing for phase-dependent characteristics
(e.g., specific diffraction orders, wavefront shaping), provided the chosen

simulation method allows for gradient computation with respect to the
device geometry.

Results
Neuroshaper architecture
Schematics detailing the specification of nanophotonic geometries with
Neuroshaper are presented in Fig. 2 and consist of two parts, level set
encoding and level set translation to a dielectric distribution. We focus on
the encoding of level sets as an intermediary to dielectric layouts, as opposed
to the direct encoding of dielectric layouts, due to the uniquely flexible and
expressive nature of level sets in topology optimization. To specify level sets,
we propose the use of a neural network-encoded hash table description that
combines discrete feature vectors with continuous neural networks and
allows for both local and global control of the design space while main-
taining differentiability (Fig. 2a).

More specifically, we first find the nearest lattices of the input coor-
dinates (x, y) at every resolution level, representedasx1,2,3,4. In each level, the
lattice point x ismapped to an entry in the lookup table by the hash function
h(x), which stores learnable feature vectors φ. These vectors from each hash
table are then interpolated and concatenated to produce an encoded, high-
dimensional feature vector, Hφðx; yÞ, which serves as an input to a multi-
layer perceptron (MLP) that maps these features to scalar level sets. The
neural network mapping is described by the transformation N ω, where ω
are weights of the network. Overall, the collective mapping of input coor-
dinate to level set is specified by:

Fθðx; yÞ ¼ N ωðHφðx; yÞÞ ð1Þ

where θ = φ, ω captures the hash table feature parameters and neural net-
work parameters. It is important to note that this neural network serves as a
differentiable geometric representation whose parameters θ are directly
optimized based on simulation results and constraints, rather than a pre-
dictive model trained on a pre-existing dataset. These parameters are
learned using autodifferentiation and gradient-based updatingwith tailored
loss functions, which will be discussed later. Detailed mathematical
derivations and implementation specifics are provided in “Methods”
Section.

To translate the level set to a dielectric distribution (Fig. 2b), differ-
entiable operations are applied, and the Neuroshaper platform is capable of
readily generating a range of grayscale and binary dielectric representations.
To produce a grayscale dielectric structure layout, Mg(x, y), scaling and
clipping operations are used. Binary dielectric structures, Mb(x, y), are
generated using direct thresholding.

Fig. 1 | Neuroshaper overview. a Visualization of gradient-based optimization in
the high dimensional Neuroshaper parameterization space. The optimizer avoids
forbidden zones imposed by constraints to reach a suitable localminima. bOverview
of the Neuroshaper framework for nanophotonic device design. The pipeline con-
sists of: (1) Neural design representation combining sampling points with lookup

tables and multilayer perceptrons to generate continuous level set functions; (2)
Level set operations to obtain binary/grayscale patterns; (3) Multi-resolution con-
version between high (M1) and low (M2) resolutions; (4) Design evaluation based on
geometric constraints and electromagnetic performance; (5) Parameter gradient
computation via backpropagation.
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Multi-resolution hash encoding addresses fundamental limitations
posed by traditional level set methods. The hash encoding effectively acts as
an adaptive grid, automatically allocatingmore representational capacity to
regions with important features through collision-based feature sharing. As
such,we achieve natural scale separationwhilemaintaining differentiability.
Our encoding concept also enables efficient parameter updates during
optimization, as each input affects only a small subset of feature vectors and
a small MLP network, but still produces both global and local changes in
geometry due to the multiple resolution levels. In addition, the differ-
entiability of our representation enables straightforward computation of
gradients and curvature at each point.

Initialization and constraints
Neuroshaper features a comprehensive system of methods for enforcing
constraints while maintaining optimization flexibility, and we provide an
overview of these methods below. The methods can be used in different
combinationsdependingon the problemwithno restrictions.Mathematical
and implementation details are provided in “Methods” Section.

Initialization: to initializeNeuroshaper, the parameters θ are randomly
initialized fromanormal distribution, and the corresponding level can serve
as a random starting point for grayscale topology optimization. Neuro-
shaper can also be initialized to a desired shape using a two-stage process
(Fig. 3a).Here, the level set for thedesired initial shape isfirst generatedas an
approximate level set functionusing a distance transform.TheNeuroshaper
parameters are then optimizedusing anL1 loss function to approximate this
initial level set. This approach provides controlled initialization while also
introducing slight randomness that breaks the symmetry of the level set and
associate gradient calculations.

Periodicity and reflection symmetry: Neuroshaper is capable of expli-
citly enforcing periodicity and reflection symmetry constraints by the
implementation of a triangle wave coordinate mapping of the x and y
coordinates prior to hash table encoding (Fig. 3b). Triangle waves are spe-
cifically chosen for their constant gradient magnitudes, which preserve the
multi-resolution characteristics of our design representation. This is in
contrast with sinusoidal mappings, whose varying gradients can distort the
multi-resolution nature of the representation. Different types of triangle
waves canbe judiciously chosen to specify the reflection symmetry axesor to
specify periodicity without any reflection symmetry.

