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ABSTRACT

Foundational machine learning interatomic potentials that can accurately and efficiently model
a vast range of materials are critical for accelerating atomistic discovery. We introduce universal
potentials based on the graph atomic cluster expansion (GRACE) framework, trained on several
of the largest available materials datasets. Through comprehensive benchmarks, we demonstrate
that the GRACE models establish a new Pareto front for accuracy versus efficiency among founda-
tional interatomic potentials. We further showcase their exceptional versatility by adapting them
to specialized tasks and simpler architectures via fine-tuning and knowledge distillation, achieving
high accuracy while preventing catastrophic forgetting. This work establishes GRACE as a ro-
bust and adaptable foundation for the next generation of atomistic modeling, enabling high-fidelity
simulations across the periodic table.

I. INTRODUCTION

The ability to predict materials properties from atom-
istic simulations is essential for modern materials de-
sign. Machine learning interatomic potentials (MLIPs),
trained on data from electronic structure methods like
density functional theory, have recently emerged as a
powerful tool, achieving excellent accuracy for diverse
systems1–11. However, the applicability of conventional
MLIPs is constrained by their limited elemental scope.
Extending an existing MLIP to include a new chemical
element requires generating thousands of new reference
calculations and retraining the entire model - a process
that represents a significant computational bottleneck.

Foundational interatomic potentials seek to resolve this
bottleneck by creating a single, universal model that en-
compasses the entire periodic table from the outset. This
ambitious goal requires both enormous training datasets
and an efficient method for representing the vast space
of chemical interactions. A brute-force enumeration of
interactions is unfeasible; parameterizing just the four-
body interactions would involve on the order of 108 in-
teractions.

Foundational MLIPs resolve this problem by embed-
ding complex chemistry into a low-dimensional space;
a long-standing concept in materials simulation. Early
tight-binding models, for example, used the valence elec-
tron count to effectively describe chemical trends and
structural stability across multiple elements12. Modern
foundational MLIPs build upon this legacy, using multi-
dimensional embeddings to leverage the inherent corre-
lations between elements. This approach is remarkably
effective, enabling the entire periodic table’s chemistry
to be captured in few dimensions.13–20

The first universal force field was published more than

30 years ago21. Parameterizations of MLIPs across the
periodic table started to appear when large training
datasets became available22–32.

To date the development of universal MLIPs was
tightly bound to the progress in message passing graph
neural networks33–49, despite the fact that universal pa-
rameterizations across the periodic table are in princi-
ple independent of MLIP architecture. The first uni-
versal MLIPs that built on the Atomic Cluster Expan-
sion (ACE)4 became available two years ago, within the
framework of Multi-ACE50 that employs general many-
body messages and as implemented in MACE24,51.

Here we employ the Graph Atomic Cluster Expansion
(GRACE)49. By extending ACE to tree-graphs, GRACE
stands out from graph neural networks by providing a
complete basis for the parameterization of atomic in-
teractions as a function of atomic positions and chem-
ical species. By straightforward tensor decomposition of
the GRACE expansion coefficients one directly obtains
sparse representations with efficient chemical embedding
that can be evaluated recursively. The recursive evalua-
tion of graph basis functions can be understood as mes-
sage passing and because of its complete basis, GRACE
is able to rationalize and represent other message pass-
ing graph neural networks architectures in general. As
GRACE further facilitates recursive evaluation of effec-
tive ACE on each message passing layer, it benefits from
linear scaling with the number of recursion layers as well
as linear scaling with the complexity of ACE messages
within each layer for efficient double-recursive evaluation.

Training data for universal force fields needs to cover
the periodic table comprehensively. Only few publicly
available datasets are suitable, notably the Materials
Project52,53, Alexandria54,55 and the OMat2456 datasets
that are in the focus of our work here, but also the
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Open Quantum Mechanical Database57 (OQMD) and
AFLOWLIB58 and more recent additions such as Mat-
PES59 and MP-ALOE60.
Validation of universal force fields is challenging. Tra-

ditional strategies that are employed for MLIPs with only
few elements and that probe test errors for specifically
relevant simulation tasks are not possible because of the
combinatorically many different simulations that would
be required across the periodic table. Validation there-
fore is necessarily limited to tests that seem particularly
relevant or are widely adopted in the community.

In this work we present a number of GRACE models
with varying complexity that were parameterized on the
OMat2456, Alexandria54,55 and MPTraj53 datasets and
can serve as a foundation models for atomistic modelling
in materials science.

II. RESULTS

A. Foundational GRACE interatomic potentials

Developing foundational MLIPs capable of accurate
predictions across a wide array of chemical elements and
diverse structures requires exceptionally large and var-
ied datasets. The GRACE framework is designed to ef-
fectively manage this inherent complexity. Our primary
training source was the OMat24 dataset56, which cur-
rently is the largest publicly available compilation for ma-
terials property prediction. It encompasses 110 million
DFT calculations, primarily computed with VASP61–63

with the GGA-PBE functional64, including Hubbard U
corrections for specific oxides and fluorides, consistent
with Materials Project defaults52. Importantly, OMat24
extends beyond near-equilibrium structures, distinguish-
ing it from datasets like Alexandria and MPTraj, but
covers same 89 elements as those two. The dataset’s
diversity comes from its generation methods, which in-
clude Boltzmann sampling of structures with randomly
displaced atomic positions, ab initio molecular dynamics
(AIMD), and subsequent relaxations of these configura-
tions.

