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Pushing charge equilibration-based
machine learning potentials to their limits
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Machine learning (ML) has demonstrated its potential in atomistic simulations to bridge the gap
between accurate first-principles methods and computationally efficient empirical potentials. This is
achieved by learning mappings between a system’s structure and its physical properties. State-of-
the-art models for potential energy surfaces typically represent chemical structures through (semi-)
local atomic environments. However, this approach neglects long-range interactions (most notably
electrostatics) and non-local phenomena such as charge transfer, leading to significant errors in the
description of molecules ormaterials in polar anisotropic environments. To address these challenges,
ML frameworks that predict self-consistent chargedistributions in atomistic systemsusing theCharge
Equilibration (QEq)method are currently popular. In this approach, atomic charges are derived froman
electrostatic energy expression that incorporates environment-dependent atomic electronegativities.
Herein, we explore the limits of this concept at the example of the previously reported Kernel Charge
Equilibration (kQEq) approach, combined with local short-ranged potentials. To this end we consider
prototypical systems with varying total charge states and applied electric fields. We find that charge
equilibration-based models perform well in most situations. However, we also find that some
pathologies of conventional QEq carry over to the ML variants in the form of spurious charge transfer
and overpolarization in the presence of static electric fields. This indicates a need for new
methodological developments.

One of the most significant advances in molecular and materials
simulation over the past decade has been the introduction of ato-
mistic machine learning interatomic potentials (MLIPs)1–4. These
methods can approach the accuracy of ab initio techniques while
scaling to systems containing hundreds of thousands of atoms,
opening the door to discoveries previously thought impossible5–7.
This breakthrough relies generally on the assumption that the total
energy of a system can be decomposed into atomic contributions.
These contributions are modeled as a function of each atom’s local
chemical environment within a defined cutoff radius, using ML
techniques such as Neural Networks (NN)8,9 or Gaussian Process
Regression (GPR)10,11.

However, due to their inherent locality approximation, these models
are fundamentally limited by their inability to account for long-range
interactions and non-local effects such as charge transfer. This is often
unproblematic since long-range effects are effectively screened in isotropic
condensed phase systems. It can become significant in systems involving
polar interfaces or complex ionic interactions, however12. In such cases, local
models reach the boundaries of their applicability.

To address these limitations, considerable effort is being devoted to
developingmethods that incorporate interactions beyond the cutoff of local
descriptors. One promising approach involves the use of message-passing
neural networks (MPNNs), which extend the effective receptive field of the
models by propagating information through a graph representation of the
atomistic structure. This enables such models to capture interactions over
longer distances, alleviating some of the constraints imposed by the locality
assumption9,13–16. However, message passing is not effective for describing
truly long-range interactions as each additional layer increases the com-
putational cost. Furthermore, the large receptive fields of these MLIPs
makes parallelization across devices inefficient, precluding their application
to very large systems 17.

As a consequence of this, models with an explicit physics-based
representation of long-range interactions have been of great interest in
recent years, including the long-distanceequivariant (LODE) framework18,19

and its extensions20, BpopNN21, deep potential long-range (DPLR) models
using charges obtained from maximally localized Wannier functions22, or
self-consistentfieldneural networks (SCFNN)23.Ona relatednote, there has
also been significant work on developing MLIPs capable of capturing the
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effects of an external electric field (e.g. for electrochemical or spectroscopic
applications), without explicitly predicting charges or directly modeling
long-range interactions 24–27.

For electrostatics in particular, arguably the most adopted approach is
to buildMLIPmodels that self-consistently predict atomic charges or charge
distributions by minimizing a charge-dependent energy expression. This
enables a physically correct description of long-range interactions, but also
automatically provides a means to include external fields and varying total
charge states on the same footing. The earliest implementation of this
concept in ML was introduced in the CENT models28–30, where Goedecker
and co-workers combined a classical Charge Equilibration (QEq) method
with environment-dependent electronegativities predicted by neural net-
works (NNs). This methodology was later advanced into the Fourth Gen-
eration High-Dimensional Neural Network Potentials (4G-HDNNP),
where a local NN potential is combined with a CENT-like model fitted to
reproduce Hirshfeld charges31,32. This idea was subsequently also used in
other NNpotentials33,34, linear Atomic Cluster Expansionmodels35, and the
Kernel Charge Equilibration (kQEq) method. In the latter case, the models
were directly trained on observables such as energies, forces or dipole
moments 36,37.

