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Abstract

Silicon carbide (SiC) is an important technological material, but its high-temperature1

phase diagram has remained unclear due to conflicting experimental results about2

congruent versus incongruent melting. Here, we employ large-scale machine learning3

molecular dynamics (MLMD) simulations to gain insights into SiC decomposition4

and phase transitions. Our approach relies on a Bayesian active learning workflow5

to efficiently train an accurate machine learning force field on density functional6

theory data. Our large-scale simulations provide direct indication that melting of SiC7

proceeds incongruently via decomposition into silicon-rich and carbon phases at high8

temperature and pressure. During cooling at high pressures, carbon nanoclusters9

nucleate and grow within the homogeneous molten liquid. During heating, the10

decomposed mixture reversibly transitions back into a homogeneous SiC liquid.11

The full pressure-temperature phase diagram of SiC is systematically constructed12

using MLMD simulations, providing new understanding of the nature of phases,13

resolving long-standing inconsistencies from previous experiments and yielding14

technologically relevant implications for processing and deposition of this material.15

∗Equal contribution. Yu Xie conducted this work at Harvard before joining Microsoft.
†Corresponding to: yuxie1@microsoft.com, bkoz@seas.harvard.edu
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Introduction16

Silicon carbide (SiC) is an important technological material valued for its high hardness, mechanical17

strength, high thermal conductivity, and wide band gap [1]. The high-temperature and high-pressure18

behavior of SiC is of great scientific interest for understanding planetary interiors and stellar19

processes, due to its identification from absorption spectroscopy of carbon-rich extrasolar planets20

[2]. Understanding the properties of SiC under extreme conditions is also crucial for various21

applications, including nuclear reactors [3], epitaxial deposition growth of SiC [4, 5], and graphene22

synthesis [6] for electronics and quantum devices.23

The melting and decomposition of SiC have been investigated by experimental and computational24

methods for decades. However, various experiments have reached inconsistent conclusions and25

thereby raised confusion about the nature of melting of SiC. Experiments at high temperatures26

and pressures are challenging because it is difficult to directly observe the kinetics of melting, and27

factors such as sample size and purity, and thermal gradients causing temperature inhomogeneity28

can further complicate interpretations. Moreover, internal inconsistencies within individual studies29

and substantial disagreement between independent measurements indicate that the experimental30

picture remains under-established.31

In some studies, incongruent melting has been reported, with the observation that SiC decomposes32

into a silicon-rich liquid and solid carbon upon heating [7, 8, 9, 10]. Reported incongruent melting33

(decomposition) onset temperatures span a broad range: multiple sets of measurements near 10 GPa34

cluster in the 2800–3500 K range [7, 8, 10, 11, 12], whereas a high-pressure, laser-heated diamond-35

anvil cell (DAC) study [9] reports substantially lower decomposition temperatures (∼ 2000 K),36

creating a discontinuity with the lower-pressure results. This dispersion, compounded by conflicting37

reports of congruent melting [13, 14], highlights that the SiC decomposition phase boundary remains38

experimentally under-determined and motivates a qualitative and quantitative re-examination.39

Molecular dynamics (MD) simulations using density functional theory (ab initio MD, or AIMD) and40

various empirical potentials were employed to investigate the melting process of SiC. AIMD studies41

[15, 16] do not reach extended Si-rich/C-rich phase separation, although at the highest reported42
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temperature (11,000 K) the C–C peak in the radial distribution function (RDF) begins to overtake43

the Si–C peak, indicating substantial carbon clustering and reduction of silicon-carbon mixing.44

This captures the qualitative tendency toward decomposition, but the need for unrealistically high45

temperature together with limited cell size and timescale prevents quantitative determination of the46

true decomposition boundary or formation of fully phase-separated domains. On the other hand,47

empirical potentials, such as the Vashishta potential [17], the Tersoff potential [18, 19, 20], and48

the Gao-Weber potential [21], provide differing descriptions of uncertain accuracy. For example,49

simulations using the Vashishta potential show no formation of C-C bonds in either liquid or50

amorphous SiC (see Supplementary Information Fig. S3). Similarly, the Tersoff potentials [18, 19],51

the Gao-Weber potential [21], and a recent Behler-Parrinello neural network potential [22] studied52

the melting of SiC at high temperature and low to moderate pressure (0–10 GPa), showing RDF53

characteristics where Si-C bonds dominate, with minor C-C bonds signatures. More recent SiC54

ML interatomic potentials target relevant phenomena, including a UF3 model for high-temperature55

surface sublimation at near-ambient pressures [23] and a deep learning potential optimized for56

irradiation damage cascades [24]. However, they are not designed or validated for the extended high-57

pressure (> 10 GPa) solid-liquid decomposition transformations. Therefore, the decomposition58

and phase separation in the amorphous phase of SiC and its melting process remain underexplored59

and inconsistent across ab initio, empirical, and machine learning atomistic simulations, as well as60

experimental observations.61

To overcome the limitations of previous studies, we employ a machine learning force field (MLFF)62

trained on density functional theory (DFT) data. First, we collect DFT data for different SiC63

phases and train an MLFF to describe atomic interactions using a hierarchical Bayesian active64

learning workflow. This approach efficiently explores the phase space across different temperatures,65

pressures, and compositions. Then, we perform large-scale molecular dynamics simulations, enabled66

by GPU acceleration, to reliably model the melting and decomposition of SiC at a sufficient scale.67