We developed a number of GRACE models with
one- (1L) and two-layer (2L) architectures, systemati-
cally varying their complexity through small (no suf-
fix), medium (-M suffix), and large (-L suffix) setups.
The one-layer models are built on ACE star-graphs with
direct interactions, the two-layer models include semi-
local interactions mediated by equivariant message pass-
ing. Both, one-layer and two-layer models employ chem-
ical embedding for efficiently condensing chemical in-
teractions into low rank representations. The initial
parameterizations, designated as “-OMAT-base”, were
conducted using the OMat24 dataset and employed a
loss function that equally weighted energies, forces, and
stresses. Further fine-tuning, which used larger weights
for the energy loss component, resulted in a series of mod-
els designated with an “-OMAT-ft-E” or just “-OMAT”

suffix.
While OMat24 provides a robust foundation, its DFT

and pseudopotential settings differ from those used in
Alexandria and the Materials Project. To address this,
we fine-tuned the OMAT-base models using a combined
dataset of MPTraj and a subsampled Alexandria (sAlex)
dataset54–56. The sAlex subset was curated to prevent
data leakage with the WBM test set65, a crucial step to
ensure model compatibility with Matbench Discovery66.
The resulting models are denoted with suffix “-OAM”.
These GRACE models are designed to serve as robust
foundational interatomic potentials and to provide uni-
form accuracy across a broad range of chemical compo-
sitions and structural configurations.

B. Validation

Foundational MLIPs must demonstrate uniform accu-
racy across multiple application domains. In this section,
we present several critical validation tests. We evalu-
ate our models against the MatBench Discovery bench-
mark66 for formation energies and thermodynamic sta-
bility and the κ-SRME67 test for thermal conductiv-
ity, which reflects second- and third-order derivatives.
We further determine the performance of our models on
elastic properties and for non-equilibrium and defective
configurations by predicting formation energies of grain
boundaries, surfaces, and point defects in pure elements.
This suite of tests provides a good assessment of the mod-
els’ capabilities and limitations.
Matbench Discovery66 serves as a benchmark for high-

throughput discovery of stable inorganic crystals. It is
specifically designed to evaluate the efficacy of various
foundational MLIPs in predicting formation energy and
thermodynamic stability of novel crystal structures. The
benchmark task involves geometry optimization of struc-
tures sourced from the WBM dataset, a diverse collec-
tion of 257,000 candidate crystal structures spanning a
wide range of compositions. The central goal is to pre-
dict formation energies and assess the stability of these
structures relative to the original convex hull from Mate-
rials Project52 with high fidelity. Achieving this requires
models to accurately predict potential energy, atomic
forces, and stress tensors, with an accuracy compara-
ble to the Materials Project’s density functional theory
(DFT) calculations. Figure 1 (a) illustrates the per-
formance of GRACE models, specifically the OAM-fine-
tuned versions, against other publicly available founda-
tional MLIPs in relation to their computational efficiency.
The figure shows that GRACE models consistently oc-
cupy the Pareto optimality front, demonstrating a supe-
rior balance of performance and computational speed.
This efficiency can be further enhanced by using the
LAMMPS molecular dynamics code68, with specific tim-
ings available in Table I. While the F1 metric reflects
a model’s accuracy for identifying stable structures, the
mean absolute error (MAE) of formation energies offers
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(a) (b)

FIG. 1

TABLE I: Performance of foundational MLIPs in
materials discovery task (F1), thermal conductivity task

(κSRME) and computational performance (in
µs/atom/step) for W-BCC crystal with 1024 atoms on
A100-80GB GPU in ASE and LAMMPS molecular

dynamics simulations. Top part of the table corresponds
to models compliant with MatBench Discovery task,

bottom part to models trained on OMat24 dataset only.

Model F1 κSRME tASE tLAMMPS

UMA-M-1.1 0.930 0.195 2981
eSEN-30M-OAM 0.925 0.170 1897
eqV2 M 0.917 1.771 -
UMA-S-1.1 0.916 0.203 401
ORB-v3 0.906 0.210 197
SevenNet-MF-ompa 0.901 0.317 651
GRACE-2L-OAM-L 0.890 0.168 91 51
DPA-3.1-3M-FT 0.884 0.469 227
GRACE-2L-OAM-M 0.881 0.200 71 31
GRACE-2L-OAM 0.880 0.294 64 23
MatterSim-v1 0.862 0.574 198
MACE-MPA-0 0.852 0.412 198
GNOME 0.829 - -
GRACE-1L-OAM 0.824 0.516 51 10
GRACE-1L-OAM-L 0.815 0.377 54 13
GRACE-2L-OMAT-L - 0.186 91 51
GRACE-2L-OMAT-M - 0.217 71 31
MACE-OMAT-0 - 0.245 202
GRACE-2L-OMAT - 0.288 64 23
GRACE-1L-OMAT-L - 0.383 54 13
GRACE-1L-OMAT - 0.398 51 10

a more general measure of accuracy. The performance
of the models for formation energy MAE, which shows a
similar trend with GRACE models on the Pareto front,
is provided in the ementary materials.

To evaluate the ability of foundational MLIPs to pre-
dict force-dependent properties like phonons and anhar-
monic thermal conductivity, we used the symmetric rel-
ative mean error κSRME metric67. This test quantifies a
model’s performance by predicting the thermal conduc-
tivity κ across 103 binary structures. The thermal con-
ductivity values are calculated from forces predicted by
the foundational MLIPs and subsequently analyzed using
the phono3py software69,70. Accurate thermal conduc-
tivity predictions serve as a strong indicator of a model’s
performance for other simulation tasks, such as model-
ing metal-organic frameworks71. The results for various
foundational MLIPs, including our GRACE models, are
presented in Fig. 1 (b) and Table I. The family of one-
and two-layer GRACE models notably form the Pareto
front, achieving the best performance in thermal conduc-
tivity prediction. In particular, the GRACE-2L-OAM-L
model achieved the lowest error with κSRME = 0.168,
underscoring its exceptional accuracy in this domain.