QEq has thus been found to be highly effective as a building block of
long-rangedMLmodels. Nonetheless, there are some known pathologies of
this approach, which have been discussed in the context of classical force
fields38. While ML-based charge equilibration models (ML-QEq) are in
general much more expressive and accurate than their classical
counterparts37, it has not been thoroughly investigated to what extent these
pathologies are inherited. This paper aims to answer this question. To this
end, we first summarize the known limtations of QEq and analyze to what
extent they can be expected to carry over toML-QEqmodels. Subsequently,
we investigate critical cases numerically by applying ML-QEq methods to
systems with varying total charge, cluster fragmentation and applied elec-
tric fields.

Results
Classical charge equilibration methods
QEq is widely used to compute partial atomic charges for classical MD
simulations, enabling the treatment of long-range electrostatic interactions
and polarization effects via electronegativity equalization. As detailed in the
methods section, the central idea behindQEq and related approaches is that
the charge distribution in a system can be obtained byminimizing a charge-
dependent energy function. This function describes the interplay between
the Coulomb interaction among the partial charges (favoring charge
separation), the electronegativity differences between atoms (favoring flow
of negative charge fromelectropositive to electronegative elements), and the
electronic hardness of each atom (limiting the total amount of charge that
can be accommodated by each atom).

While QEq yields reasonable charge distributions near equilibrium
geometries, it is well known to overestimate charge transfer between dis-
sociated atoms or molecules39,40. This is particularly drastic in the atomized
limit, where the off-diagonal elements of the hardness matrix (seeMethods
section) vanish, so that the atomic charges become determined solely by
differences in atomic electronegativities and the sum of the diagonal
hardness terms. To eliminate spurious charge transfer in this limit, atomic
electronegativities would need to asymptotically vanish, or hardness para-
meters diverge to infinity. Neither of these is possible within the standard
QEq formalism, where both quantities are treated as elemental constants 41.

One of the conceptual predecessors to modern environment-
dependent ML-QEq models is the Charge Transfer with Polarization
Current Equilibration (QTPIE) method39,40. QTPIE addresses key defi-
ciencies of conventional QEq by introducing charge transfer variables that
represent polarization currents between atom pairs. The atomic partial
charge qi is then obtained as a sum of pairwise charge transfers to and from
atom i. Here, unphysical long-range charge transfer is mitigated by dam-
pening the polarization current with the distance. Interestingly, this atom-
pairwise approach was found to be equivalent to a more familiar QEq-like

picture that uses overlap integrals Sij to renormalize the atomic electro-
negativities, making each atom’s effective electronegativity dependent on
the local electronic environment just as in ML-QEq methods 41.

This analogy raises the question whether ML-QEq methods suffer
from the same limitations as classical QEq, or whether they aremitigated by
the use of environment-dependent electronegativities. To answer this
question, we focus on two situations where (semi)local MLIPs cannot be
applied, namely on systems with variable total charge and under applied
electric fields, using water clusters as prototypical test systems.

Variable total charges
As a first example, we consider water clusters in different states of (de)
protonation with total charges of −1, 0, and 1 e. A local potential with a
sufficiently large cutoff could in principle infer the total charge from the
number of hydrogen atoms in such clusters. However, this must fail when
the clusters are dissociated into their molecular components by a distance
larger than the cut-off radius of the local descriptor.

To prepare the dataset of water clusters, the local minima of neutral
water clusters containing 3 to 10 molecules, as provided by Xantheas and
coworkers42, were used as a starting point. To generate charged configura-
tions, either a proton or a hydroxyl group was removed from each neutral
cluster, resulting in positively and negatively charged configurations. Non-
equilibrium configurations of these clusters were then generated through
molecular dynamics (MD) simulations employing the semiempirical
GFN2-xTB method43–45. Finally, expanded and contracted clusters were
generated by displacing the molecules relative to each cluster’s center of
mass by factors ranging from 0.9 to 5.0 (see Fig. 1). For all configurations
thus obtained, energies and forces were computed with the hybrid PBE0
functional. A full overview of the dataset is provided in SupplementaryNote
1, with RMSE values for validation and test sets in Supplementary Table 1.

