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Unveiling key descriptors for electrical
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experiments and explainable AI
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This study examines the electrical resistivity of metals and binary, ternary alloy thin films across a
broad range of compositions and microstructures through data-driven approaches. Electrical
resistivity values for over 70,000 alloy compositions were measured through high-throughput
experiments on combinatorially synthesized specimens. A machine learning prediction model was
developed, and an explainable artificial intelligence (XAI) algorithm was utilized to identify the key
features influencing electrical resistivity. The results demonstrate that the average valence electron
concentration (VECavg) is the most significant descriptor governing the electrical resistivity of these
alloys. Electronegativity difference (ΔEN) and mixing entropy (ΔS) were identified as collaborative
features contributing to resistivity. The relationships between these features and resistivity are
discussed in the context of traditional theoretical frameworks to provide a comprehensive
understanding of the electrical behavior of alloys.

Electrical resistivity of alloys is oneof themost importantphysical properties
to be considered for designing the interconnects in integrated circuit chips,
as well as electrical conductors, electrical resistors, and microelec-
tromechanical systems (MEMS) devices1–3. Additionally, electrical resistiv-
ity provides insight into thermal properties and microstructures of metals
and alloys4–7. For a deeper understanding, theoretical models have been
suggested and revealed the fundamentals of electrical resistivity. For
instance, Drude model describes that the electrical resistivity is inversely
proportional to electron density and relaxation time:

ρ ¼ m
ne2τ

ð1Þ

where ρ is the electrical resistivity,m is the electronmass (9.11 × 10−31kg),n
is the number of electrons per unit volume, e is the electron charge (1.6 ×
10−19C), and τ is the relaxation time for an electron between collisions8.
Matthiessen’s rule considers the increase in resistivity resulting from elec-
tron scattering events:

ρtotal ¼
XN
i¼1

ρi ð2Þ

where ρtotal is the total electrical resistivity or measured electrical resis-
tivity, N is the total number of electron scattering events, and ρi is the
electrical resistivity by ith scattering event9. Mayadas and Shatzkes (MS),

Fuchs and Sondheimer (FS), and Nordheim’s models provide more
detailed descriptions of electron scattering mechanisms by taking into
account microstructural and chemical features such as grain boundaries,
precipitations, phases, vacancies, interstitials, solutes, and their effects on
resistivity10–13.

These models, however, are limited in describing the electrical resis-
tivities of high-solute concentration regions in complex concentrated alloys
(CCAs) or multi-component alloys (MCAs), which have gained attention
for their exceptional properties14,15. It is challenging to capture the behavior
of CCAs due to multiple principal elements with unique properties. For
instance, a high concentration of solutes in these alloys can induce short-
range ordering and amorphization in alloys, which reduce the electron
mean free path and contribute to the increase in electrical resistivity16,17.
Additionally, explaining the electrical resistivity of magnetic CCAs is
challengingdue to the distinct electronbehaviors causedby spin disordering
in ferromagnetic alloys and the absence of magnetic scattering in refractory
alloys18,19.

Data-driven and machine learning-based approaches have demon-
strated their effectiveness in overcoming challenges associated with ana-
lyzing the characteristics of multi-component alloys20–24. These approaches
have facilitated the development of prediction models for various alloy
properties, contributing to the discovery of new alloys with enhanced
properties21,22,25. However, machine learning models are often regarded as
black box models due to their inability to provide clear explanations of the
relationships between input features and output. While conventional
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correlation analyses like Pearson and Spearman correlations can quantify
the importance of each input feature in linear models, they are limited in
describing non-linear relationships26,27. To address this challenge, ensemble
models have been employed to extract the importance of features across the
dataset, providing insights into the influence of individual features onmodel
predictions28. Additionally, explainable artificial intelligence (XAI) algo-
rithms are capable of quantifying the contributions of input features to the
output, thereby facilitating a better understanding of their relationship29,30.