Predicting elastic moduli is a crucial validation
test for interatomic potentials. We categorize elas-
tic constants into three subgroups: longitudinal
(C11, C22, C33), Poisson’s ratio-related (C12, C13, C23),
and shear (C44, C55, C66). Because these groups of-
ten have varying magnitudes, we primarily focused on
the symmetric relative mean error (SRME) and MAE
within each subgroup. Figure 2 presents both met-
rics with respect to reference data from the Materials
Project72. Among all tested models, GRACE-2L-OAM-
L demonstrated the lowest CSRME. Generally, most mod-
els showed comparable performance, with the notable ex-
ceptions of MatterSim and DPA3-openlam, whose train-
ing sets differed from the Materials Project DFT set-
tings used for the reference elastic constant calculations.
A consistent trend across all models is that longitudi-
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nal constants typically exhibit lower SRME but higher
absolute errors (∆C) due to their larger magnitudes. In
contrast, the second and third groups of elastic constants
tend to show smaller absolute errors but larger relative
errors.

0.00 0.25 0.50 0.75 1.00

CSRME

DPA3-openlam
MatterSim

GRACE-1L-OAM
MACE-MPA-0

GRACE-1L-OAM-L
ORBv3-cons-inf-mpa

MACE-OMAT-0
GRACE-2L-OAM

SevenNet-MF-ompa
GRACE-2L-OAM-L

0 50 100 150

C (GPa)

C11, 22, 33 C12, 13, 23 C44, 55, 66

FIG. 2

To assess the performance of foundational MLIPs for
bulk structural defects, we utilized an existing dataset
of grain boundary formation energies (γGB computed for
pure metals73. The models’ accuracy was quantified by
calculating both the γGB-SRME and the mean absolute
error ∆γGB. The results are presented in Fig. 3. The rel-
ative error γGB-SRME generally ranges from 0.275 to 0.4,
with MatterSim and SevenNet-MF-ompa being notable
exceptions. A larger γGB-SRME for K, Rb, and Cs was
consistently observed across almost all models, suggest-
ing that the typically used 6 Å cutoff may be insufficient
for these alkali elements. For most models, the absolute
error ∆γGB remains below 5 meV/Å2, with a few ex-
ceptions observed for eSEN-30M-Omat, MatterSim, and
SevenNet-MF-ompa. More detailed information can be
found in the ementary Information.

0.0 0.2 0.4 0.6 0.8
GB-SRME

SevenNet-MF-ompa
MatterSim

ORBv3-cons-inf-omat
MACE-OMAT-0

ORBv3-cons-inf-mpa
MACE-MPA-0

SevenNet-MF-omat
eSEN-30M-OMat

DPA3-openlam
GRACE-1L-OAM-L

GRACE-1L-OAM
GRACE-2L-OAM-L

eqV2_M
GRACE-2L-OAM

0 5 10 15 20 25 30
GB, meV/Å2

FIG. 3

We assessed the ability of foundational MLIPs to pre-
dict open structures, such as surfaces, using surface en-
ergies (γsurf) for pure elements74. Model accuracy was
quantified by calculating both the symmetric relative
mean error (γsurf -SRME) and the mean absolute error
(∆γsurf), with results presented in Fig. 4. Here, the rela-
tive error γsurf -SRME ranged from 0.168 for the ORBv3-
cons-inf-mpa model to 0.279 for the MACE-OMAT-0
model. The absolute error ∆γsurf typically varied from 8
to 14 meV/Å2, with a few exceptions noted for MACE-
MPA-0, MatterSim, and eqV2 M. A consistent finding
across all models was poor γsurf -SRME metrics for Potas-
sium (K), Rubidium (Rb), Cesium (Cs), and Indium (In).
More detailed information can be found in the ementary
Information.

0.0 0.2 0.4 0.6 0.8
surf-SRME

eqV2_M
MatterSim

MACE-OMAT-0
GRACE-1L-OAM

GRACE-1L-OAM-L
DPA3-openlam

MACE-MPA-0
GRACE-2L-OAM

GRACE-2L-OAM-L
SevenNet-MF-ompa

eSEN-30M-OMat
ORBv3-cons-inf-mpa

0 10 20 30 40 50
surf, meV/Å2

FIG. 4

We used systematically computed formation energies
for self-interstitials (SIA) and vacancies in BCC75 and
FCC76 metals available in the literature as references.
Given the varying scales of these formation energies
across different defect types and metals, we used the
symmetric relative mean error metrics, ESIA-SRME and
Evac-SRME, as main measure of accuracy. As shown in
Fig. 5, the SRME metrics for both defect types generally
fall within 0.1 to 0.3, with a few outliers such as Mat-
terSim. This discrepancy is likely due to the different
DFT settings between MatterSim’s training set and the
reference data, as observed in our previous analyses. In
terms of absolute values, the mean absolute error (MAE)
for SIA formation energies typically ranges from about
0.2 to 0.4 eV, while for vacancy formation energies, the
errors are between 0.1 to 0.2 eV. Further details can be
found in the ementary Information.

C. Long-time stability of MD

Long-time stability in molecular dynamics (MD) sim-
ulations is essential for accurately capturing the dynam-
ical behavior and thermodynamic properties that cannot
be fully assessed by static property benchmarks or short
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(a)

(b)

FIG. 5

simulations. To demonstrate the out-of-the-box MD
stability and performance of the GRACE foundational
MLIPs, we conducted a 1 ns MD simulation of a FLiBe
cell containing approximately three thousand atoms at
973K, utilizing the GRACE-2L-OMAT-L model in the
NVE ensemble, observing a negligible total energy drift of
5·10−9 eV/atom/ns (see ementary Information for more
details). We compared the resulting radial distribution
functions (RDFs) to reference AIMD data from Ref.77,78,
as shown in Fig. 6. Additionally, we estimated diffusion
coefficients for each element from our MD simulation,
obtaining values of 1.33, 1.58, and 5.86 × 10−5 cm2s−1

for Be, F, and Li, respectively. These values align well
with the AIMD results (0.83 ± 0.1, 1.73 ± 0.17 and
5.67 ± 0.52 × 10−5 cm2s−1, respectively77). This sim-
ulation confirms the model’s stability and its accuracy in
predicting both structural and dynamical properties over
extended timescales.