Figure 1 presents learning curves for training anMLIP composed of a
short-range Gaussian Approximation Potential (GAP) and a long-ranged
kQEqmodel, with all general conclusions derived below being independent
of this particular type of short-ranged MLIP architecture. Full details on
architecture and training of these models are provided in the methods
section. With sufficient training data, this MLIP can accurately predict
energies and forces for all charge states and intermolecular distances,
achieving RMSEs of 2meV/atom and 49meV/Å. The figure also shows the
energy error distributions of the test set in terms of histograms and corre-
lation plots comparing DFT and GAP+kQEq energies. Neutral clusters
exhibit lower energy errors relative to charged ones, but also span a smaller
energy range. Additionally, neutral clusters constitute the majority of the
training set (55% of all structures) and are the only group for which local
minima are included. Overall, the performance for all charge states is thus
satisfactory.

Notably, this accuracyalso translates to anaccuratedescriptionof long-
range interactions. This is shown for the example of dissociation curves for
three representative clusters (each corresponding to a different total charge
state) in Fig. 2. When comparing the DFT energy with that obtained from
the GAP+kQEq model (for comparisons with standalone GAP and kQEq
models see Supplementary Fig. 1 and Supplementary Note 2), we can see
that the potential energy surface (PES) is accurately described across the
entire range of inter-molecular distances, including interactions outside of
the descriptor cutoff distance. However, at longer distances (i.e. beyond a
two-fold expansion) theML-curves display small energy fluctuations which
are absent at the DFT level. These will be analyzed in more detail below.

It is worth noting that allmodels discussed so far have not been trained
on reference atomic charges. This contrasts with common practice in the
development of long-range MLIPs, where schemes such as Hirshfeld par-
titioning are often used to generate reference charges31,34,35. On the other
hand, models where charges are considered solely as learnable weights in
long-range energy expressions are becoming increasingly popular46,47.
Indeed, given that the partial charges of atoms inmolecules are not physical
observables, ML charges obtained via fitting potential energy surfaces can
nonetheless acquire a meaningful interpretation and reflect the underlying
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physics of the system. This is somewhat analogous to density representa-
tions obtained with Resolution-of-the-Identity (RI) and Density Fitting
(DF) techniques in quantum chemistry, which can also differ significantly
depending on whether an overlap (density-based) or Coulomb (energy-
based) metric is used48. Indeed, it has been argued that charge partitioning
schemes can be considered a primitive form of RI 49.

In order to judge the quality of the predicted charges, we therefore
choose not to compare them toan (arbitrary) referencepartitioning scheme.
Instead, we consider how the sums of atomic charges for individual mole-
cules fluctuate during the dissociation of the corresponding clusters. This
provides insight into intermolecular charge transfer and polarization, which
should be robustly captured by any reasonable partitioning. Figure 3 shows
the evolution of the molecular charges for the dissociation of a repre-
sentative test set cluster at each charge state. Here, we compare PBE0
Hirshfeld charges (top) with the kQEq charges of a model trained on
energies and forces (center) and specialized kQEq models trained to
reproduce Hirshfeld charges (bottom).

At first glance, all methods capture the same basic trends. The total
charges are delocalized among all molecules in the equilibrium geometry.
Upon dissociation, the charge localizes on one fragment (H3O

+ or OH−,
respectively),while theH2Omolecules becomechargeneutral. Interestingly,
even the DFT reference displays a small deviation from integer charges in
this limit (particularly for the anionic cluster), due to the well known
delocalization error50. Because a hybrid functional is used (and because the
electronegativity differences between the fragments are relatively small)
DFT does approximately recover the correct limit of integer charges in this
case, however. Deviations are more pronounced in the ML models, with
deviations of up to 0.05 elementary charges. They thus inherit the over-
delocalization tendency from the underlying QEq model, which is much

more pronounced than for hybrid DFT41. The models that are explicitly
fitted on charges are actually slightly worse in this respect, indicating that
this is a fundamental property of ML-QEq models and not related to the
specific training setup.