By conducting two-phase coexistence simulations, where the interface between two phases of68

interest is created and equilibrated, we quantitatively determine, for the first time, the temperatures69

and pressures of transitions between phases.70
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Our simulations provide strong evidence for incongruent melting at high pressure and offer insights71

into the mechanism of SiC decomposition into Si and C rich phases. The transition temperatures72

between the zinc-blende SiC, decomposed incongruent mixture, and the homogeneous liquid phase73

are identified by our simulations, at pressures ranging from 10 GPa to 120 GPa. We obtain the74

pressure-temperature phase diagram depicting the stability regions of different phases. Notably, our75

findings of the decomposition indicate that amorphous SiC can only be produced through irradiation,76

and not via melt-quench processes [25]. Our atomic-level results provide microscopic insights77

into the decomposition and melting behavior of this technologically important material, resolving78

discrepancies in previous experimental and computational studies.79

Results80

Bayesian active learning of machine learning force field81

Our MLFF is based on Gaussian process regression, which provides both force predictions and82

per-atom uncertainty estimates [26, 27]. This enables a Bayesian active learning workflow (Fig. 1a)83

where MD simulations are propagated with the current surrogate, and configurations whose un-84

certainties exceed a threshold trigger single-point DFT queries for training data collection and85

surrogate update. As described in more detail in the Methods section, the MLFF was iteratively86

refined via Bayesian active learning to ensure accuracy across the phase space, while allowing us to87

simulate large systems efficiently. We performed multiple Bayesian active learning trajectories in88

parallel for different compositions (pure Si, pure C, and SiC) at various temperatures and pressures89

(Fig. 1b).90

While a 64-atom cell is insufficient to capture decomposition, the larger 512-atom supercell enables91

observation of the phase separation process. As shown in Fig. 1d, the first Si-rich and C-rich92

domains emerged spontaneously at 30 GPa during unbiased high-T / high-P active learning MD,93

prior to any decomposed structures being present in the training set. We did not seed or impose94

this Si and C phase separation. Instead, trajectories were advanced with the current surrogate, and95

single-point DFT labels were added only when Bayesian force uncertainties on naturally visited96
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clustered configurations exceeded the acquisition threshold. This procedure preserves high-fidelity97

force predictions on-the-fly and expands the training set into newly accessed regions of configuration98

space. Consequently, the database expanded to include Si-rich and C-rich regimes solely through99

the natural evolution of the system’s dynamics. This spontaneous appearance provides independent100

evidence that incongruent melting (decomposition) occurs without being assumed a priori, even in101

modest cell sizes.102

Nevertheless, the phase separation observed in the 512-atom active learning simulations does not103

provide comprehensive information about the decomposition process. For instance, the limited cell104

size is insufficient to reveal whether the C and Si clusters form crystalline or liquid phases, or to105

determine the precise conditions under which decomposition occurs. To qualitatively characterize106

the nature of these phases and their structural properties, we perform large-scale MD simulations107

with up to 512,000 atoms (Fig. 2). Furthermore, to quantitatively determine the precise phase108

transition temperatures and pressures, we employ two-phase coexistence simulations (Fig. 3 and109

Fig. 4).110

Incongruent melting from large-scale MD111

Starting with the well-trained MLFF model, we run large-scale heating and cooling simulations112

at 30, 60, and 80 GPa to qualitatively characterize the nature of the phase transformation and113

decomposition of SiC. We start with a 512,000-atom bulk crystal supercell of the cubic zinc-blende114

(ZB/3C/B3) phase. At these pressures, decomposition does not occur readily during the MD115

simulations due to hysteresis, even when heating the cubic ZB crystal structure to temperatures as116

high as 4000 K. The crystal structure is only destroyed when the temperature is increased to 5000 K.117

At 5000 K, across 30, 60, and 80 GPa, small separate carbon and silicon clusters form in the118

amorphous configurations, which indicates a trend away from a homogeneous mixture of silicon119

and carbon. Even though the temperature is significantly higher than experimentally reported120

incongruent or congruent melting points [7, 8, 9, 10, 11], the complete phase separation of C and Si121

does not occur. Upon cooling the system to 3000 K, we observe decomposition into carbon crystals122

and silicon liquid. Specifically, as the temperature drops below 4000 K, carbon clusters start to grow123
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Figure 1: Overview of active learning workflow, training data coverage, and two-phase simulation protocol (a)