D. Computational performance

Computational performance is a critical factor, espe-
cially for high-throughput calculations and large-scale,
long-duration MD simulations. We evaluated the per-
formance of the GRACE models using LAMMPS on an
NVIDIA A100 GPU with 80 GB of memory. Test sys-

FIG. 6

tems included carbon diamond, liquid water, aluminum
FCC, and the molten salt FLiBe, which have different
densities and numbers of atomic neighbors. All systems
were simulated for a few steps in the NVT ensemble at
300 K, except for FLiBe, which was at 823 K.

To ensure accurate performance analysis, we excluded
the initial MD step, which was significantly slower due
to just-in-time (JIT) model compilation. System sizes
were increased incrementally until an out-of-memory er-
ror occurred. The computational performance, expressed
in microseconds per atom, and the maximum number of
atoms fitting into memory are presented in Fig. 7.

The carbon diamond system, with the highest number
of neighboring atoms within the cutoff radius, proved to
be the most computationally demanding. Still, even for
our most intensive model, GRACE-2L-L, up to 20,000
carbon atoms could be accommodated with a perfor-
mance of approximately 124 µs per atom per step.
Across different systems, two-layer GRACE models ex-
hibited computational performance ranging from 27 to
120 µs/atom, while single-layer models ranged from 10
to 28 µs/atom, enabling efficient MD simulations.

Regarding memory usage, a single A100-80GB GPU
could accommodate between 20,000 and 55,000 atoms
for two-layer GRACE models and 78,000 to 215,000
atoms for one-layer GRACE models. Since the one-layer
GRACE model is local (interactions are limited to a cut-
off radius), it can be parallelized via domain decomposi-
tion as implemented in LAMMPS, which further boosts
computational performance for very large systems with
millions or billions of atoms.

We also measured the computational performance of
other foundational MLIPs by running ten MD steps in
ASE79 of W-BCC supercells with different numbers of
atoms. These tests utilized different GPU hardware, in-
cluding the commodity RTX3060 (12 GB), and L40s (40
GB), A100 (80 GB), and H200 (141 GB). The result-
ing execution times are presented in Table II. GRACE
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models deliver excellent performance even on commodity
GPUs like the RTX 3060, despite consistently operating
with FP64 (double-precision) accuracy. As shown in
Fig.1, the use of ASE can introduce substantial compu-
tational overhead, stemming primarily from Python’s ex-
ecution speed and suboptimal neighbor list construction
algorithms.
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E. Fine-tuning

Foundational interatomic potentials are trained to pro-
vide accurate simulations across the periodic table, but
they may lack the specific precision or performance neces-
sary for particular downstream tasks. Fine-tuning serves
as an effective strategy to address these limitations by
adapting a pre-existing foundational MLIP. This is done
by continuing the training on a new, often small and
specialized dataset. This process aims to enhance the
model’s performance or tailor its predictions for specific
chemical systems, properties, or higher levels of theo-
retical accuracy, while leveraging the extensive knowl-
edge and robust representations acquired during its ini-
tial foundational training. Here we demonstrate the fine-
tuning of GRACE-2L foundational MLIP for the Al-Li
binary system80 and a hydrogen combustion dataset81.

For fine-tuning, we utilized a dataset for the Al-Li bi-
nary system from Ref.80. We curated the data by re-
moving structures from the liquid phase and those cor-
responding to randomly sampled space groups. This
resulted in a total of three thousand structures within
1 eV/atom above the convex hull, from which we allo-
cated 5% as a test set. To study data efficiency, we then

created a series of training subsets of varying sizes (5%,
10%, 25%, 50%, and 75%) from the remaining data. Us-
ing these training and test sets, we fine-tuned the 1L-
OMAT and 2L-OMAT models by updating all weights,
a process we term ”naive fine-tuning.” For comparison,
we also trained two models from scratch: a one-layer
ACE model as implemented in the PACE software82,83

and a GRACE-2L model, designated 2L-baseline, with a
complexity identical to GRACE-2L-OMAT. As shown in
Fig. 8, zero-shot predictions without fine-tuning demon-
strate very good accuracy for both GRACE-1L-OMAT
and GRACE-2L-OMAT. The fine-tuned 2L-OMAT-ft
model consistently outperforms the other models, even
with small fractions of the curated dataset, while the 2L-
baseline model only reaches comparable accuracy with
more data. The fine-tuned 1L-OMAT-ft model is slightly
less accurate than the two-layer models for most tests
and shows comparative performance to the specialized
PACE model. We attribute this good performance to the
small number of elements and the relatively limited Al-
Li dataset, which primarily includes close-to-equilibrium
structures. These results demonstrate that fine-tuning
foundational GRACE potentials can be superior to train-
ing from scratch, especially in low-data regimes.

The hydrogen combustion (H2COMB) dataset81 in-
cludes intrinsic reaction coordinate (IRC) calculations,
ab initio MD simulations, and normal mode displacement
calculations, covering 19 reaction channels for hydrogen
combustion. This dataset was computed using Q-Chem
with ωB97X-V/cc-pVTZ. These DFT settings differ sig-
nificantly from those of the OMat24, Alexandria, and
MPTraj datasets that we used to train the foundational
GRACE OMAT potentials. Consequently, zero-shot pre-
dictions by all foundational models show a rather high
error. For the GRACE-2L-OAM model, the force MAE
is 740.5 meV/Å84,85.

Due to the systematic difference in datasets, naive
fine-tuning may result in catastrophic forgetting - the
tendency to forget previously learned information when
learning a new task. To fine-tune a GRACE-2L-OAM
model to the H2COMB dataset without this issue for
other elements, we explored several strategies: 1) naive
fine-tuning: all parameters are trainable; 2) frozen-
weights approach: only ACE expansion coefficients are
trainable, while all other parameters (including chemical
embeddings, radial functions, and the energy readout)
are kept unchanged. Within this approach, we consid-
ered two cases (a) only the coefficients of the final ACE
expansions before atomic energy readout are trainable
and (b) the coefficients of the final ACE expansions and
the ACE expansion coefficients for messages passed be-
tween the first and second layers are trainable. These
coefficients depend on the central atom type; thus, pa-
rameters for elements absent in the fine-tuning dataset
will not be updated.