Feature size and curvature constraints: feature size and curvature
control are enforced through gradient-based boundary analysis (Fig. 3c).
Given a minimum feature size dm and a sampled boundary point p with a
normal vector n into the void region, a loss function is defined such that all
points from p to p+ = p+ dmn are specified to have positive values and
those fromp top− = p− dmn have negative values.We also require that the
level set is similar to a signed distance function of the boundary, which

guarantees that after level set thresholding, all physical features in both
material and void regions do not violate our minimum feature size con-
straint and areminimallymodified each iteration. For curvature control, we
leverage the differentiability of our shape representation to compute local
curvature andadda loss functionpenalty term todiscourage small values for
local radii.

Connectivity: connectivity control is achieved by formulating con-
nectivity as an auxiliary heat conduction problem (Fig. 3d) in which regions
requiring connectivity are treated asheat sourceswhile the target connection
points act as heat sinks42. The steady-state heat equation defines the tem-
perature distribution:

�∇ � ðk∇uÞ ¼ f ð2Þ

where u represents the temperature field, k is the thermal conductivity
determined by the binary design, and f describes heat sources and sinks
placed at desired connection points. Upon solving the heat equation, the
resulting temperature distribution identifies disconnected regions through
high temperature values, and the temperature gradient represents optimal
paths for establishing connectivity and is utilized in the connectivity con-
straint loss function. The connectivity constraint can be used to control
device topology, be specified to global or local features, and canbe applied to
both material and void regions.

Multi-resolution scaling: Neuroshaper can produce device layouts with
different spatial resolutions (Fig. 3e), which is useful when considering that
geometric constraint evaluation demands high-resolution structures (M1)
for accurate feature analysis while electromagnetic simulations can be effi-
ciently and accurately performed at lower spatial resolutions (M2).

To derive device layoutswith different resolutions from the continuous
function Fθ(x, y), we first sample this function at an extremely high base
resolution Mb that far exceeds both the geometric analysis and simulation
requirements. From this high-fidelity binary representation, we derive both
the geometric analysis resolution M1 and the simulation resolution M2

through average pooling operations with different downsampling factors.
This enables sub-pixel averaging, which is crucial for maintaining the
accuracy of electromagnetic simulations as it provides effective material
properties that are consistent with the finite difference formalism and that
well approximate the structural layout.

Our approach additionally overcomes issues pertaining to the intro-
duction of aliasing artifacts upon changes in resolution. Since our repre-
sentation remains analytically continuous throughout the optimization
process, resolution changes merely affect the sampling density rather than
the underlying structure. The difference becomes particularly evident in
designs requiring highly precise geometric features.

Fig. 2 | The neural level set representation model. a Functional representation
showing the multi-resolution hash encoding process. Input coordinates (x, y) are
mapped through parallel hash functions at different resolution levels, each accessing
a dedicated lookup table of trainable feature vectors. Features are interpolated based
on the relative position within grid cells and concatenated. The resulting feature

vector is processed by a multi-layer perceptron (MLP) to produce the final level set
function value Fθ(x, y). b Level set operations showing the conversion from con-
tinuous functions to binary and grayscale structures through dense sampling and
thresholding operations.
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Demonstrations
To demonstrate the different features of Neuroshaper and its ability to
produce manufacturable nanophotonic devices, we design and experi-
mentally implement freeformnonlocalmetasurfaces serving as narrowband
wavelength filters. Nonlocal metasurfaces are devices that support the
coupling of free space light into guidedmode resonances43–45, enabling light-
matter interactions that are inherently sensitive towavelength and incidence
angle. We focus our demonstration on near-infrared periodic silicon-based
metasurfaces that feature zeroth-order nonlocal responses. To perform this
optimization, we consider a modal framework for nonlocal optical phe-
nomena inwhich the strong couplingof incident light to a verticallyoriented
magnetic dipole mode within a metasurface unit cell leads to a nonlocal
response46. To explicitly enforce this mode behavior, we perform near-field
optimization to maximize the magnitude of the Hz field component at a
single point just above the metasurface, to avoid diverging values when
performing adjoint gradient computation (Fig. 4a). For devices supporting
multi-wavelength responses, multi-objective optimization is performed to
specify modes at different wavelengths.

Details pertaining to our optimization implementation can be found in
“Methods” section. To summarize, we consider periodic devices with a unit
cell period of 500 nm and normally incident light with linear polarization
along the x-axis. The adjoint variables method is used to perform near-field
freeform optimization, and Tidy3D47 is used as the solver. The iterative
optimization process contains two parts (Fig. 4b). First, grayscale optimi-
zation is performed in which the continuous level set function is used to
specify device layouts with grayscale dielectric values. This device para-
meterization enables a thorough explorationof the design spaceandgradual
convergence toward promising topologies. Second, iterative optimization of
layouts with binary dielectric values is performed to fine-tune these devices
into final configuration.