In this work, we developed a machine learning based electrical resis-
tivity prediction model using an experimental dataset for tens of thousands
of alloys obtained from high-throughput resistivity measurements. Subse-
quently, explainable artificial intelligence was employed to elucidate the
relationship between input features and electrical resistivity, as well as to
determine descriptors. We adopted the integrated gradients algorithm,
which reveals the contribution of input features to the output by aggregating
the gradients of inputs31. Finally, the descriptors for electrical resistivity,
which describe the dissimilarities in the electrical resistivity of the con-
stituent elements, have been characterized.

Results
Experimental data acquisition
The construction of the electrical resistivity predictionmodel commenced
with the acquisition of experimental data on electrical resistivity from
thin-film metals and alloys. To ensure high model performance, it is
crucial to gather a large amount of property data32. We employed com-
binatorial synthesis (Fig. 1a) using a magnetron co-sputtering system, a
technique that produces a composition spread on a single wafer by con-
trolling the powers of multiple guns and depositing without substrate
rotation5,6,33,34. Then, high-throughput (HT) experiments were conducted,
facilitating the rapid acquisition of electrical resistivity data through the
utilization of the X–Y robotics stage (Fig. 1b, c)5,33. By utilizing this
method, thin-film alloys can be synthesized under nearly consistent
conditions, facilitating the collection of data that is more suitable for
machine learning training. Further details of the electrical property
measurements are provided inMethods section.

Datasets
Formachine learning andXAI analysis, we curated a comprehensive dataset
of electrical resistivity values from high-throughput (HT) experiments on a
diverse array of thin-film alloys, encompassing 6 pure metals, 7 binary
systems, and 30 ternary systems (Table S1). The composition distribution
across these alloys is depicted in the swarm plot (Fig. 2a), where each data
point represents an experimental composition by its atomic concentration,
highlighting the dataset’s compositional diversity essential for robust
machine learning modeling. To extend the applicability of our model

toward CCAs, several ternary alloys in this study were intentionally
designed with relatively high solute concentrations—often exceeding
20 at.% per element—to emulate the chemical complexity and configura-
tional disorder characteristic of multi-principal element systems. In Fig. 2b,
the violin plot illustrates the resistivity distribution for alloys based on their
primary element, where the width of each plot denotes the density of data
points at different resistivity levels. Figure 2c presents a histogram of
resistivity values across all data, revealing multiple peaks, with the most
prominent around 120 µΩ·cm, and additional peaks near 50 and
220 µΩ·cm. This peak distribution demonstrates the dataset’s breadth in
resistivity variation, offering rich insights into the electrical properties of
alloys. The stacked bar charts (Fig. 2d–f) further categorize the data by alloy
type.While the binary alloy data (7190 data points) exhibit limited diversity,
the predominance of ternary alloys (64,348 data points) highlights their
compositional flexibility and suitability for exploratory analysis. This
extensive and varied dataset provides a solid foundation for machine
learning and XAI to analyze electrical resistivity across a wide spectrum of
ternary alloy compositions, supporting a detailed examination of feature
importance and enabling novel insights into alloy design.

Feature selection
To predict electrical resistivity, we developed an artificial neural network
(ANN) model, which effectively captures the complex non-linear rela-
tionships between input features and resistivity. The electrical resistivity
values obtained from high-throughput (HT) experiments were used as the
model outputs. The model incorporates both intrinsic and extrinsic input
parameters that influence alloy microstructure and resistivity. The intrinsic
parameters, directly related to the alloy’s atomic structure and bonding
characteristics, include the average atomic radius (ravg), which correlates
with the relaxation time of free electrons and thereby affects electron
mobility in the alloymatrix35–38. The average valence electron concentration
(VECavg) was included to represent electron density, which plays a crucial
role in conductivity39,40. Additionally, atomic radius mismatch (δ) and
mixing entropy (ΔS) were incorporated to capture local lattice distortions
and chemical disorder, both of which impact electron scattering within the
alloy13,41. Other intrinsic parameters, such as electronegativity difference
(ΔEN) and heat of mixing (ΔHmix), were also selected because of their
relevance to microstructural phase stability: a higher ΔEN promotes com-
pound formation, while smaller values ofΔHmix tend to favor the formation
of disordered crystalline phases42,43.