Beyond these general trends, there are also notable differences in how
the methods approach their asymptotic limits. In the DFT case, the mole-
cular charges monotonically approach the asymptotic values, whereas the
MLmodels showmuchmore variation and even localminima andmaxima
in some cases. This is also related to the fact that QEq-based models can
arbitrarily transfer charge betweenmolecules, as long as this is variationally
convenient. This leads to an exaggerated response of the charges to small
perturbations in the electrostatic potential, and leads to the small energy
fluctuations upon dissociation seen in Fig. 2.

External fields
One of the key advantages of variational charge equilibration methods is
their inherent ability to dynamically adapt the atomic charges in response to
external fields. This feature is particularly important forMLIPs intended for
applications involving non-isotropic environments, such as interfaces in
battery systems or electrocatalysis. Here, local fields can vary significantly
and do not tend to cancel out in the course of MD simulations 12.

To assess the ability of QEq-based methods for accurately
describing the PES in the presence of an external electric field, we
selected a subset of 3030 non-equilibrium neutral water cluster con-
figurations from the dataset described in the previous section. Based on
this, a second dataset in which each configuration was subjected to a
uniform external electric field was generated. These fields were defined
based on a randomly oriented unit vector scaled by a randomly selected
magnitude ranging from 0.01 to 0.2 V/Å. This range was chosen to

Fig. 1 | Charged and neutral water clusters.
a Exemplary cluster in the equilibrium and dis-
sociated state. b Learning curves for energies (blue)
and forces (red). Mean and standard deviations for
three random training sets are shown for each size.
RMSEs are calculated on the validation set com-
posed of 2000 randomly selected structures for each
net charge state. c Relative distribution of energy
errors for a test set composed of 5000 random
structures for each net charge state (represented by
different color bars), and the corresponding
parity plot.
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reflect realistic conditions at electrode interfaces, where local field
strengths can reach up to 0.2 V/Å24,51,52. Higher fields, particularly
around 0.35 V/Å, are known to induce water molecule dissociation53,
and were therefore avoided to remain within the regime of non-
destructive field strengths53.

To explore optimal training strategies in this setting, we constructed
training sets following twocomplementary approaches, depicted inFig. 4. In
the first case, a set of 100 field-perturbed data points was augmented with a
varying number of field-free configurations. In the second case, a set of 100
field-free configurations was augmented with a varying number of field-
perturbed configurations. This strategy was chosen in order to determine
how training data points with and without a field help or hinder the pre-
dictive performance of the model for both kinds of data. This reveals that
incorporating field-perturbed structures into the training set is crucial for
achieving optimal performance for both field-free and perturbed systems.
While adding field-free configurations also initially improves the perfor-
mance for perturbed systems, this benefit quickly tapers off as more
structures are added. In contrast, adding field-perturbed structures is

beneficial to both field-free and field perturbed systems. Nevertheless, an
accuracy gap between the field-perturbed and field-free structures remains.

Based on these findings, a final model was trained using a dataset
comprising 2000 field-perturbed and 1000 field-free configurations. While
overall low errors (ca. 2 meV/atom for energies and 60 meV/Å for
forces) are achieved, the errors for field-perturbed cases remain
significantly higher than for field-free ones. This increased difficulty
points to an inherent limitation in how well QEq-based methods can
describe polarization.

As described in the Methods section, the inclusion of an external
electric field in the QEq energy expression corresponds to an additive
perturbation of the atomic electronegativities. This perturbation depends
solely on the atomic positions and the direction andmagnitude of the field,
leading to a quadratic response of the energy and a linear response of the
charges with respect to the field strength. This means that the field response
is effectively ML-free in QEq-based MLIPs. Nonetheless, incorporating
fields in the training is beneficial, since it leads to an optimal mean-field
parameterization for the given range of applied fields.

Fig. 2 | Cluster dissociation. aComparison between
DFT (points) and the GAP+kQEq (full lines)
energies. b Illustration of equilibrium and dis-
sociated water clusters for each energy curve, where
atoms are colored according to their atomic charges.
For anionic and cationic clusters theOH− andH3O

+

fragments are circled, respectively.