Bayesian active learning workflow for collecting DFT training data on the fly during MD simulations. The MLFF

predicts forces and uncertainties; configurations exceeding the uncertainty threshold trigger DFT labeling. (b) Training

data composition and coverage. Multiple Bayesian active learning trajectories were performed in parallel for different

compositions (pure Si, pure C, and SiC) across various temperatures and pressures. For SiC, we started with a 64-atom

supercell and then extended to a 512-atom supercell where phase separation spontaneously occurred. (c) Two-phase

simulation protocol to determine phase transition temperatures. Interfaces between the solid/liquid and decomposed

phases were created by inducing decomposition, followed by a two-phase coexistence simulation in the NPH ensemble

to converge on the final transition temperature. (d) Spontaneous decomposition during active learning. The collected

data includes states where SiC decomposition occurred spontaneously during the active learning MD simulations, prior

to any decomposed structures being present in the training set.

in size, while the Si concentration in the liquid phase increases. Upon further cooling to 3000 K,124

larger C clusters consisting of recognizable graphite or diamond crystal structure form within the125

Si-rich liquid.126

The formation of either graphite or diamond C phases depends on the simulation pressure. The127

C clusters are classified as graphite-like or diamond-like structures by the polyhedral template128

matching [28] implemented in OVITO [29]. At 30 GPa, C clusters form graphite-like honeycomb129

lattice structures, while the Si-rich liquid persists throughout our simulation temperature range130

(3000–5000 K), which is higher than the Si melting point (1684 K at 0 GPa [30]). At 60 GPa, the131
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Figure 2: Large-scale MD simulation of SiC decomposition at 60 GPa. (a) Decomposed configuration of 512,000

atoms at the end of the simulation at 3000 K and 60 GPa. Yellow: Si, black: C. (b) Atoms colored with lattice type

classified by polyhedral template matching. Blue: cubic diamond, orange: hexagonal diamond, purple: graphite, white:

others. (c) Radial distribution function of the structure shows the C-C peak dominates over the Si-C peak.

diamond and graphite-like clusters incorporate Si atoms within them, as illustrated in Fig. 2b. In132

addition, the C-C pair distribution function exhibits a dominant peak around 1.5 Å, while the C-Si133

peak decreases. At 80 GPa, the decomposition results in the separation of diamond C, liquid Si, and134

the high-pressure rock-salt (RS/B1) phase of SiC. We have included the configurations at 30 GPa135

and 80 GPa and more structural analysis details in Supplementary Information Fig. S5 and S6.136

Our results agree with a recent experimental observation [9] that solid C and liquid Si form upon137

melting (i.e., incongruent melting) of SiC at high pressures. At 120 GPa, the zinc blende to rock138

salt phase transition occurs, and the high pressure stabilizes the crystal structure and prevents139

amorphization, with no liquid phase appearing up to 5000 K.140

In the next sections, we quantitatively determine the transition temperatures between the crystalline,141

decomposed, and homogeneous liquid phases using two-phase coexistence simulations, and build142

the P-T phase diagram of SiC.143

High-temperature phase boundary: decomposed Si+C ↔ homogeneous liquid144

Having established that decomposition occurs, we next explore the phase transition between145

the decomposed and homogeneous liquid states. To verify the reversibility of the incongruent146
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high-pressure melting and to quantitatively identify the transition temperature and pressure of the147

spontaneous decomposition, we set up a smaller MD simulation with slower cooling and heating148

rates. Specifically, we start with 8,000 atoms in the zinc-blende (B3) phase of SiC at 5000 K, so149

that the crystal becomes a homogeneous liquid. A conservative simulation time step of 0.5 fs was150

selected due to the elevated temperatures and pressures, the short vibrational periods of light Si and151

C atoms, and the need to accurately capture rapid bond rearrangements during decomposition while152

minimizing integration error. We perform an equilibration for 0.5 ns at each temperature, followed153

by a 0.5 ns cooling process at a rate of 400 K/ns. We alternate between equilibration and cooling154

steps until reaching 3000 K, then we ramp the temperature back up to 5000 K following the same155

scheme. The temperature profile over simulation time is shown as the blue curve in Fig. 3b.156

To identify spontaneous phase separation, we use the local C fraction (concentration) as the order157

parameter and track the size of the largest C cluster. At each time step, we divide the simulation cell158

into 10× 10× 10 voxels and calculate the C atom fraction in each voxel. The population of voxels159

with different local fraction levels over time is represented by the color scale in Fig. 3a, with red160

indicating higher populations.161

At the beginning of the simulation, at a pressure under 30 GPa and a high temperature of 5000 K,162

we observe a high population of 0.5 local C fraction values, indicating a homogeneous liquid with163

an equal mixture of Si and C atoms. Fig. 3b shows the system temperature and the largest C cluster164

size. As the system cools, the largest C cluster size increases, notably around 4000 K. At 7 ns, when165

the system cools down to 3600 K, spontaneous decomposition is complete, with C atoms mostly166

depleted from the Si liquid. The local C-fractions are either near 0 (Si-rich) or near 1 (C-rich), as167

indicated in the upper panel.168

During heating, the reverse process initiates at the same transition temperature of approximately169