To account for variations arising from the sputter deposition process,
extrinsic parameters affecting the microstructure and impurity concentra-
tion were also included. Film thickness (t), measured through cross-
sectional scanning electron microscopy (SEM), and homologous tempera-
ture (Th), defined as the ratio of the deposition temperature to the rule of

Fig. 1 | Schematic illustration of the combinatorial electrical resistivity data
acquisition process. a Combinatorial alloy fabrication through physical vapor
deposition. bHigh-throughput robotic electrical resistivity data acquisition using a

4-probe resistance mapper. c An example of electrical resistivity map of the mea-
sured combinatorially sputter deposited thin-film alloys.
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mixture melting point, were incorporated for their influence on grain size
and grain boundary density, which significantly affect electron scattering
and resistivity44,45. Additionally, the deposition rate (vd) was included to
represent impurity levels in vapor-deposited films, as lower deposition rates
generally increase resistivity through enhanced electron-impurity
scattering46,47. Detailed formulas used for calculating these features are
provided in Table 2 in the Methods section, outlining each parameter’s
derivation from alloy compositions and atomic properties.

Machine learning modeling
Figure 3a illustrates the performance of the trained ANN model for the
training and validation sets, demonstrating its high predictive accuracy for
electrical resistivity. The model achieved an R2 of 1.00 with a root mean
square error (RMSE) of 3.94 μΩ cm on the training set, and an R2 of 0.99
with an RMSE of 5.86 μΩ cm on the validation set (seeMethods for mod-
eling details). To further validate the generalizability of our model, we
conducted an additional evaluation on four independent quaternary alloy
systems (5,744 datapoints for Al–Ti–Co–Ni, Cr–Fe–Co–Ni,
Cr–Mn–Co–Ni, and Ti–Nb–Ta–W), tabulated in Table S2. The prediction
results (Fig. S1) show high accuracy, with an RMSE of 31.9 μΩ cm across
these systems. This result demonstrates the model’s effectiveness in cap-
turing the relationship between input features and electrical resistivity, even
for quaternary systems.

Figure 3b displays violin plots of feature importance values across the
entire dataset, with asterisks indicating the average IG values derived using
the integrated gradients (IG) method31 (Methods). By using Cu film, the
most conductive metal in our dataset, as the baseline, the IG values reflect
how much each feature influences resistivity relative to the baseline,

quantitatively explaining why a given alloy exhibits higher resistivity in a
physically meaningful way. The XAI results reveal that the average valence
electron concentration (VECavg) is themost significant feature, with amean
importance value of 58.3 μΩ∙cm. Additionally, Figure S2 illustrates the
distributions of feature importance across pure metals, binary alloys, and
ternary alloys, further emphasizing the critical role of VECavg in complex
alloy systems. It is noticeable that ΔEN holds high importance in binary
(24 μΩ∙cm) and ternary (40.5 μΩ∙cm) alloys, as it is a key descriptor asso-
ciated with chemical disorder and phase formation behavior19,48.

The feature importance values calculated for each parameter across all
alloy groups (Fig. 3c and Fig. S3) reveal that VECavg exhibits a linear rela-
tionshipwith electrical resistivity.This indicates thathighervaluesofVECavg

correlate with increased resistivity (Fig. 3c), with its influence becoming
particularly pronounced in alloys with high resistivity. The featureswith the
next highest average of importance values are electronegativity difference
(ΔEN, 38.8 μΩ cm), followed by mixing entropy (ΔS, 29.4 μΩ∙cm), and
atomic radius mismatch (δ, 16.9 μΩ cm). Other parameters show com-
paratively lower feature importance values. These findings are somewhat
consistent with the absolute Pearson correlation coefficients in Fig. 3d,
which indicate high correlation values (>0.4) for the intrinsic parameters
VECavg, δ, ΔEN, ΔS, and ΔHmix.