Fig. 3 | Evolution of molecular charges during
cluster dissociation. Charges are shown for each
total charge state and DFT-based Hirshfeld parti-
tioning (top), a GAP+kQEq model fitted on ener-
gies and forces (center), and kQEq models fitted on
Hirshfeld charges (bottom).Different shades of lines
represent different molecules in each cluster. Note
that a single energy/force model was trained for all
charge states, whereas individual models were
trained for each charge state when fitting to charges.
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Figure 5 illustrates the qualitative disagreement between DFT and
kQEq for a water cluster subjected to external electric fields of varying
magnitude but fixed direction. As shown, the QEq-based MLIP fails to

reproduce the correct shape of the energy response to the field. Figure 5
also shows the difference in atomic charges obtained under −0.2 V/Å
and 0.2 V/Å fields. The kQEq model predicts that the external field
induces a dipole aligned with the field direction, resulting in a charge
redistribution within the cluster. In contrast, changes in DFT-based
Hirshfeld charges indicate a polarization of each individual water
molecule, but no charge redistribution between the water molecules.
This behavior highlights the intrinsic limitations of QEq-based
methods in adequately capturing polarization effects. A further
example demonstrating this linear charge redistribution in periodic
water slabs is provided in Supplementary Fig. 2 and in Supplemen-
tary Note 3.

More crucial than the quantitative disagreement betweenMLandDFT
is the fact that the overpolarization tendency of QEq-basedmodels can lead
to pathological behavior under certain conditions. To illustrate this, we
performed an MD simulation analogous to the work of Modine and co-
workers38 (who used a classical QEq model). Specifically, we applied a
constant external electricfield of 0.2V/Å in the z-direction to awater cluster
consisting of 10molecules. To confine themotion of themolecules in the z-
direction, we imposed a harmonic constraint represented by planar
boundaries at z = ± 30Å.

As illustrated in Fig. 6, the water cluster begins to split into two
distinct fragments around the 150 ps mark: one composed of two
molecules moving in the direction of the applied field, and the other
composed of eight molecules moving in the opposite direction. The
larger subcluster accumulates a net negative charge and migrates against
the field, while the smaller, positively charged subcluster moves along the

Fig. 4 | Learning curves for configurations with and without external fields.
Shown are energy errors for a model trained on an initial set of 100 field-perturbed
configurations, which is augmented byN field-free configurations (dashed lines) and
amodel trained on an initial set of 100 field-free configurations, which is augmented
byN field-perturbed configurations (full lines). Color scheme: blue - test set of field-
perturbed structures, red - test set of unperturbed structures.

Fig. 5 | Electric field response of QEq models.
a Energetic response of DFT and machine learning
(GAP+kQEq) for a neutral water cluster subjected
to external electric fields of varying magnitudes
along a fixed direction. Energies are shifted so that
the DFT energy is zero at ∣ϵ = 0.0∣. b Difference in
atomic charges obtained from Hirshfeld partition-
ing (DFT) and kQEqunder external fields of−0.2V/
Å and 0.2 V/Å.

Fig. 6 | Pathological overpolarization of a water
cluster in a static field. Snapshots from a molecular
dynamics simulation of awater cluster subjected to a
static external electric field applied along the z-axis.
Harmonic constraints with a force constant of
0.5 eV/A2 were applied in both positive and negative
z-directions to confine the system.
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field direction. The magnitudes of the net charges on both subclusters are
approximately equal and opposite. Such charge separation is unphysical
under realistic conditions, as it would require a potential difference
approaching the ionization energy of water (12.6 eV)38, a threshold not
reached under the simulated field strength. This behavior is a clear
artifact of the QEq formalism, which enforces a linear and unconstrained
charge response. The incorporation of environment-dependent ML
electronegativities does not mitigate this limitation, indicating that the
underlying QEq model remains fundamentally inadequate for accurately
capturing polarization and charge transfer under strong external fields in
non-metallic systems.