Our optimization pipeline utilizes many of the constraints and
topology control features inNeuroshaper to ensure thefinal devices support
clean nonlocal behavior. Triangle wave encoding is used to enforce periodic

boundary conditions along both in-plane axes. Minimum feature size and
curvature constraints are implemented to limit the feature size and radii of
curvature to 100 nm and 50 nm, respectively, which ensures that the device
can be reliably fabricated. With the connectivity constraint, we specify the
device topology to be isolated silicon island structures, which helps to
suppress the presence of laterally distributedopticalmodes that can spoil the
background. We note that our method for imposing this constraint is less
restrictive than simply specifying the unit cell boundaries to be void, which
excludes island structures that span across unit cell boundaries. We addi-
tionally specify the device to be only 120 nm thick, which is much smaller
than the target wavelength and which suppresses the presence of higher
order modes spanning the device height. The small thickness also enhances
manufacturing feasibility.

Single and double-dip metasurface designs are shown in Fig. 4c, d. To
fabricate these devices, we deposit a thin film of silicon onto a glass substrate
by chemical vapor deposition, pattern a hydrogen silsesquioxane mask on
the film using electron beam lithography, and transfer the pattern into the
film using reactive ion etching. Electronmicroscopy images of both devices
(Fig. 4e, f) reveal excellent fabrication fidelity and accurate matching with
the design layouts. To characterize the devices, transmission spectra are
obtained by polarizing and illuminating each device under normal inci-
dence using a tuneable laser and scanning wavelength in 1 nm increments.
The measured transmission spectra (Fig. 4g, h) show good agreement with
simulations. The single dip device shows a sharp transmission dip near its
designwavelength of λ = 815 nmand a clean background, while the double-
dip device shows sharp transmission dips close to its design wavelengths of
800 nm and 860 nm. Additional details pertaining to the fabrication and
characterization steps can be found in Section “Experimental setup”.

Finally, we explore the ability and efficacy of Neuroshaper to broadly
apply to the design of a wide range of free space and on-chip nanophotonic
devices.A summaryof device type, objective, added constraints, and result is
presented in Fig. 5. Benchmark results based on conventional pixel-based
adjoint-based freeformdesign are also presented, using conventional spatial

Fig. 3 | Implementation of initialization methods, constraints and resolution
conversions. a Controlled initialization showing the transformation from initial
shapes to distance mapping and the training process through randomly sampled
batches. b Implementation of periodicity and symmetry constraints using triangle
wave functions and coordinate mapping. c Feature size and curvature penalty

calculation demonstrating gradient-based measurement of local geometric prop-
erties. d Connectivity penalty implementation using PDE-based approach with
specified boundary conditions. e Resolution conversion process illustrating the
relationship between high-resolution reference structures and differentiable sub-
pixel averaged structures at different resolution for simulation.
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filtering techniques to enforce constraints. These devices use the same initial
starting point as the Neuroshaper result to provide a direct comparison.
These diverse benchmarks include common nanophotonic components: a
2D mode converter, bandpass filter, wavelength multiplexer, 3D grating
coupler, and 3D plasmonic nanoantenna. Each was optimized with specific
objectives (e.g., efficiency, contrast, field enhancement) and relevant con-
straints such as feature size, connectivity, and symmetry usingNeuroshaper.
For direct comparison, conventional pixel-based adjoint optimization using
standard filtering techniques was performed starting from identical initial
conditions. Detailed parameters for each case, includingmaterials (typically
Si/SiO2 or Au), dimensions, and specific constraints, are available in the
“Methods” section.

Based on these results and benchmark comparisons, we observe the
following. First, Neuroshaper-designed devices displaymore robust control
over feature size and curvature. This control enforces the trade-off between
geometric constraint and performance and better ensures that the devices
can be fabricated. Second, for chip-based devices, the connectivity con-
straint enables seamless material transitions from waveguides to freeform
structures, showing how non-trivial constraints can be enforced. For
instance, while the Neuroshaper-designed 3D grating coupler (Fig. 5d)
exhibits slightly lower peak efficiency (60.6%) compared to the conventional
benchmark (70.9%), this is attributed to the enforcement of stricter,
manufacturability-focused constraints within our framework, including
simultaneous adherence to waveguide connectivity, and boundary dis-
connection requirements (see “Methods” section for details on the 3D
Grating Coupler benchmark). The conventional design shown achieves
higher theoretical efficiency but visibly violates minimum feature size limits
(note the penalty values in Fig. 5d: 0.02 for our result vs. 0.12 for the

conventional design) evenwithout these stricter constraints. This highlights
a key capability of Neuroshaper: balancing performance optimization with
robust constraint satisfaction, which is crucial for practical device fabrica-
tion. Third, the Neuroshaper-designed devices generally have comparable
or better performance than the conventional designed devices, even while
featuring more total design constraints. To more systematically probe this
observation, we perform an ensemble of 2Dmode converter optimizations
using both Neuroshaper and conventional methods, and we fix the opti-
mization conditions (i.e., initial random dielectrics, feature size and curva-
ture constraints, connectivity constraints) to be the same in both cases to
enable a fair comparison. The resulting distributions of device efficiency are
shown in Fig. 6 and show that on average the Neuroshaper-designed con-
verters have better overall performance than conventionally designed
devices. These data suggest that Neuroshaper’s ability to account for con-
straints in a global manner can lead to an overall improved optimization
result.