Both the XAI and Pearson correlation analyses suggest that extrinsic
parameters, such as thickness (t), homologous temperature (Th), and
deposition rate (vd), have a lower impact on electrical resistivity. The data
distributions in Fig. S4 support thesefindings. For example, thickness values
(Fig. S4a) arepredominantly concentrated around510 nm, except inCuand
W thin-film alloys. Similarly, deposition rates (Fig. S4b) mostly fall within
0.2 to 0.35 nm/s, resulting in limited impurity variation across films49.

Fig. 2 | Alloy compositions and electrical resistivity distributions across pure
metals, binary alloys, and ternary alloys. a Swarm plot showing the distribution of
compositions in the training data. b Violin plot depicting the distribution of elec-
trical resistivity data based on base elements. The asterisk within each violin

indicates the mean resistivity for each alloy group, and the width highlights the
density of resistivity values. c Histogram of the number of resistivity data points
across all datasets. Stacked bar plots of the distribution of electrical resistivity data of
(d) pure metals, (e) binary alloys, and (f) ternary alloys, labeled by base elements.
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Table S3 lists the standard deviation of normalized feature values and
illustrates the relatively small values of 0.24 and 0.18 for thickness and
deposition rate, respectively. Moreover, the majority of homologous tem-
perature values (Fig. S4i) for combinatorial thin films are lower than 0.5,
indicating small grain formation according to the structure zone model45.

The limited variations in extrinsic factors reinforce the dominant role of
intrinsic parameters in determining electrical resistivity.

Figure 4a illustrates the relationship between VECavg and electrical
resistivity. In the low-VECavg region (2–4), alloys with base elements ofMg,
Al, and low-VEC transition metals exhibit an increase in resistivity with

Fig. 3 | Model performance and explainable AI results. a Prediction model per-
formance withR2 and RMSE values. bViolin plots of feature importance determined
byXAI for the total dataset. Asterisks indicate the average feature importance values.

c Feature importance (IG) values of average valence electron concentration vs.
electrical resistivity. d Absolute Pearson correlation coefficients for the input fea-
tures and electrical resistivity (ρ) of the machine learning model.

Fig. 4 | Relationship between descriptors and
electrical resistivity. VECavg versus electrical resis-
tivity (ρ) for themetals and alloys color-coded by (a)
base elements, (b) electronegativity differ-
ence (ΔEN).
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rising VECavg. In these alloys, electronic conduction primarily occurs
through s-electrons. The positive relationship between VECavg and resis-
tivity can be attributed to the enhanced scattering of s-electrons, influenced
by an increased number of vacant s- and d-states introduced through
alloying50,51. In systems with a limited number of conduction electrons, a
higher density of grain boundaries and lattice distortions from alloying
further intensify electron scattering, contributing to higher resistivity.

In the regime where VECavg is greater than 4, typically dominated by
transition metals like Co, Ni, and Cu, resistivity decreases with increasing
VECavg. In thesemetals, conduction is facilitated by both s- and d-electrons.
As VECavg increases, the d-band progressively fills, reducing the number of
unfilled states available for electron scattering. This reduction in scattering
states, combined with stronger metallic bonding, lower overall electron
scattering, and higher free electron density, results in a decrease in electrical
resistivity.