Discussion
Charge equilibration based on QEq-like ML-models is currently the
state-of-the-art approach to introduce non-local charge transfer and
electrostatic interactions into MLIPs. We find that such models can
in principle accurately describe multiple total charge states and
naturally incorporate a mechanism to describe the response to
external fields. Despite their overall good performance, our results
also showcase the limitations of ML-QEq models, however. While
potential energy surfaces can be accurately reproduced, delocalization
and overpolarization errors (that are known for classical QEq mod-
els) can lead to problematic behavior. This manifests in unphysical
intermolecular charge transfer (particularly for fragmented systems)
and a qualitatively incorrect response of both energies and charges to
electric fields. A drastic consequence of this is pathological behavior
in cases when a static electric field is applied in an MD simulation.
Importantly, these issues are independent of the specific MLIP used
herein, and can be traced to fundamental limitations of ML-QEq
models.

Individual aspects of these problems can be addressed, e.g. by
constraining the total charge of each subfragment or molecule.
However, this strategy is not universally applicable. In particular, in
reactive simulations (one of the main application areas of MLIPs),
predefining individual fragments is not feasible. Nevertheless, QEq
has some highly desirable properties, namely its variational nature
and the capability to describe non-local effects. This points to a need
to develop new ML charge equilibration approaches beyond the QEq
paradigm. In the classical force-field domain, the Atom Condensed
Kohn Sham (ACKS2) approach has proven to be the most promising
successor for QEq, though it requires a complex atom pairwise
parameterization54,55. Alternatively, a more complex (non-local)
expression for the site energy potentially could also provide an
avenue to overcoming the pathologies of QEq. The methods and
datasets presented herein can provide a benchmark for such new
developments.

Methods
Machine learning interatomic potentials
All ML models described herein are based on the sparse Gaussian Process
Regression (GPR) methodology. Specifically, we approximate a target
quantity y(x) as a linear combination ofM basis functions ~yðxÞ

~yðxÞ ¼
XM

m¼1

wmkðx; xmÞ; ð1Þ

where wm are regression weights that are fitted to match ab initio reference
values, k is a kernel function, x is a representation vector (to be defined
below) andMdenotes the size of the representative set. Although this set can
generally be chosen at random, in our case we select diverse points using
CUR decomposition56, as is routinely done for Gaussian Approximation
Potentials (GAP)1. In contrast to the representative set,N>Mwill denote the
size of the total training set.

The GPR framework is used to create MLIPs that incorporate both
short-range (SR) and long-range (LR) interactions. To this end, the total
energy of the system is described via a SR partESR (described byGAP) and a
LR part EQEq described by (Kernel) Charge Equilibration (kQEq):

Etot � ESR þ ELR: ð2Þ

The SR energy of the system is expressed as a sum of atomic energy
contributions ϵ(xi) that depend on local environments described by the
descriptor xi.

ESR ¼
XNat

i¼1

ϵðxiÞ ð3Þ

where the summation goes over all atoms in the system Nat.
This local atomic contribution ϵ(xi) is determined using a straigth-

forward GPR model as expressed in Eq. (1):

ϵðxiÞ ¼
XM

m¼1

wSR
m kðxi; xmÞ; ð4Þ

The LR part of the energy is described by the QEq framework, where
the total energy can be approximated as a second order Taylor expansion of
on-site atomic charges qi combined with a screened pairwise Coulomb
interaction (assuming Gaussian charge distributions with width αi):

ELR ¼
XNat

i¼1

χiqi þ
1
2

Ji þ
1

αi
ffiffiffi
π

p
� �

q2i

� �
þ 1

2

XNat

i;j

qiqj

erf
rijffiffi
2

p
γij

� �

rij
: ð5Þ

Here, the screening parameter γij is computed from the width parameter, χi
is the electronegativity of atom i and Ji is thenon-classical contribution to the
atomic hardness 37,57.