The results of these strategies are shown in Figure 9.
The baseline zero-shot model shows a very high force
MAE for the H2COMB dataset but a low error on the
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TABLE II: Computational performance of GRACE foundational potentials and other foundational MLIPs for MD
simulations of a tungsten-BCC supercell in ASE, reported in µs/atom/step across different GPU architectures.

GPU RTX 3060 (12 GB) L40s (40Gb) A100 (80Gb) H200 (141Gb)

Num. of atoms 256 512 512 1k 2k 512 1k 2k 512 1k 2k

GRACE-1L 111 103 82 70 68 54 51 48 53 44 42

GRACE-1L-L 159 142 89 77 79 57 54 51 55 46 45

GRACE-2L 214 200 101 92 90 68 64 62 59 50 49

GRACE-2L-M 303 292 118 109 111 74 71 69 63 54 50

GRACE-2L-L 405 394 142 133 140 95 91 95 76 66 63

ORBv3(fp32) 506 470 142 129 125 208 197 195 114 97 89

ORBv3(fp64) 15566 15328 2451 2407 2381 231 223 221 131 119 114

MatterSim 409 319 149 124 151 288 198 163 244 145 92

MACE-OMAT-0(cuEq) 683 640 177 153 140 288 202 129 296 162 99

SevenNet-MF-OMPA 2744 OOM 1283 1289 OOM 700 651 633 380 357 334

eSEN-30M-OMat OOM OOM 2120 OOM OOM 1937 1897 OOM 834 779 753

(a) (b) (c)

(d) (e) (f)

FIG. 8

original sAlex dataset. The latter’s performance is com-
puted on two subsets: H and O atoms, and all other el-
ements. Naive fine-tuning (strategy 1) achieved the best
error metrics on the downstream task (37 meV/Å), but
the error on the original dataset increased drastically to
339 ×103 meV/Åfor H/O and 6.5 ×103 meV/Åfor the re-
maining elements, confirming catastrophic forgetting for
all elements.

In contrast, the frozen-weights approaches show only a
small increase in force MAE on the original sAlex dataset
for elements excluding H and O (from 25 meV/Åfor the
baseline model to 31 meV/Åand 35 meV/Åfor strate-

gies 2a and 2b, respectively). The predictions of these
models remain unchanged from the baseline if the struc-
tures contain neither H nor O atoms, indicating that
the increase in metrics is associated with the presence
of H/O atoms within the cutoff. For H and O atoms
from the sAlex dataset, errors increase much less than
with naive fine-tuning (from 49 meV/Åfor the baseline
to 144 meV/Åand 174 meV/Å), while downstream task
errors became 55 and 47 meV/Åfor strategies 2a and 2b,
respectively.

The errors on the original versus the new dataset form
a Pareto front as displayed in Fig. 9). By freezing certain
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parts of the model, catastrophic forgetting of the origi-
nal task can be mitigated, even for the elements that are
updated and despite a systematic shift in reference data.
Other methods for fine-tuning foundational GRACE po-
tentials that can mitigate catastrophic forgetting, such
as low-rank adaptation (LoRA) or delta tuning, will be
considered in future work.

F. Model distillation

While foundational MLIPs offer high accuracy across a
vast chemical and configurational space, they often have
lower computational performance and limited paralleliza-
tion compared to chemistry-specific models. To bridge
this gap, model distillation can be employed86,87, a pro-
cess involving the retraining of a simpler, faster “student”
model on a dataset labeled by a foundational “teacher”
model. We investigate different distillation and
fine-tuning pathways using the combined HEA2588 and
HEA25S89 datasets as a case study. We employ the foun-
dational GRACE-2L-OMAT model as the “teacher” and
the GRACE-FS architecture as the “student”, selected
for its straightforward parallelization and CPU-only in-
ference capabilities.

We evaluated performance based on two tasks with
corresponding accuracy metrics. The primary task re-
flects model accuracy on the new downstream applica-
tion, measured by the force component MAE on the
HEA25S validation set. The secondary task serves as
a proxy for the model’s retention of general chemical
knowledge and stability, as the HEA25S dataset lacks
pure unary or binary structures. This was measured
by the MAE of formation energy of binaries compounds
from the Materials Project comprised of non-magnetic
elements covered in the HEA25 dataset.

The different pathways for the downstream task are
illustrated in Fig. 10. The initial foundation model

(“Foundation”) exhibits a large error on the primary task
due to the DFT functional mismatch between its training
data (PBE) and the HEA25S target (PBEsol). However,
it retains a low error (14meV/atom) on the secondary
task—comparable to the 23meV/atom formation energy
MAE on the Matbench Discovery leaderboard.
We explored three distinct approaches to address this.