Discussion
In summary, we present Neuroshaper as a robust neural architecture
representation framework for level set-based nanophotonic device opti-
mization. Our method addresses several long-standing challenges in pho-
tonic freeform inverse design. First, it yields fully analytic, differentiable, and
stable geometric representations in amanner that enables streamliningwith
gradient-based inverse design algorithms and accurate specification of
device layouts at different scales and dielectric binarization conditions.
Second, it introduces a modular approach to incorporating multiple con-
straints, including competing constraints. By specifying individual con-
straints in the form of loss functions, constraints involving feature size,

Fig. 4 | Optimization setup and experimental validation for Neuroshaper-
designed nonlocal metasurfaces. a Schematic of the simulation setup showing a
periodic silicon (Si) metasurface of thickness d on a silica (SiO2) substrate.
b Evolution of the optimization process showing grayscale (red) and binary (blue)
design regimes. The lower panels show the level set function (top), corresponding

physical designs (middle), and transmission spectra (bottom) at different iterations.
c, d Level set function and binary silicon structure for the optimized c single-dip and
double-dip design. SEM images of the fabricated e single-dip and f double-dip
devices. Simulated (top) and experimental (bottom) transmission spectra for the
g single-dip and h double-dip devices.
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feature curvature, and connectivity canbe readily imposedbyappending the
desired loss functions to the global loss function for network training and
updating. Third, Neuroshaper utilizes local constraints information to
globally modify and evolve device layouts, providing a more robust and
global framework for balancing the enforcement of constraints with device
performance. Numerical experiments indicate that Neuroshaper con-
sistently outperforms conventional pixel-based representations in con-
strained freeform design tasks, and an experimental proof-of-concept
demonstration indicates the viability for freeform Neuroshaper-designed
devices to be experimentally translated.

One potential limitation arises when applying Neuroshaper to very
large design areas relative to theminimum feature size. The global nature of
the neural representation, while advantageous for constraint handling, can
sometimes lead to overly complex interdependencies across distant regions,
potentially affecting optimization stability. Future work could explore
architectural modifications or optimization strategies to mitigate this in
large-scale problems. Looking forward, this work opens several promising
directions for future research.We anticipate that Neuroshaper can apply to
other classes of passive and active photonic devices, and more generally, to
other domains of the physical sciences that leverage strong relationships
between geometry and physical response. We also anticipate that Neuro-
shaper can be augmented with other neural network-based algorithms48–51,
such as high speed deep surrogate solvers52–54, generative models55–57, and
large language model interfaces, to further streamline and accelerate the

Fig. 6 | Comparison of efficiencies for randomly initialized 2D mode converter
devices. The chart displays the resulting distributions of device efficiency for eight
different optimizations using Neuroshaper and conventional pixel-based methods,
designed under identical conditions including initial random dielectrics, feature size
and curvature constraints.

Fig. 5 | Application of the Neuroshaper framework to various nanophotonic
devices. a 2D mode converter design demonstrating efficient conversion between
different waveguide modes. The optimized structure maintains smooth connection
with both input and output waveguides and is disconnected from the boundary
boarders. b 2D bandpass filter showing improved contrast ratio compared to con-
ventional approaches whilemaintaining structural connectivity across all waveguide
interfaces. c 2D wavelength multiplexer design exhibiting superior transmission
efficiencies compared to conventional designs while ensuring robust waveguide

connectivity. d 3D grating coupler optimization incorporating multiple constraints:
connectivity with the output waveguide, boundary disconnection, and symmetry-
preserving feature size limits. The conventional design violates feature size limits.
e 3D plasmonic nanoantenna optimization with periodic boundary conditions and
feature size constraints, demonstrating enhanced field intensity compared to con-
ventional designs. Simulated field distributions for these devices can be found in
Supplementary Figs. 3 and 4.
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computer aided design of physical infrastructure. We see potential for
neuroparameterization to encodeobjects other thandevice geometries, such
as electromagnetic fields or scattering profiles, which would expand the
scope of how devices and their associated attributes are modeled. Finally,
with the burgeoning growth of neurorepresentation research in the com-
puter vision community, we anticipate a wide diversity of neural network-
based representation models to be developed with practical use in the
physical sciences.

Methods
Multi-resolution hash encoding
The hash encodingHϕ operates across L resolution levels, with each level
maintaining a dedicated table of feature vectors41. For each level l, input
coordinates are mapped to grid vertices through:

vl ¼ bx � Nlc; Nl ¼ Nmin � bl ð3Þ

where Nl is the grid resolution at level l, Nmin is the size of the most coarse
grid, and b is a geometric progression factor. These integer coordinates are
mapped to feature indices through a spatial hash function:

hlðvÞ ¼
Md
i¼1

πivi

 !
modTl ð4Þ

where πi are large prime numbers (π1 = 1, π2 = 2,654,435,761,
π3 = 805,459,861, π4 = 2,097,152, π5 = 3,231,375, π6 = 4,278,255,361) and Tl
is the hash table size at level l. This hash function effectivelyXORs the results
of per-dimension linear congruential permutations, decorrelating the effect
of dimensions on thehashedvalue. Forbetter cache coherence,we setπ1 = 1,
while the other prime numbers are chosen to be large andmutually coprime
to minimize hash collisions in higher dimensions.