4000 K. The C cluster dissolves into the Si liquid, and the local C fraction returns to around 0.5,170

analogous to the initial state of the simulation. This indicates that the system has returned to the171

homogeneous liquid state upon heating. Similar results are obtained for 60 GPa and 90 GPa, which172

are shown in the Supplementary Information Fig. S9. Having confirmed the reversibility, we proceed173
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Figure 3: SiC high-temperature phase transitions and two-phase coexistence simulations at 30 GPa. (a) and (b)

High-temperature phase transitions (liquid and decomposed phase boundary) from 8,000-atom cooling and heating

simulations, illustrating the reversibility of phase transition. (a) Population distribution of local C atom fraction over

simulation time: a single peak indicates the homogeneous liquid phase, while multiple peaks indicate the decomposed

(Si+C) phase (red: high population, blue: low population, color bar represents voxel count, with a total population

of 1,000 voxels). (b) Temperature (blue) and largest carbon cluster size (red, number of atoms) over simulation time,

with blue shaded regions indicating the phase transition boundaries. (c) Two-phase coexistence simulations with

16,000 atoms, confirming the coexistence temperature by tracking the largest carbon cluster size (left) and temperature

convergence at the NPH stage (right). Different colors represent trajectories cooling down to different estimated

temperatures, Tes.
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with a quantitative estimation of the transition temperature between the homogeneous liquid and174

decomposed Si + C phase, with a four-stage simulation protocol shown in Fig. 1c:175

1. Initial Equilibration: The crystalline supercell is first melted and then cooled to the176

estimated transition temperature Tes. The entire cell is then equilibrated at this temperature177

to prepare the initial liquid phase.178

2. Interface Creation: To create an interface, the positions and velocities of half the atoms in179

a slab along z-axis are fixed, while the other half is cooled further to a lower temperature, Tl180

(choosen here as 3500 K) to induce the formation of the decomposed phase.181

3. Interface Refinement: The cooled region is heated back from Tl to Tes in the NPzzT182

ensemble. This action ensures a minimal thermal gradient across the cell while creating a183

stable interface between the decomposed phase and the liquid phase.184

4. NPH Coexistence: Constraints are removed, and the entire system is equilibrated in the185

NPH ensemble. The phase boundary equilibrates, and the system temperature converges186

to the phase transition temperature.187

The first three stages prepare the two-phase interface near the estimated transition point. During188

the final NPH stage, the system equilibrates. The temperature at which both phases coexist in189

equilibrium is then determined as the phase transition temperature.190

As shown in Fig. 3c, the initial liquid phase at Tes is prepared after 0.5 ns (0.2 ns melting, 0.1 ns191

cooling, and 0.2 ns equilibration). Then, the decomposed phase is clearly formed during stages192

2 and 3 (achieved by 0.25 ns of cooling followed by 0.25 ns of heating), indicated by the sharp193

increase in the size of the largest carbon cluster. Starting at the 1 ns mark, the system enters the final194

NPH coexistence stage and subsequently converges to a final transition temperature of 4164 K195

in the coexistence simulation. We note that for runs initialized with an estimated temperature of196

Tes = 4300 K, the temperature was too high to stabilize the decomposed phase, and temperature197

convergence was therefore not achieved. Thus, we computed the final average transition temperature198

from the remaining three converged runs. Additional two-phase simulation results for pressures at199

45, 60, 70 GPa are provided in the Supplementary Information Fig. S10.200
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Low-temperature phase boundary: crystal ↔ decomposed Si+C201

Next, we investigate the lower-temperature transition between the crystal (B1 or B3) phases and the202

decomposed phase. To overcome hysteresis and high nucleation barriers that prevent decomposition203

in direct MD simulations of B3 SiC crystals heated to 4000 K, we employ a similar four-stage204

two-phase coexistence simulation approach [31], as illustrated in Fig. 1c.205

1. Initial Equilibration: Equilibrate the crystalline supercell at pressure P (10–90 GPa) and206

an initially estimated transition temperature Tes.207

2. Interface Creation: Fix half of the z-slab, while melt the other half by heating it to high208

temperature Th ≫ Tes in the NPzzT ensemble to induce the liquid phase.209

3. Interface Refinement: The melted half is then cooled from Th to Tes in the NPzzT210

ensemble. This process facilitates the formation of the decomposed phase while maintaining211

the unperturbed crystalline half, thus creating a stable crystal-decomposed interface.212

4. NPH Coexistence: Constraints are removed, and the entire system is equilibrated in the213

NPH ensemble. The phase boundary equilibrates, and the system temperature converges214

to the phase transition temperature.215

Each of the four stages is simulated for 0.5 ns, and the snapshots at the end of each stage are shown216

in Fig. 4 for the pressure values of 30 GPa (starting with B3 zinc blende) and 90 GPa (starting with217

B1 rock salt). In the last stage of the two-phase simulation where the interface is allowed to move,218

the temperature of the entire system fluctuates and converges to the actual transition temperature at219

which the decomposed and crystalline phases coexist in equilibrium, and the interface stops moving.220