In the first method, we fine-tuned the foundation model
on the HEA25S dataset to create a new teacher (“Fine-
tuned”). This teacher, having achieved the lowest er-
ror on the primary task, was then used to re-label
the HEA25S dataset for parameterizing the GRACE-
FS student model called “Naive Distilled”. A second
pathway is opposite to the first: we re-labeled the
HEA25S dataset using the original foundation model
(GRACE-2L-OMAT) to parameterize a “Raw distilled”
student model, which was subsequently fine-tuned us-
ing the original HEA25S dataset to produce the “Dis-
tilled/Finetuned” model. Finally, the third approach
involved parameterizing the GRACE-FS model from
scratch using the HEA25S dataset directly to create the
“Bespoke” model. As shown in Fig. 10, all three ap-
proaches yield models with similar error metrics, though
the bespoke model performs slightly better on the pri-
mary task due to the usage of the original DFT data.
To improve performance on the secondary task, while

preserving good accuracy of the primary task, we gener-
ated a synthetic training dataset comprising structures
from HEA25 and HEA25S, along with unary and binary
structures (including both ideal and rattled configura-
tions) for all 25 elements. This extended dataset was
labeled by the GRACE-2L teacher (“Finetuned”) and
used to parameterize a new student model (“Extended
Distilled”). This model demonstrates significantly im-
proved performance on the secondary task, close to the
teacher model, while retaining metrics on the primary
task that are only slightly worse to the bespoke model.
We consistently observe a slight degradation in accu-

racy for student models compared to their teachers due
to the simpler architecture of the former. However, this
simplicity yields substantial gains in computational effi-
ciency. On a CPU with 10 physical cores, the GRACE-
2L model requires approximately 34.48ms/atom/core.
In contrast, the GRACE-FS model, using a standalone
C++ implementation, achieves 0.56ms/atom/core, rep-
resenting a speedup of nearly 70×. Thus, the extended
distillation strategy offers the optimal balance, recover-
ing the generalizability lost in standard fine-tuning or
bespoke training. The effect of different complexities of
teacher and student models, together with other details
are presented in the ementary Information.

III. DISCUSSION

We present a series of foundational machine learn-
ing interatomic potentials (MLIPs) based on the Graph
Atomic Cluster Expansion (GRACE). GRACE builds
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on a formally complete mathematical basis of the local
and semi-local atomic environment. Our foundational
GRACE potentials obey fundamental physical symme-
tries and guarantee invariance under rotation, inversion,
translation, as well as permutation of identical atomic
species. Forces are conservative and computed as gra-
dients of the energy. We further demonstrate compu-
tational efficiency at high precision (FP64). This sets
GRACE apart from many other MLIPs that employ un-
controlled basis approximations, replace exact symme-
tries or exact gradients by numerical estimates, or lower
precision to FP32 for computational efficiency.

Our foundational GRACE potentials were trained on
a massive dataset of DFT calculations that encompasses
a broad range of atomic configurations and chemistries.
Comprehensive validation across diverse simulation tasks
demonstrates excellent performance and versatility of the
GRACE potentials. On the MatBench Discovery leader-
board, our models largely define the Pareto front, show-
casing a superior trade-off between predicted thermody-
namic stability, formation energy MAE and computa-
tional speed. Furthermore, the two-layer GRACE models
exhibit leading performance in predicting thermal con-
ductivity, a property highly sensitive to a model’s ability
to capture anharmonic contributions to atomic displace-
ments and higher-order derivatives. This highlights the
robustness of the GRACE framework beyond simple en-
ergy and force predictions.

Further validation on structural defects - grain bound-
aries, surfaces, and point defects - confirms that the
GRACE models are able to describe effectively non-
equilibrium and open structures. Some outliers, for ex-
ample, for the alkali metals K, Rb and Cs, are attributed
simply to the cut-off radius, which is too small for these
large elements.

Long-time molecular dynamics simulations of FLiBe
molten salt demonstrated the GRACE models’ ability to
maintain stability and accurately capture dynamic prop-
erties, such as radial distribution functions and diffusion
coefficients, over extended timescales.
Beyond the core validation, we explored the practical

application of foundational GRACE potentials through
fine-tuning and distillation. We show that fine-tuning
GRACE models on small, specialized datasets for Al-Li
significantly improves their accuracy for specific down-
stream tasks. This approach is particularly effective
in low-data regimes, outperforming models trained from
scratch. Moreover, our investigation into catastrophic
forgetting demonstrates that freezing specific model lay-
ers can mitigate a model’s tendency to lose general knowl-
edge when learning new, distinct tasks, as illustrated for
a dataset specific for hydrogen combustion. Finally, we
successfully distilled a complex GRACE model into a
simpler, more computationally efficient one, while also
improving its accuracy on a wider configurational space
in comparison to a model trained from scratch. This
shows that foundational potentials can act as power-
ful “teachers” and opens a path for creating specialized,
high-performance ACE and GRACE potentials for spe-
cific applications without the need for extensive new DFT
calculations.

IV. METHODS

A. Models architecture and parameterization

All GRACE models were implemented in the grace-
tensorpotential package, which is based on the Tensor-
Flow library90. The models implement a graph extension
of the atomic cluster expansion (ACE) method, utilizing
both star- and tree-like many-body basis functions, that
form an orthonormal and complete basis set49. The con-
figurations of the GRACE foundational potentials are
schematically depicted in Fig. 11 and provided in more
detail in Table III.
The atomic structure is represented by chemical

species types µi and atomic positions ri, which are trans-
formed into bond vectors rij between neighboring atoms

within a 6 Å cutoff radius. Geometric information is en-
coded using a Chebyshev radial basis and spherical har-
monics Ylm up to lmax = 44,82,83. The Chebyshev poly-

nomials are transformed into radial functions R
(...)
nl using

a multi-layer perceptron (MLP) with two hidden layers,
each containing 64 units. Chemical species are embed-
ded into a 128-dimensional space Zi. Single-particle basis
functions are constructed from these inputs and summed
into atomic bases Ai,nl

4,49. Many-body basis functions
up to the fourth product order are constructed via re-
cursive ACE evaluation using sparse coupling operations
(see Fig. 11, bottom panel). During the recursive ACE
basis evaluation, we utilize an equivariant sum opera-
tion ⊕, summing equivariant quantities with the same
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l-character, and a sparse equivariant coupling ⊗ opera-
tion which employs Clebsch-Gordan coefficients. We em-
ploy a specific coupling order to avoid degenerate prod-
uct functions. The maximum angular momentum, Lmax,
varies depending on the product order. In the one-layer
model, this procedure yields a star-graph ACE basis. For
two-layer models, equivariant basis functions are linearly
combined to define equivariant atomic representations
Ii,nL

48. These representations carry geometric informa-
tion about the atomic environment, effectively extending
the interaction range to 2rcut. They serve as input for
a second recursive ACE evaluation, resulting in a tree
graph GRACE basis49. Finally, all invariant basis func-
tions from all product orders of the first and second lay-
ers are aggregated to form the complete GRACE ba-
sis, which is then linearly combined to generate a set
of atomic densities φi,p . The atomic energy is com-
puted via an embedding scheme as the sum of the
first atomic density and the result of processing the re-
maining densities through another MLP. The total en-
ergy of the structure is the sum of all atomic energies.
Forces are computed via the gradient of the total energy
with respect to the atomic positions. All calculations are
performed in double precision (FP64). The models are
just-in-time (JIT) compiled using XLA to achieve opti-
mal performance. Further details on the GRACE models
will be published in a separate work.