The encoding concatenates interpolated feature vectors from all levels:

Hϕðx; yÞ ¼ ½ Interp ðϕ1½h1ðvÞ�Þ; . . . ; Interp ðϕL½hLðvÞ�Þ� ð5Þ

Hash collision handling
A unique aspect of our encoding is its treatment of hash collisions. Rather
than implementing explicit collision resolution through conventional
methods like chaining or open addressing, our approach allows collisions to
naturally occur and relies on the training process to handle them appro-
priately. When multiple spatial locations hash to the same feature vector,
their gradients during optimization are effectively averaged. This creates an
implicit form of importance sampling, where locations generating stronger
gradients (typically corresponding to important features or boundaries)
have a greater influence on the shared parameters. For coarse levels where
ðNl þ 1Þd <Tl , the mapping is one-to-one and no collisions occur. At finer
levels, collisions become more frequent but are distributed pseudo-
randomly across space. Since each input is encoded through multiple
resolution levels simultaneously, it is statistically unlikely for two distant
points to collide at all levels,maintaining the encoding’s ability todistinguish
distinct spatial locations. To produce a grayscale dielectric structure layout,
Mg(x, y), scaling and clipping operations are used:

Mg ðx; yÞ ¼ min fmax fαFθðx; yÞ þ β; 0g; 1g ð6Þ

α and β control the transition sharpness and bias.

Performance considerations
The multi-resolution structure provides several computational advantages:
• Parameter updates are sparse and efficient, as each input affects only a

small subset of feature vectors at each level.
• The hash table structure allows for efficient GPU implementation with

predictable memory access patterns.

• The geometric progression of resolution levels ensures coverage of all
relevant spatial scaleswhilemaintaining amanageable parameter count.

The total number of parameters for the hash table is:

Total Parameters ¼ L � P � T ð7Þ

where L is the number of levels, P is the feature dimension per level, andT is
the hash table size per level. The hash table sizeT provides a direct trade-off
between memory usage, computational cost, and reconstruction quality.

Gradient computation
The complete differentiability of our representation enables computation of
important geometric properties. The gradient of the level set function is
given by:

∇Fθðx; yÞ ¼
∂Fθ

∂x
iþ ∂Fθ

∂y
j ð8Þ

The mean curvature can be computed as:

κ ¼ ∇ � ∇Fθ

j∇Fθj
ð9Þ

These quantities are essential for implementing geometric constraints and
ensuring fabrication-ready designs. The gradients are computed efficiently
through automatic differentiation, propagating through both the neural
network and the multi-resolution hash encoding.

Initialization implementation
The initialization process in our framework consists of two distinct stages
that work together to provide both controlled starting points and diverse
optimization trajectories. Given an initial shape defined by a binary mask
M0(x, y), we first generate an approximate level set function through a
signed distance transform:

F0ðx; yÞ ¼ DT ðM0ðx; yÞÞ ð10Þ

This transform computes the signed Euclidean distance from each point to
the nearest boundary of the initial shape, with positive values inside the
shape and negative values outside. The distance transform is implemented
using a fast marching method that ensures accuracy while maintaining
computational efficiency.

The network parameters are then initialized using a truncated normal
distribution:

ωi � N ð0; σ2Þ; σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
nin þ nout

s
ð11Þ

where nin and nout are the input and output dimensions of each layer
respectively. This initialization scheme, known as Kaiming initialization,
helps maintain consistent gradient magnitudes throughout the network
during the early stages of training58.

The optimization process minimizes the L1 loss between the neural
network output and the initial level set function:

Linit ¼k Fθðx; yÞ � F0ðx; yÞk1 ð12Þ

During this initialization phase, we employ stochastic sampling of
points within the design domain to compute the loss:

Lbatch ¼
1
B

XB
i¼1

k Fθðxi; yiÞ � F0ðxi; yiÞk1 ð13Þ
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where B is the batch size (typically 65,536 in our implementation). This
stochastic approach introduces beneficial noise during initialization while
maintaining computational efficiency. The initialization process usesAdam
optimization with learning rate = 1 × 10−4, β1 = 0.9, β2 = 0.999.

We typically run the initialization optimization for 300 steps, whichwe
found sufficient to capture the general structure of the initial shape while
maintaining enough flexibility for subsequent optimization.

For pure random initialization,we skip the distance transform step and
instead initialize the network parameters directly.

Periodicity and symmetry implementation
For periodic boundaries, we apply two triangle wave mappings and then
concatenating the results:

xperiodic;1 ¼ 1� 2
x
p

� �
� 0:5

����
���� ð14Þ

xperiodic;2 ¼ 1� 2
x
p
þ 0:25

� �
� 0:5

����
���� ð15Þ

where p is the period length and ⋅ denotes the fractional part. The con-
catenated coordinates [xperiodic,1, xperiodic,2] ensure periodicity while avoid-
ing symmetry in the mapped domain.