Fig. 5 shows the results of the heating and cooling process in the two-phase coexistence simulations221

for different initial temperatures near the expected transition temperature.222

At the fixed pressure of 30 GPa, during the heating stage (0.5–1 ns), the heated half of the supercell223

becomes amorphous, and the overall fraction of zinc-blende local structures in the supercell224

decreases to 0.5. The C clusters begin to form during the cooling stage (1–1.5 ns) and continue225

growing in size at 1.5–2 ns as demonstrated in the second column of Fig. 5. In the NPH simulation226
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Figure 4: Snapshots of two-phase coexistence simulations. Snapshots of the four stages of the two-phase MD at 30

GPa (a) and 90 GPa (b) pressures. Each stage is simulated for 0.5 ns. Yellow: Si, black: C.

stage (1.5–2 ns), both B3 crystal and decomposed Si + C phases coexist, with relatively different227

equilibrated fractions depending on the initial temperature. Meanwhile, multiple simulations with228

different initial temperatures converge to approximately the same temperature during the NPH229

stage, which is identified as the transition temperature (shown in the third column of Fig. 5).230

At 90 GPa, where the stable phase at low temperature is rock salt (B1), a similar procedure starting231

from the B1 phase yields a transition temperature around 4500 K. Notably, the carbon cluster sizes232

formed at 90 GPa are much smaller than those at 30 GPa, leading us to conjecture that at sufficiently233

high pressures, the decomposed Si+C phase between the crystalline and liquid phases may not be234

present. Additional coexistence simulations were performed for the B3 phase (at 10, 20, 45, 60, 70,235

and 80 GPa) and the B1 phase (at 85 and 100 GPa). In addition, we investigated finite-size effects236
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Figure 5: Quantitative analysis of two-phase coexistence simulations. (a) Simulations at 30 GPa starting from the

zinc-blende phase. (b) Simulations at 90 GPa starting from the rock-salt phase. Panels from left to right show the time

evolution of the fraction of crystalline (zinc-blende or rock-salt) structures, the size of the largest carbon cluster, and the

temperature convergence during the final NPH stage. Different colors represent trajectories initialized with different

estimated temperatures, Tes.

by performing significantly larger simulations (4x and 8x the original size). These results and the237

details for determining the final phase transition temperatures are presented in the Supplementary238

Information Figs. S12, S13, and S15.239

Phase diagram240

Finally, we combine the results obtained from the MD simulations of the SiC phase transitions241

into a complete pressure-temperature phase diagram. Fig. 6 presents the P -T diagram, illustrating242

the B3 ↔ B1, B3 ↔ gas, B3 ↔ Si + C, B1 ↔ Si + C, and Si + C ↔ SiC (liquid) transitions. For243

completeness, we briefly describe the simulations of B3 ↔ B1 transition and B3 ↔ gas below,244

although these are not the primary focus of this work.245
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The B3 ↔ B1 transition pressures at various temperatures are determined using the same methods as246

in our previous work [32]. Starting with the B3 crystal, we increase pressure at a fixed temperature247

to generate a configuration containing both phases. Then, we perform constant-pressure MD248

simulations on these coexistence structures at different pressures to identify the transition point,249

characterized by the stable coexistence of the two phases. The pressure scan results are shown in250

the Supplementary Information Fig. S17. The B3 ↔ B1 transition pressures identified from our251

simulations (along pink-blue boundary in Fig. 6) are close to experimental measurements with a252

deviation of less than 20 GPa.253

At zero or low pressure, the SiC B3 crystal sublimates into the gas phase instead of melting, which254

occurs only under high pressure. Our NPT MD simulations at P = 0–15 GPa and T = 3900–4500255

K reveal a qualitative pressure threshold between 5 and 10 GPa: at lower pressures (0, 1, and 5256

GPa), sustained volumetric expansion above 4000–4200 K indicates progressive sublimation to a257

gas/vapor phase (details in Supplementary Information Fig. S18). While our simulations identify258

this sublimation threshold, most experimental literature at low pressure focuses on sublimation259

growth conditions rather than on establishing the equilibrium solid-gas phase boundary. An earlier260

study [33] reported a sublimation temperature-pressure relationship, but it did not distinguish261

between the specific solid phases of SiC.262

Regarding the transition between condensed phases, there is a qualitative disagreement among263

experiments: Hall [13] and Sokolov [14] report congruent melting, whereas Daviau et al. [9]264

and five earlier independent studies (Bhaumik et al. [10, 11], Dolloff [12], Togaya [8], Ekimov265

et al. [7]) observe incongruent decomposition—consistent with our simulations. Quantitatively,266

at 10 GPa, our predicted decomposition temperature falls within the cluster formed by those five267

independent measurements, supporting our placement of the boundary there. At higher pressures,268

however, our values are substantially above the laser-heated DAC series from Daviau et al. [9] (blue-269

orange circles). This laser-heated DAC dataset shows several inconsistencies. When extrapolated270

downward, it sits discontinuously below the lower-pressure data. It also shows internal inconsistency271

with a separate study by the same group [34] (blue triangles). Furthermore, it conflicts with other272
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Figure 6: Phase diagram of SiC. Results from our MD simulations are denoted in big squares, and the inferred phase

boundaries are drawn with black solid lines (interpolated) and dash lines (extrapolated). Blue: B3 (ZB), pink: B1