Some alloy systemsdeviate from the general trend betweenVECavg and
electrical resistivity described above. As shown in Fig. 4a, alloys such as
Ti–Mg, Ti–Nb–Ta, Ti–Nb–Mo, and W–Ta, which fall within the mid-
VECavg range (4–6), exhibit lower resistivity than other thin-film alloys with
similar VECavg values. This deviation is likely attributed to the very small
electronegativity difference (<0.07) in these alloys (Fig. 4b). A larger elec-
tronegativity attracts the electron with a local charge transfer and promotes
the intermetallic compound formationwhich are associatedwithdirectional

chemical bonding inhomogeneities among alloying elements42,52,53. The
minimal electronegativity differences in these alloys reduce the likelihood of
such compound formation, enhancing electron transport. Furthermore,
these alloys exhibit very small atomic radius mismatches (0.2–2.7%) (Fig.
S5a), leading to minimal lattice distortion and reduced electron scattering.
Additionally, a small absolute heat of mixing (|ΔHmix|) values (Fig. S5b) for
Ti–Mg (1.9–6.5 kJ/mol), Ti–Nb–Ta (0.58–4.53 kJ/mol), Ti–Nb–Mo
(2.7–4.8 kJ/mol), and W–Ta (0.7–6.6 kJ/mol) fall within the solid-solution
zone suggested by Zhang et al.48. This indicates a tendency for these alloys to
form homogeneous solid solutions rather than complex intermetallic pha-
ses, further contributing to their lower resistivity.

Toprovide system-dependent insights into howdescriptor importance
varies across different alloy types, we categorized the feature importance
values derived from the trained model based on the base elements. For
consistency, the base element was defined as the element with the highest
atomic fraction in each alloy. From the original dataset, we excluded Mn-,
Zr-, Nb-, Mo-, Ta-, and W-based thin-film alloys due to their limited data
(<2500 entries) and diversity (< 4 systems), as well as their restricted feature
distributions (see Fig. S4 and Table S1). For each alloy group, two to four
features exhibit higher importance than the average total feature importance
value, as shown in Fig. 5 and Table 1.

Theaverage valence electron concentration (VECavg) is identified as the
most significant feature across most alloy groups, demonstrating its

Fig. 5 | Feature importance analysis for each alloy group. Average feature importance values of (a) Mg-, (b) Al-, (c) Ti-, (d) Cr-, (e) Fe-, (f) Co-, (g) Ni-, and (h) Cu-based
thin-film alloys. The solid line and its corresponding value represent the average of the total feature importance (IG) values for each alloy group.

Table 1 | Descriptors of each alloy group in the order of the mean feature importance values

Base element Feature 1 Feature 2 Feature 3 Feature 4

Mg VECavg (120 μΩ∙cm) ravg (47 μΩ cm) δ (46 μΩ cm)

Al VECavg (123 μΩ∙cm) ΔEN (47 μΩ cm) ΔS (35 μΩ cm)

Ti VECavg (78 μΩ∙cm) ΔEN (54 μΩ cm)

Cr VECavg (96 μΩ∙cm) ΔS (28 μΩ cm) ΔEN (28 μΩ cm) vd (28 μΩ cm)

Fe VECavg (69 μΩ∙cm) ΔEN (48 μΩ cm) ΔS (29 μΩ cm) vd (28 μΩ cm)

Co ΔEN (44 μΩ∙cm) VECavg (33 μΩ cm) ΔS (31 μΩ cm) ΔHmix (24 μΩ cm)

Ni ΔEN (46 μΩ∙cm) ΔS (28 μΩ cm)

Cu ΔEN (35 μΩ∙cm) ΔS (19 μΩ cm) δ (13 μΩ cm)
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universal relevance in alloy characterization. The relatively lower impor-
tance of VECavg in Ni- and Cu-based alloys can be attributed to the inher-
ently high VEC values of the base elements (e.g., Ni: 10, Cu: 11), which
makes it challenging todifferentiate these alloys fromthebaselineofpureCu
film. Electronegativity difference (ΔEN), which contributes to chemical
disorder and influences phase stability, is also significant for most alloy
groups. An exception is observed in Mg-based alloys (Fig. 5a), where the
impact of ΔEN is less pronounced due to the exceptionally low electro-
negativity of Mg (1.293) compared to the average of 3 d transition metals
(1.65), which promotes its tendency to form compounds when alloyed with
most transition metals54,55.