For symmetry constraints, we apply a single triangle wave transfor-
mation:

xsymmetric ¼ 1� 2
x
p
� 0:5

����
���� ð16Þ

These mappings maintain several crucial properties. The gradient
magnitude of the triangle wave remains constant except at the vertices:

d
dx

xperiodic;i

����
���� ¼ 2

p
;

d
dx

xsymmetric

����
���� ¼ 2

p
ð17Þ

This uniform gradient preserves the multi-resolution characteristics of our
design representation, unlike sinusoidal mappings which introduce varying
gradients:

d
dx

sin
2πx
p

� �����
���� ¼ 2π

p
cos

2πx
p

� �����
���� ð18Þ

The complete coordinate transformation for a design requiring both
periodicity and symmetry can be expressed as:

xtransformed ¼ xperiodic;1 xperiodic;2 ysymmetric

� 	 ð19Þ

This transformation preserves feature size constraints as they operate on the
raw coordinates before mapping:

LfeatureðFθðxtransformedÞÞ ¼ LfeatureðFθðxÞÞ ð20Þ

This ensures simultaneous satisfaction of periodicity, symmetry, and geo-
metric requirements. The uniformity of the trianglewave gradients prevents
edge artifacts while maintaining the effectiveness of our multi-resolution
representation across the entire design domain.

Feature size and curvature constraint implementation
The feature size control implementation begins by identifying boundary
points where the level set function crosses zero. For each boundary point p,
to numerically evaluate the penalty value, we employMonteCarlo sampling
with these 12 randomly distributed evaluation points along the normal
direction for each of 65,536 boundary points. This stochastic sampling
strategy provides robust feature size control while avoiding potential arti-
facts that could arise fromregular samplingpatterns.Wecompute a series of

randomly sampled evaluation points along the normal direction n:

pi ¼ pþ tidn; ti � Uð�1; 1Þ; i ¼ 0; . . . ; 11 ð21Þ

where d is the minimum feature size, Uð�1; 1Þ denotes uniform random
sampling in the interval [−1, 1], and thenormal direction is computed from
the gradient of the level set function:

n ¼ ∇Fθ

j∇Fθj
ð22Þ

The feature size constraint combines both minimum feature size enforce-
ment and signeddistance functionmaintenance across all evaluationpoints:

LfeatureðFθÞ ¼ P
p2P

P11
i¼0

ReLU ð�FθðpiÞ � signðtiÞÞ
�

þαðjFθðpiÞj � jtijdÞ2
	 ð23Þ

where P represents the set of boundary points and α is a weighting para-
meter typically set to 0.1. The first term in the summation enforces the
minimum feature size by ensuring proper sign of the level set function at
each evaluation point, while the second termmaintains the signed distance
property by encouraging the function values tomatch the expected distance
at each evaluation point.

The curvature at boundary points is computed directly from the level
set function:

κ ¼ ∇ � ∇Fθ

j∇Fθj
ð24Þ

The curvature penalty is formulated as a direct sum over boundary points:

LcurveðFθÞ ¼
X
p2P

κðpÞ ð25Þ

The complete geometric constraint combines both feature size and curva-
ture terms:

Lgeometric ¼ Lfeature þ λLcurve ð26Þ

where λ is typically set between 0.01–0.1 depending on the specific appli-
cation requirements. This random sampling approach ensures robust fea-
ture size control while avoiding systematic biases that might arise from
regular sampling patterns.

Heat equation formulation for connectivity
Our framework implements connectivity constraints through a heat
equation-based approach that enables precise control over structural con-
nectivitywhilemaintainingcompatibilitywithgradient-basedoptimization42.
The method can enforce multiple simultaneous connectivity requirements
between arbitrary points or boundaries in the design space, making it par-
ticularly valuable for creating fabrication-ready metasurface designs.

Theheat equationgoverning theconnectivity constraint is formulatedas:

�∇ � ðk∇uÞ ¼ f ð27Þ

where u represents the scalar temperature field, k denotes the spatial con-
ductivity distribution, and f represents the source/sink distribution. The
connectivity constraint g is evaluated using a normalized p-norm of the
temperature field:

g ¼ k ukp
thresh

� �
� 1 ð28Þ
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where k ukp ¼
P

i juijp

 �1=p

is the p-norm of u.
The framework enables sophisticated connectivity control through

several key mechanisms:
First, boundary conditions can be flexibly specified by setting appro-

priate source (f) and conductivity (k) values at desired locations. Any point
or edge in the design can be designated as a connection target through these
boundary conditions. The conductivity field k is directly derived from the
design variables ρ, with high conductivity in material regions (ks) and low
conductivity in void regions (kv).

Second, multiple connectivity requirements can be enforced simulta-
neously by solving multiple heat equations with different boundary con-
ditions. For instance, to ensure connectivity between multiple waveguide
interfaces or to maintain connections to multiple boundaries, separate
temperature fields are computed and combined into a joint constraint.
The framework automatically handles the interaction between these mul-
tiple constraints through gradient computation.

Third, the method incorporates morphological analysis to adaptively
apply connectivity constraints. Before computing the heat equation solu-
tion, the current design is analyzed to identify disconnected components. If
existing connections already satisfy the requirements, the constraint gra-
dients are zeroed in those regions, focusing the optimization on areas where
connectivity needs to be established or improved.