(RS), orange: decomposed Si + C, red: homogeneous liquid, brown: gas. The background colors indicate the stability

regions of different phases inferred by our simulations. Experimental reports of congruent melting (blue-red symbols):

hexagons [13], rotated hexagons [14]. Incongruent melting (blue-orange symbols): diamonds [10], triangles [11],

pluses [12], crosses [7], left-pointing triangles [8], circles [9]. B3-B1 transition (blue-pink): triangles [34], crosses [35],

diamonds [36], circles [37], pluses [38], inverted triangles [39].

B3-B1 studies [35, 36] (blue cross and pink-blue diamonds) that report stable B3-SiC in a region273

where Daviau et al. claimed decomposition occurs. Together with the broader scatter among274

datasets, this indicates that the high-pressure decomposition boundary remains experimentally275

underconstrained. Potential sources for these discrepancies, such as temperature gradients and276

transients in the DAC environment, highlight the need for further high-pressure measurements to277

resolve these conflicts.278

The high-temperature phase boundary is close to the melting point of graphite and diamond carbon,279

indicating that the C clusters dissolve at around 4000 K and SiC becomes a homogeneous liquid280
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mixture. As depicted in Supplementary Information Fig. S3, the Si-C peak indicates that the Si and281

C are mixed well, and the complete phase separation does not occur, as opposed to the RDF shown282

in Fig. 2c.283

Discussion284

Our MLFF, based on Gaussian process regression [40], provides uncertainty estimations for its285

predictions. To ensure the fidelity of our large-scale MD simulations, we assess whether high-286

uncertainty configurations are involved. A sufficient training dataset covering a variety of configura-287

tions results in low uncertainties during simulations, as the model is familiar with the encountered288

atomic structures. Conversely, high model uncertainty implies the MD has proceeded to configu-289

rations not covered by the training data, potentially reducing prediction reliability. Therefore, we290

evaluate the model uncertainty on snapshots from the decomposition MD simulations. As shown291

in Supplementary Information Fig. S16, the model uncertainty remains well below the acquisition292

threshold of our force field active learning workflow. This indicates that our collected training293

data set sufficiently covers the configuration space, ensuring a high confidence level in the model294

predictions.295

In our MD simulation where decomposition occurs, we cannot directly model the transition from a296

pure crystalline B3 phase to the decomposed phase due to hysteresis and nucleation barriers. Instead,297

we must overheat and amorphize the crystalline SiC to a homogeneous liquid before decomposition298

can take place during the cooling stage. Meanwhile, experimental observations align with this299

approach, demonstrating that the decomposition originates from the heating and cooling processes.300

For example, Daviau and Lee reported no evidence of decomposition in the Raman spectra when301

heating to 3200 K at 81 GPa. However, the surrounding region, annealed to 1200 K, showed D and302

G band signatures of carbide-derived carbon [9]. Similarly, Togaya and Sugiyama [8] reported303

using a sample quenched from a molten state to determine the onset of fusion, further supporting304

the importance of cooling in the decomposition process.305
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While numerous experiments have confirmed the occurrence of incongruent melting or decomposi-306

tion in SiC, some studies have reported congruent melting. Considering the slow kinetics of SiC307

decomposition and phase transformation, the grain size can influence the process. For instance, in308

experiments reporting congruent melting, large single crystalline grains (between 150 µm and 3309

mm) are used, which likely hinders the transition [14].310

While our MD simulations confirm incongruent melting at various pressures, qualitatively consistent311

with Daviau et al. [9], our obtained transition temperatures at high pressures are significantly312

higher than the reported measurements around 2000 K. One limitation of our MLFF is that it is313

trained primarily on high-temperature/high-pressure data, focusing on bulk solid-solid and solid-314

liquid transitions, but is not optimized for simulating surfaces or capturing detailed effects across a315

wide range of complex crystalline defect ensembles. The expressive power of the MLFF and the316

accuracy of DFT can contribute to the discrepancy of our simulation results with experiments. More317

expressive and expensive MLFF models such as the equivariant neural networks [41, 42] can be318

used to potentially improve the accuracy.319

On the other hand, the discrepancy may also be attributed to several factors in experimental setups:320

(1) Since the temperature is measured via thermal emission from the surface, the approach could321

underestimate the core temperature. (2) The heat distribution in the sample could be inhomogeneous,322

such that overheating in certain regions might facilitate the decomposition at lower apparent temper-323

atures. Although there are no other experimental reports at such high pressures, our simulation is in324

good agreement with the transition temperature at a lower pressure of 10 GPa found in five other325

experiments (Bhaumik et al. [10, 11], Dolloff [12], Togaya [8], and Ekimov et al. [7]). We also326

note that in other applications, such as physical vapor deposition growth of SiC, a temperature of ∼327