Mixing entropy (ΔS), which captures chemical disorder independent
of elemental characteristics related to solid-solution effects andNordheim’s
rule, stands out as an influential feature for Al-, Cr-, Fe-, Co-, Ni-, and Cu-
based alloys. Atomic radius mismatch (δ), which is known to affect amor-
phization and lattice distortion, notably contributes significantly to the
resistivity of Mg- and Cu-based thin films (Fig. 5a, h)43,56. These base ele-
ments exhibit either notably smaller atomic size (Cu: 1.276 Å) or larger
atomic size (Mg: 1.598 Å) compared to the average atomic radius of 3 d
transition metals (1.336Å). Especially, the significantly large atomic size of
Mg, which exhibits the largest ravg values among all alloys studied (Fig. S4c),
enhances the role of ravg in determining the electrical resistivity ofMg-based
alloys, as evidenced in Fig. 5a.

The heat of mixing (ΔHmix) proves to be a crucial feature for Co-based
alloys. High absolute ΔHmix values in Co-(Al, Ti, Zr), ranging from 19 to
41 kJ/mol, suggest that ΔHmix impedes the formation of disordered solid
solutions, consistent withfindings fromprevious studies57. This implies that
higher ΔHmix values reduce the likelihood of disordered solid solution,
thereby affecting resistivity. Furthermore,deposition rate (vd),which reflects
impurity concentration infilms, has emerged as an important feature forCr-
and Fe-based alloys58. The relatively highmelting temperatures of Cr and Fe
(e.g., Cr: 2180 K, Fe: 1811 K) compared to the average melting point of 3d
transition metals (1699 K) limit atomic diffusion and make their resistivity
more sensitive to the deposition rate 47.

To verify the descriptor features (Table 1) for each alloy group, electrical
resistivitymodelswith two to four featureswere constructed and trained. The
identical model structure used for training the total dataset was employed,
with the input dimension adjusted according to the number of descriptors
listed in Table1 for each alloy group (from nine to the specified number of
features). FigureS6andS7present the results for thesemodels, demonstrating
high accuracy across all alloy groups, with RMSE values below 11.7 μΩ·cm
and R2 values exceeding 0.86. Notably, despite being trained with fewer
features than the unified model with nine features (Fig. 3a), these models
effectively predict the electrical resistivity of thin-film alloys.

Discussion
In this study, we developed a machine-learning model to predict the elec-
trical resistivity of thin-film alloys and applied the integrated gradients (IG)
method to identify key descriptors impacting resistivity. Our analysis
revealed that average valence electron concentration (VECavg) is the most
influential descriptor, demonstrating its importance across alloy systems.
Collaborative phase-determining parameters, such as electronegativity
difference (ΔEN) and mixing entropy (ΔS), also play critical roles, collec-
tively affecting resistivity. Additionally, unique atomic characteristics
intrinsic to each base element influence the importance of specific
descriptors within alloy groups. For instance, atomic radiusmismatch (δ) is
significant inMg- and Cu-based alloys, while average atomic radius (ravg) is
especially relevant in Mg-based alloys. The heat of mixing (ΔHmix) notably
influences Co-based alloys, reflecting its role in stabilizing disordered solid
solutions. These findings provide valuable insights into the complex factors
governing electrical resistivity in multi-component alloys. While this study
demonstrated the applicability of the prediction model to quaternary alloy
systems, the same data-driven strategy may be extended to higher-order
alloys, with further validation needed to confirm its robustness across
broader compositional spaces.

Methods
Electrical resistivity measurement
We employed a scanning 4-probe measurement technique to measure the
resistance distribution across the combinatorially synthesized thin-film
alloys6. Current (I) was driven through current probes, and the voltage
difference (V) was precisely gauged using a digital multimeter (DM3058e,
RIGOL). The recorded sheet resistance data, obtained by dividing the vol-
tage by the current, were subsequently adjusted utilizing Eq. (3)59:

ρ ¼ FRt ð3Þ

where ρ is the electrical resistivity, F is the correction factor of 4.5324 for a
4-inch circular specimen, R is the measured resistance, and t is the film
thickness.