To compute the gradient ∂g
∂ρ for optimization, we employ the adjoint

method:

∂g
∂ρ

¼ ∂g
∂u

∂u
∂ρ

þ ∂g
∂k

∂k
∂ρ

þ ∂g
∂f

∂f
∂ρ

ð29Þ

We introduce an adjoint variable λ satisfying:

�∇ � ðk∇λÞ ¼ ∂g
∂u

ð30Þ

The final gradient expression becomes:

∂g
∂ρ

¼ �λT ðks � kvÞ∇u �∇uþ ðf s � f vÞ

 �

ð31Þ

where ks− kv represents the difference between solid and void con-
ductivities, and fs− fv denotes the difference between solid and void
source terms.

The numerical implementation employs finite differences for spatial
derivatives and supports both direct and iterative solvers for the resulting
linear systems.Theheat equation is discretizedusing central differences, and
the conductivity at material interfaces is computed using harmonic aver-
aging to ensure numerical stability. This approach provides smooth, well-
behaved gradients suitable for optimization while accurately capturing
connectivity requirements.

This formulation has proven particularly effective for metasurface
design,wheremaintainingproper connectivity is crucial for both fabrication
and optical performance. The method successfully ensures that optimized
structures maintain continuous paths between specified boundaries or
points while allowing the topology to evolve freely in other regions. This
capability is demonstrated in our results, where complex metasurface
designs consistently exhibit proper connectivity towaveguide interfaces and
maintain specified periodic boundary conditions.

Resolution conversion and sub-pixel averaging details
Starting from our continuous level set function Fθ (x, y), we implement a
three-stage resolution conversion process. The first stage involves high-
resolution sampling, where we sample the continuous function at an
extremely high base resolutionMb that significantly exceeds both geometric

analysis and simulation requirements:

Mbði; jÞ ¼
1 if Fθðxi; yjÞ > 0
0 otherwise

�
ð32Þ

where (xi, yj) represents the spatial coordinates of eachhigh-resolutionpixel.
In the second stage, we derive both the geometric analysis resolution

M1 and simulation resolutionM2 through average pooling operations from
this high-fidelity binary representation:

Mkði; jÞ ¼
1
n2k

Xnk�1

p¼0

Xnk�1

q¼0

Mbðnkiþ p; nk jþ qÞ ð33Þ

Here, k∈ 1, 2 denotes the resolution level and nk represents the down-
sampling factor for level k, withM1 used for geometric constraint evaluation
andM2 used for electromagnetic simulation.

The third stage involves effective medium approximation for electro-
magnetic simulation, where the averaged values are interpreted as effective
medium properties:

ϵeff ði; jÞ ¼ ϵ1M2ði; jÞ þ ϵ2ð1�M2ði; jÞÞ ð34Þ

In this equation, ϵeff(i, j) represents the effective permittivity at position
(i, j), while ϵ1 and ϵ2 are the permittivities of the constituent materials, and
M2(i, j) represents the material fraction from average pooling.

The sub-pixel averaging approach provides several critical advantages
for electromagnetic simulation. First, it offers improved accuracy by pro-
viding a more accurate representation of material boundaries than binary
discretization, and this effective medium approximation also minimizes
artificial resonances and scattering that can arise from staircased boundaries
in binary discretization:

Staircasing Error / ∂ϵ

∂x

����
����
discrete

� ∂ϵ

∂x

����
����
continuous

ð35Þ

Our framework also supports dynamic resolution adaptation during
the optimization process. The base resolution can be adjusted throughout
the optimization according to:

M iter
b ði; jÞ ¼ Mbði � siter; j � siterÞ ð36Þ

where siter is a scaling factor that evolves throughout the optimization:

siter ¼ s0 � αbiter=Nc ð37Þ

This approach enables rapid exploration of the design space in early itera-
tions using lower resolutions, followed by progressive refinement of geo-
metric details as optimization converges, ultimately leading to high-
resolution optimization for fabrication-ready designs.

Hyperparameters of optimization pipeline for nonlocal
metasurface
The optimization was performed using PyTorch (v2.2) on a single NVIDIA
RTX A6000 GPU. Each optimization step, including constraint evaluation
and backpropagation through the Neuroshaper network, typically com-
pleted in under 2 s, representingminimal overhead compared to the FDTD
simulation time, which takes roughly 2min. The hash encoding is imple-
mented with a hierarchical structure consisting of L = 10 levels, each
encoding features of dimensionality P = 4. The base resolution begins at
Nmin = 4 and scales geometrically between consecutive levels by a factor of
1.5. Each level maintains an independent hash table of size 210 entries. The
complete encoding transforms 2D spatial coordinates into a high-
dimensional feature space through parallel lookup operations at multiple
resolutions.
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The neural network architecture comprises a sequence of fully con-
nected layers with dimensions [128, 64, 64], employing LeakyReLU acti-
vation functions with α = 0.1 between layers. All linear transformations are
implemented without bias terms. The network maps from the hash-
encoded feature space to a scalar level set value, maintaining end-to-end
differentiability throughout the optimization process. The algorithm iden-
tifies boundary points through iterative optimization of N = 65,536 sample
points. The optimization process alternates between gradient descent on the
level set function and point resampling. At each iteration, points are cate-
gorized based on their squared SDF values, with the update strategy
retaining 50% of the best-performing points, incorporating 25% from reg-
ular grid sampling, and introducing 25% new random samples. Feature size
control is implemented through our gradient-based sampling around
boundarypoints.ThemaximumSDFvalue is constrained to0.5.The feature
size is considered 0.2 normalized units, for 100 nm feature size in a 500 nm
device. We set λ = 0.1 for the curvature penalty.