2500 K is used at ∼ 0 GPa, demonstrating SiC’s stability at temperatures higher than 2000 K [43].328

This observation further supports the plausibility of our higher predicted transition temperatures at329

elevated pressures.330

The two-phase coexistence MD simulation creates an interface between two different phases and331

thereby overcomes the nucleation barrier. It is possible that the defect concentration influences the332
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phase transition temperature. Even state-of-the-art epitaxially grown SiC wafers have high defect333

densities [43]. Therefore, we performed additional simulations, in which we introduce different334

point defect concentrations in the crystal. As shown in Supplementary Information Fig. S14,335

the concentration of defects does not have a significant influence on the transition temperature336

determined by the two-phase MD simulation. Macroscopic defects such as dislocations and phase337

boundaries could have a greater impact than point defects but are out of the scope of this study.338

Besides point defects, we further note that free surfaces or high surface-to-volume ratios, absent from339

our periodic bulk simulations, can modify local coordination, provide heterogeneous nucleation340

sites, and shift the decomposition/melting temperature, and thus may contribute to remaining341

experiment–simulation discrepancies.342

While some previous computational studies using empirical and neural network potentials obtain343

amorphous SiC through melting and quenching [21, 22], our simulations show that the melting and344

quenching process results in the decomposition of SiC. Instead, techniques such as irradiation are345

required for the amorphization of SiC, which is consistent with most experiments [44].346

Building upon our findings on SiC decomposition, we now explore possible mechanisms underlying347

this process. The two primary mechanisms to consider are nucleation and spinodal decomposition.348

To investigate spinodal decomposition, we calculated the C-C spatial correlation function from349

local concentrations (Supplementary Information Fig. S8). Notably, towards the end of the cooling350

process, particularly below 3400 K, a peak appears at approximately 40 Å. This implies periodic351

fluctuations in the carbon concentration, indicative of a wavelength of the phase separation mode352

[45, 46]. This observation aligns with the spinodal decomposition mechanism reported in alloy353

systems [45, 46] and is consistent with a recent tight-binding MD study of SiC under tensile354

stresses [47]. To analyze the nucleation of solid carbon clusters during decomposition, we tracked355

the evolution of diamond and graphite clusters. Fig. 7 illustrates the various stages of carbon356

cluster development, highlighting their transformation into either diamond or graphite phases. We357

applied cluster analysis in OVITO [29] with a 1.55 Å cutoff, approximately the bond length in358

graphite and diamond, to identify clusters. The formation of different phases was analyzed by the359
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“identify diamond structure” method [48] for diamond, and polyhedral template matching [28] for360

graphite. We track the evolution of clusters by identifying those with the largest overlap with the361

final structures at each time step. As shown in Fig. 7, in earlier stages, small nuclei lack clear362

lattice symmetry or phase identity. For graphite, the hexagonal structure can be traced back to363

smaller clusters. However, tracking becomes challenging for clusters below 100 atoms, as dynamic364

rearrangements reduce the overlap ratio quickly over time for both diamond and graphite structures.365

Detailed enthalpy calculations quantifying the thermodynamic driving force for phase separation366

are provided in Supplementary Information Fig. S19 and S20.367

0.5 ns0.45 ns0.4 ns0.3 ns0.25 ns0.2 ns

0.5 ns0.45 ns0.4 ns0.3 ns0.25 ns0.2 ns

Nucleation of diamond cluster

Nucleation of graphite cluster

(a)

(b)

(c) (d)

Figure 7: Nucleation analysis of carbon clusters from 512,000-atom simulations. (a) Nucleation of diamond cluster

at 60 GPa. Diamond core is colored in cyan. (b) Nucleation of graphite cluster at 30 GPa. Graphite core is colored in

purple. Increase of the diamond cluster (c) and graphite cluster (d) size (colored in black) and its overlap (colored in

green) with the final largest cluster, with simulation time.

In conclusion, our machine learning molecular dynamics study confirms the occurrence of incon-368

gruent melting in SiC, with the decomposition of SiC into Si and C being observed at a temperature369

range of 3000–3600 K at high pressures. We also identified a transition at higher temperatures370

where the decomposed phase transforms into a homogeneous liquid phase. The highly efficient371
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and accurate MLFF enabled previously intractable modeling and simulation of the decomposition372

process, overcoming limitations of both ab initio or empirical force fields in terms of computa-373

tional cost and accuracy. Our MD simulations provide atomic-level insights, revealing nucleation374

mechanisms and process details inaccessible in experiments. These findings support the existence375

of incongruent melting at high pressure, clarifying controversial experimental observations. In376

summary, our study provides a comprehensive understanding of SiC melting and decomposition377

behavior, along with a complete phase diagram, reconciling and extending previous experimental378

and theoretical work in this field.379

Methods380

Machine learning force field381

Accurately modeling the melting and decomposition of SiC at high temperature and pressure requires382

an interatomic potential that captures complex bonding environments, including phase separation.383