The GRACE models were parameterized using the
recently published OMat2456 dataset in combination
with the sAlex54,55 dataset and the MPTraj dataset
(v2022.10.28)52,53. OMat24 includes a wide range of
structures, whereas sAlex and MPTraj include only re-
laxation trajectories. Raw VASP energies, forces and
stresses were used for parameterizations.

We employed a loss function that consists of different
parts,

L = αELE + αFLF + αSLS, (1)

where LE, LF, and LS correspond to losses of energy
per atom, force component, and stress component, re-
spectively. We utilize the Huber loss for L with param-
eter δ = 0.01 for all components. All models were ini-
tially trained on the OMat24 dataset for 12 epochs for
1L models and for 8 epochs for 2L models, constituting
the ”OMat-base” models. For this stage we use αE : αF :
αS = 16 : 128 : 128. Subsequently, we fine-tuned ”OMat-
base” models on the combination of MPTraj and sAlex
datasets for additional 8 and 4 epochs for 1L and 2L
models respectively with αE : αF : αS = 128 : 128 : 256,
leading to the ”OAM” models. In addition, we fine-tuned
”OMat-base” models on the same OMat24 dataset for ad-
ditional 2 epochs with adjusted loss component weights
to αE : αF : αS = 128 : 128 : 256 to give more weight to
energies. This models are designated with ”ft-E”.

For loss optimization we employed the Adam91 opti-
mizer with cosine learning rate reduction scheme, initial
learning rate of 8×10−3 and minimum learning rate of
5×10−4. For fine tuning we use constant learning rate

of 1×10−4. To optimize data throughput we split the
data into batches based on the total number of bonds
rather than structures. The batch size was set to 165000
bonds per device which on average corresponds to about
200 structures. Training was performed using a single
node with 8 Nvidia H100 80GB GPUs. Complete train-
ing cost of GRACE models varies between 400 and 700
GPU hours for the smallest and the most complex model,
respectively.

B. Validation

Regarding the foundational machine learning inter-
atomic potentials used for comparison, for the MACE
models, the ’medium-mpa-0’ checkpoint was used for
MACE-MPA-0, and ’mace-omat-0-medium’ for MACE-
OMAT-0 (mace-torch version 0.3.12, cuequivariance ver-
sion 0.3.0, cuequivariance-ops-torch-cu12 version 0.3.0,
cuequivariance-torch version 0.3.0) All MACE mod-
els were using float64 precision and had the cuEQ
option enabled. The MatterSim model utilized the
’mattersim-v1.0.0-5m’ checkpoint. The ORB model was
based on the ’v3-conservative-inf’ modification, config-
ured for ’float32-highest’ precision, that corresponds to
full float32 precision. SevenNet employed the ’7net-mf-
ompa’ checkpoint with its ’mpa’ modality. For eSEN, the
’esen 30m omat’ checkpoint with a seed of 0 was selected.
UMA-M and UMA-S models corresponded to their ’uma-
m-1p1’ and ’uma-s-1p1’ checkpoints, respectively, speci-
fying the ’omat’ task. The DPA model used the ’2025-01-
10-dpa3-openlam’ checkpoint, whereas for computational
performance tests “DPA-3.1-3M-ft” checkpoint was used.
For eqV2 M model “eqV2 86M omat mp salex” check-
point was used. All GRACE models consistently oper-
ated with float64 precision.
The computational performance of foundational

MLIPs, depicted in Fig. 1, was determined by measuring
the averaged wall time for ten molecular dynamics (MD)
steps. These simulations were performed for a 1024-atom
supercell of tungsten BCC using ASE on a single NVIDIA
A100 GPU with 80 GB of memory. Initial runs were
excluded to account for Just-In-Time (JIT) compilation
and other caching effects. Each MD simulation was inde-
pendently repeated ten times and the results averaged.
The final metrics are normalized by the number of atoms
and MD steps.
We used elastic properties from the Materials Project72

as our reference, employing an energy-based method92 to
compute the elastic tensor Cij in Voigt notation. Out
of 10073 reference elastic matrix calculations, we could
not compute elastic constants for all structures due to
relaxation and convergence issues with some potentials.
Therefore, we relied on a common subset of 7962 struc-
tures for which elastic tensors were successfully computed
by all potentials. This subset serves as a robust and rep-
resentative test set for evaluating elastic matrix predic-
tions. The eSEN model was not validated due to its high
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TABLE III: Configurations of GRACE foundational potentials. See text for more details.