The nonlocal metasurface simulation employs a uniform grid with 60
points per unit cell. The physical dimensions correspond to a period of
0.5 μm in both directions, with the structure thickness set to 0.12 μm.
Material properties are definedby refractive indicesnSi = 3.75 for silicon and
nSiO2 = 1.45 for the substrate. The simulation domain is terminated with
perfectly matched layers (PML) of thickness 1.0 μm, and excitation is pro-
vided at normal incidence (θ = 0°) with theHz field component monitored
for optimization. The framework maintains two distinct resolution levels: a
high-resolution representation of 240 × 240 pixels for geometric constraint
evaluation, and a lower resolution 60 × 60 grid for FDTD simulation.
Conversion between resolutions is accomplished through area averaging,
maintaining differentiability throughout the optimization process. We did
not change the resolutionover theoptimizationprocess as in the current size
it already runs sufficiently fast.

The optimization employs the Adam algorithm with initial learning
ratesofη = 0.001 for optimization.Batch sizes are set to 65,536 for geometric
constraint evaluationandderived from the simulation resolution for physics
optimization. The implementation maintains pure gradient-based updates
without additional regularization terms.

Experimental setup
For fabrication of the device, a 120 nm thick layer of hydrogenated amor-
phous silicon (a-Si:H) is depositedon a fused silica substrate of 500 μmusing
plasma-enhanced chemical vapor deposition (PECVD, PlasmaTherm
CCP-Dep) at a chamber temperature of 200 °C. Next, Surpass 3000 is spun
on the wafer to promote adhesion of the e-beam resist 3% hydrogen sil-
sesquioxane (HSQ) and the latter is then spun and baked. Next, a charging
dissipating solution (Electra 92) is spun. The sample is then exposed using
e-beam lithography and developed in the 25% TMAH developer, while the
Electra 92 layer is solved in water. The metasurface pattern is then trans-
ferred to the a-Si:H film through dry etching (Oxford III-V Etcher) using a
mixture of hydrogen bromide (HBr) and chlorine (Cl2) gases. The etch
quality is controlled by adjusting the chamber pressure and forward power
of theRF and ICP generators in the inductively-coupled plasma reactive-ion
etching (ICP-RIE) system.

The experimental setup for measuring the transmission spectra of the
nonlocal metasurfaces is depicted in Fig. 7. A collimated beam from a
supercontinuum white light laser (NKT Photonics, SuperK EXTREME
EXW-12) was used as the light source, with a tunable bandpass filter (NKT
Photonics, SuperKLLTF) applied at theoutput to select specificwavelengths
within the target range of 750 nm to 1000 nm. The incident beam was
linearly polarized along the designed polarization of themetasurface using a
polarizer and then focused through a 40mm focal length lens to shrink the
beam spot to match the dimension of the metasurface. The sample was
mounted on an x-y translational stage to ensure precise alignment of the
beamwith individual devices. The transmitted power wasmeasured using a
power meter (Thorlabs PM100D) placed behind the sample along the
optical axis. The experiment involved two sequential measurements: the
transmitted power through the bare substrate was first recorded as a

reference, then the beamwas positioned through themetasurface, where the
transmission spectrum of the metasurface is calculated as the ratio of the
transmitted power through the metasurface to the reference measurement.
This setup provides a robust and accurate method to characterize the
transmission performance of the metasurface across a broad wave-
length range.

Details for representative nanophotonic problems
Here we provide detailed setup information for the five benchmark pro-
blems used to demonstrate Neuroshaper’s capabilities across different
application domains. The key parameters for the 2D problems are sum-
marized in Table 1, and for the 3D problems in Table 2.

For each benchmark, the design region is discretized according to
specified resolution, and grid resolution satisfies minimum 20 pixels per
wavelength in all materials. Except for periodic dimensions, the boundary
conditions are perfectly matched layers (PML). For conventional optimi-
zation, feature size constraints are enforced using erosion-dilation penalty
with conic filter, and the topology optimization is performed using Adam
optimizer with learning rate 0.01. A specific beta parameter for projection is
ramped from1 to 30over optimization,whichprojects the parameters using
the following relation.

f ðx; βÞ ¼
tanh β

2

� 

þ tanh β x � 1

2


 �
 �
2 tanh β

2

� 
 ð38Þ

For comparison of the two methods, we reduced the y design region
from 3 μm to 2 μm and removed the constraints regarding connectivity to
enable a fair comparison.

Fig. 7 | Photograph of the experimental transmission spectra collection setup.
The image shows the arrangement of optical components, including a super-
continuum white light laser, tunable bandpass filter (iris), polarizer, focusing lens,
sample stage, and power meter, used for characterizing the fabricated metasurfaces.
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Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The custom code and scripts used for generation and analysis of data in this
study are available from the corresponding author upon reasonable request.
Information on software versions includes Python (v3.10), PyTorch (v2.2),
Tidy3D (v2.7). Specific variables and parameters are detailed in the
“Methods” section.
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