Traditional empirical force fields can reproduce certain crystalline and shock-response properties.384

For example, Tersoff [19] and Vashishta [17] potentials have been applied in planar and impact385

shock studies of SiC [49, 50, 51]. However, the concurrent bond breaking, chemical partitioning,386

and long-timescale phase coexistence needed to delineate the high-P / high-T decomposition387

boundary remains challenging for such potentials. While AIMD [15, 16] provides accurate atomic388

forces, its high computational cost limits simulations to small system sizes and short timescales. To389

overcome these challenges, we employ a MLFF trained on DFT calculations, such that the atomic390

interactions can be modeled with high accuracy, while remaining cost effective for large-scale391

simulations.392

Among general MLFF frameworks [41, 42, 52, 53], FLARE was selected because: (i) Bayesian393

uncertainties focus acquisition on novel crystal, liquid, and early segregation environments, enabling394

highly efficient collection of non-redundant data; (ii) sparse GP to polynomial mapping yields high395

simulation efficiency at the 104–106 atom scale needed for multi-temperature/pressure coexistence396

runs; (iii) reuse of a previously validated SiC setup [32] ensures methodological continuity. More397
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expressive deep equivariant models could lower force errors at substantially higher cost, a trade-off398

we reserve for future refinements.399

Our MLFF is built using the FLARE framework [26, 32], which is based on a sparse Gaussian400

process (SGP) model [40] with atomic cluster expansion descriptors [54]. This model predicts401

forces while providing uncertainty quantification.402

Bayesian active learning403

To efficiently generate training data, we employ Bayesian active learning, which systematically404

selects new atomic configurations where the MLFF is most uncertain. The workflow follows these405

steps: (1) Initial Training: The MLFF is first trained on a small set of DFT-calculated structures,406

including perfect and slightly perturbed crystal structures. (2) Uncertainty-Guided MD: The MLFF407

runs MD simulations, predicting atomic forces while simultaneously estimating its uncertainty. (3)408

Selective DFT Calculations: If the model’s uncertainty exceeds a threshold, new configurations409

are labeled using DFT. Otherwise, continue with MD. (4) Iterative Refinement: The MLFF is410

retrained with the newly acquired DFT data, progressively improving its accuracy. This adaptive411

learning process ensures that the force field is only trained where necessary, avoiding redundant412

DFT calculations while capturing the relevant phase space.413

Once the active learning is complete, we map the SGP into an equivalent but more computationally414

efficient polynomial model [32, 40], which serves as the final MLFF for large-scale production415

simulations in LAMMPS [55]. The DFT calculations are performed using VASP [56] with the PBE416

exchange correlation functional [57], following the computational settings in our previous works417

[32, 58].418

The initial training set contains SiC polymorph data from our previous study [32], encompassing the419

hexagonal 2H, 4H, and 6H polytypes, B3 (zinc blende or 3C) and the high-pressure B1 (rock salt)420

phases. We then employ the FLARE Bayesian active learning workflow to systematically sample421

data that captures melting and decomposition behavior SiC across a wide pressure range. Active422

learning MD simulations are performed for a 64-atom SiC supercell at 0, 30, 60, 90, and 120 GPa423
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over a temperature range of 2000–6000 K until melting is observed. In addition, active learning for424

a 512-atom SiC supercell is conducted at 5000 K across the same pressure range. To enhance our425

data coverage for the decomposition products, additional data is collected for pure carbon (diamond426

and graphite phases, 2000–4000 K) and pure silicon (1000–3000 K) across all pressure conditions.427

The final trained MLFF is then used to investigate SiC melting and decomposition under high428

temperature and pressure conditions through two-phase coexistence simulations, which allowed for429

the accurate determination of phase transition temperatures.430

Large-scale molecular dynamics simulation431

The large-scale MD simulations are conducted using GPU-accelerated LAMMPS [55] with Kokkos432

parallelization [59] and the FLARE MLFF pairstyle, which has demonstrated exceptional perfor-433

mance in billion-atom catalytic simulations [60]. During the melting simulations, the NPT ensemble434

with anisotropic (aniso) control of cell dimensions is employed, allowing independent scaling435

along the x, y and z directions through stress components Pxx, Pyy, and Pzz. Phase separation436

exhibits a tendency to minimize the interface between decomposed phases, necessitating anisotropic437

elongation of the supercell, as illustrated in Fig. 2.438

Code Availability439

Post-processing scripts are available on Github: https://github.com/YuuuXie/SiC_MLMD_440

phase_diagram. For the machine learning force field, this work utilizes FLARE (version 1.3.0)441

for training and deployment, available at https://github.com/mir-group/flare.442

Data Availability443

The data and scripts are available on Zenodo: https://doi.org/10.5281/zenodo.14648292444

and https://doi.org/10.5281/zenodo.15066527.445
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