Self-consistent partial charges can be obtained by minimizing Eq. (5).
As this expression is quadratic in the atomic charges qi, the ground-state
charge distribution can be computed analytically. Specifically, setting the
derivatives of the total energy with respect to the partial charges to zero
yields a linear systemof equations,which canbe solveddirectly toobtain the
self-consistent charges (under the constraint that total systemcharge,Qtot, is
conserved):

∂ELR

∂qi
¼

XN

j¼1

Aijqj þ χi ¼ 0 ð6Þ

with Aij being the element of the hardness matrix A defined as:

Aij ¼

Ji þ 1
αi

ffiffi
π

p for i ¼ j;

erf
rijffiffi
2

p
γij

� �

rij
otherwise:

8
>>><

>>>:
ð7Þ

With this, ELR can be expressed in a matrix notation as

ELR ¼ 1
2
qTAqþ qTχ: ð8Þ

For a description of the incorporation of periodic boundary conditions, see
Supplementary Note 4. In contrast to classical QEq models, where χ is an
elemental constant, ML-based QEq models introduce environment-
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dependent electronegativities30,31. ThekQEqmodel usedherein achieves this
via GPR, analogously to how the atomic energies are expressed in the SR
energy 37:

χiðxiÞ ¼
XM

m¼1

wLR
m kðxi; xmÞ: ð9Þ

These environment-dependent electronegativites are then used for the QEq
scheme instead of constant element-dependent ones. For full details, please
refer to our previous work 37.

TheSRandLRmodels can inprinciple be trained separately.This is e.g.
the strategy pursued for 4G-HDNNPs, where the QEq model is trained on
Hirshfeld charges and kept fixed during the training of the short-ranged
NN. However, in order to achieve a comprehensive description of various
phenomena, such as polar interfaces, systems with varying total charge, or
interactions with applied external fields, a joint training of both models is
used herein.

External fields
One of the advantages of variational charge equilibration approaches like
QEq is that they allow a straightforward description of the interactions of a
systemwith an external electricfield. This can be achieved using themethod
of finite fields, following the formalism of Chen andMartínez38,58. This leads
to a modification of the QEq energy expression due to the field ϵ as

Eðq; ϵÞLR ¼ 1
2
qTAqþ qTχ � qT

X3

μ¼1

Rμϵμ ¼
1
2
qTAqþ qT ðχ �

X3

μ¼1

RμϵμÞ;

ð10Þ

whereR is a matrix of atomic coordinates. The summation in this equation
is over the cartesiandirectionsμ=x, y, z. As canbe seen, applying anexternal
field thus perturbs the electronegativies by a scalar Rμϵμ. Minimizing Eq.
(10) in the same way as Eq. (5), an analogous system of linear equations is
obtained.

Computational settings
Reference data for neutral and charged water clusters was obtained
using FHI-Aims59 with the hybrid PBE0 functional60 and tight basis set
and integration settings. MD simulations for generating non-
equilibrium configurations of charged clusters were performed with
the xtb code, employing the semiempirical tight-binding method
GFN2-xTB at 300 K43–45.

We use the Smooth Overlap of Atomic Positions (SOAP)
descriptor61 as a representation of atomic environments, as implemented
in QUIP via the quippy Python interface62,63. For the model describing
varying total charge states, two SOAP descriptors with parameters
lmax ¼ 5, nmax ¼ 6 and rcut = 3Å or rcut = 5Å, respectively, were used.
Regularization parameters of 10−6 eV for energies and 10−3 eV/Å for
forces were used. Non classical hardness for both elements were set to 0
Hartree. For clusters with applied fields, two SOAP descriptors with
parameters lmax ¼ 6, nmax ¼ 8, rcut = 2.4Å, and lmax ¼ 3, nmax ¼ 8, rcut
= 5Å were used. Non-classical hardness for both elements were set to 0.1
Hartree. Regularization parameters of 0.001 eV for energies and 0.01 eV/
Å for forces were used.

MD of the water cluster under the influence of an external field was
performedwith the Langevin thermostat in theNVTensemble, using a time
step of 0.5 fs at 300K.AHookean constraint planewere placed at z=± 30Å
with k = 0.5 eVÅ−2. The system was evolved in time using the Atomic
Simulation Environment (ASE)64,65 calculator implemented in q-pac.

Data availability
Final fitted model together with all data are publicly available via MPCDF
gitlab https://gitlab.mpcdf.mpg.de/mvondrak/qpac_data.

Code availability
The code via gitlab https://gitlab.com/jmargraf/qpac/ (commit 6a43ce73
d8735c6c6079682f649a8231cc68a4ce).
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