Semi-empirical features for machine learning models
Intrinsic features for model training were calculated based on the compo-
sitions of the thin-film alloys and atomic properties (Table S4)60,61. The
parameters used for the machine learning model can be calculated by the
formulas in Table 2. Ci, VECi, ri, ENi, and Tmi are atomic concentration,
valence electron concentration, atomic radius, electronegativity, and melt-
ing temperature of ith element, respectively. ΔHij

mix is the mixing enthalpy
between ith and jth elements, which is calculated by Miedema’s model43.

Machine learning model details
An artificial neural network (ANN) model was developed to predict elec-
trical resistivity, with the optimal architecture determined through a grid
search. This process involved constructingmodels using all combinations of
hidden layers (1 to 4) and nodes per layer (128, 256, 512, 1024, and 2048).
This systematic search allowed us to evaluate eachmodel configuration and
select the one that yielded the best performance for predicting resistivity.
Eachhidden layerwas droppedoutwith a dropout rate of 0.3, andReLUwas
used as the activation function. Thedatasetwas randomlydivided,with 10%
designated as a validation set. All the ML models in this work were trained
using the Adam optimizer with a learning rate of 5 × 10-4. The nine selected
features (Table 2) were normalized between 0 and 1 before training. For
reproducibility, the random seed and the training epoch were set to 42 and
2000, respectively. To prevent overfitting, we continuously monitored the
validation loss during training and saved the model at the epoch where the
validation loss reached its minimum, which occurred at epoch 1926 (Fig.
S8). As shown inFig. S9, the architecturewith 3hidden layers and 512nodes
achieved the lowest validation RMSE of 5.87 μΩ cm, establishing it as the
optimal configuration for accurate resistivity predictions. Subsequently, we

Table 2 | Formulas for input feature preparation for model
construction25

Parameter Formula Description

ravg Pn
i¼1

Ciri
Average atomic radius

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Cið1� ri
ravg

Þ2
s

Atomic radius mismatch

ΔEN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Cið
Pn
j¼1

CjENj
� ENiÞ

2
s

Electronegativity difference

ΔS �R
Pn
i¼1

Ci lnðCiÞ
Mixing entropy

ΔHmix Pn
i¼1;j>i

4CiCj4Hmix
ij

Heat of mixing

VECavg Pn
i¼1

CiVECi
Average valence electron
concentration

Th Tdeposition=
Pn
i¼1

CiTmi
Homologous temperature
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unveiled the descriptor feature for electrical resistivity using the integrated
gradients (IG) method. IG method determines the feature importance by
calculating the gradients of input features. The feature importance of ith

feature (IGi) for each alloy composition can be defined as Eq. (4)31:

IGi � jðxi � xi
0Þ×

XM
m¼1

∂Fðx0 þ m
M x � x0ð ÞÞ
∂xi

×
1
M

j ð4Þ

where x 2 Rd is the input feature vector with dimension d = 9, xi is the i
th

feature of input x, x0 2 Rd is the baseline input,M is the number of steps for
the Riemann sumapproximation of the integral (set to 30 in this study), and
∂FðxÞ
∂xi

is the gradient of the model output FðxÞ with respect to the ith feature.
Weused the input feature ofCu as the baseline x’ to analyze the contribution
of each input feature to increases in electrical resistivity. Using Cu as a
baseline allows us to assess the specific impact of each input feature in the
alloy on the overall electrical resistivity, providing deeper insights into the
role of individual alloying elements.

Data availability
The authors declare that themain data supporting the findings of this study
are available within the article and its Supplementarymaterial file. All other
relevant data are available from the corresponding author upon reasonable
request.

Code availability
The pre-trainedmodel for predicting the electrical resistivity of alloys, along
with the code used for inference, is available via https://github.com/
TaeyeopK/ML-for-Electrical-Resistivity-of-Alloys.
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