Configuration 1L 1L-medium 1L-large 2L 2L-medium 2L-large

rcut (Å) 6 6 6 6 6 6
Radial basis func. Cheb Cheb Cheb Cheb Cheb Cheb
Num. radial basis 8 10 10 8 10 10

lmax 4 4 4 4 4 4
Num.elements 89 89 89 89 89 89

Chem. embedding 128 128 128 128 128 128
Num.radial funcs. 32 32 32 32 42 42

Product order 4 4 4 4 4 4
Lmax per product order (layer 1): 4/4/0/0 4/4/0/0 4/4/0/0 4/4/1/0 4/4/1/1 4/4/3/1

Tot. num. equivar. funcs. - - - 4000 9576 13860
Lmax per product order (layer 2) - - - 4/4/0/0 3/3/0/0 3/3/0/0

Tot. num. invar. funcs. 2848 2848 5664 5696 7194 7194
Num. densities 12+1 16+1 16+1 12+1 16+1 16+1

Tot. num. params. 3447148 4461497 8953529 12597516 21764956 26394284

computational expenses.
Grain boundary structures and their corresponding

reference structures were sourced from the Crystalium
project73, a dataset closely related to the Materials
Project52. The reference structures were fully relaxed
using the BFGS method with a FrechetCellFilter, apply-
ing a relaxation criterion of 0.001 eV/Å. Grain bound-
ary relaxation was carried out using the FIRE minimiza-
tion algorithm, also with a FrechetCellFilter, enforcing
a maximum force threshold of 0.01 eV/Å and a limit
of 500 optimization steps. For eqV2 model, relaxation
criteria was loosen to 0.02 eV/Å due to numerical in-
stabilities. In total, 327 grain boundaries were initially
computed across 58 different elements. To ensure con-
sistency and avoid discrepancies, only structures with a
grain boundary plane orthogonal to the z-direction were
selected, resulting in a final set of 297 grain boundary
structures.

Surface structures and their corresponding reference
data were sourced from the Crystalium project74, which
is associated with the Materials Project52. The same
relaxation settings as for grain boundaries were applied.
From an initial total of 1124 surface structures, only those
with a surface plane orthogonal to the z-direction were
selected, yielding a final set of 716 surface structures for
analysis.

Reference data for self-interstitial and vacancy forma-
tion energies were taken from Ref.75 for 13 BCC metals
and Ref.76 for 13 FCC metals. All these reference values
were computed using the PBE functional.

V. DATA AVAILABILITY

Training datasets (MPTrj, sAlex and
OMat24) are publicly available. GRACE
foundational potentials are available at grace-
maker.readthedocs.io/en/latest/gracemaker/foundation
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github.com/ICAMS/grace-tensorpotential
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G. Csányi, Advances in neural information processing sys-
tems 35, 11423 (2022).

52 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and
K. a. Persson, APL Materials 1, 011002 (2013).

53 B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C. J.
Bartel, and G. Ceder, Nature Machine Intelligence 5, 1031
(2023).

54 J. Schmidt, N. Hoffmann, H.-C. Wang, P. Borlido, P. J.
Carriço, T. F. Cerqueira, S. Botti, and M. A. Marques,
Advanced Materials 35, 2210788 (2023).

55 H.-C. Wang, J. Schmidt, M. A. Marques, L. Wirtz, and
A. H. Romero, 2D Materials 10, 035007 (2023).

56 L. Barroso-Luque, M. Shuaibi, X. Fu, B. M. Wood,
M. Dzamba, M. Gao, A. Rizvi, C. L. Zitnick, and Z. W.
Ulissi, “Open materials 2024 (omat24) inorganic materi-
als dataset and models,” (2024), arXiv:2410.12771 [cond-
mat.mtrl-sci].

57 S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W.
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FIGURE LEGENDS

Figure 1. Pareto front of accuracy versus effi-
ciency. (a) Model performance for stable structure iden-
tification (F1 score in MatBench Discovery benchmark)
versus computational time. (b) Thermal conductivity
prediction error (κSRME) versus computational time. A
higher F1 score and lower κSRME indicate better per-
formance. The blue dashed line links Pareto optimal
models. Computational performance is estimated via
ASE (filled symbols) and LAMMPS (open symbols), with
GRACE models indicated in red.

Figure 2.The symmetric relative mean error (SRME)
and MAE (∆C in GPa) for elastic constants, categorized
into three subgroups: longitudinal (C11, C22, C33),
Poisson’s ratio-related (C12, C13, C23), and shear
(C44, C55, C66). See text for more details.

Figure 3. Accuracy for grain boundary formation en-
ergies of unary systems: symmetric relative mean error
γGB-SRME and mean absolute error ∆γGB. GRACE
models are highlighted in red. GRACE models are high-
lighted in red.

Figure 4. Accuracy for surface formation energies
of unary systems: symmetric relative mean error γsurf -
SRME and mean absolute error ∆γsurf . GRACE models
are highlighted in red.

Figure 5. Accuracy for point defect formation
energies of unary systems. Error metrics for (a) self-
interstitials (SIA) and (b) vacancies. GRACE models
are highlighted in red.

Figure 6.RDF of FLiBe salt from MD at 973K using
GRACE in comparison to AIMD-DFT results77,78.

Figure 7.Computational performance and memory
scaling (maximum number of atoms) of foundational
GRACE potentials in LAMMPS on a single A100-80GB
GPU, evaluated across diverse materials systems.
Figure 8. Fine-tuning performance on the Al-Li

system. Mean absolute error (MAE) for (a) energies,
(b) forces, (c) formation energies, (d) elastic matrix el-
ements, (e) phonon density of states (PhDOS), and (f)
vacancy formation energies. PhDOS error is measured
by Tanimoto similarity 1−SPhDOS. Data at zero number
of train structures correspond to zero-shot models.
Figure 9.Mean Absolute Error (MAE) of forces for

fine-tuned GRACE-2L-OAM models. The x-axis shows
MAE on the new H2COMB dataset (downstream task),
the y-axis shows MAE on the original sAlex dataset. Per-
formance for sAlex is split into H,O atoms (light grey di-
amonds) and other elements (dark grey triangles). ’Base-
line’ refers to the zero-shot model. ’Naive’ corresponds
to strategy 1 (naive fine-tuning). ’Trainable-1’ and
’Trainable-2’ correspond to strategies 2a and 2b, respec-
tively, representing different frozen-weights approaches.
Figure 10. Efficiency and accuracy trade-offs in

model distillation. (a) Trade-off between accuracy on the
primary task (HEA25S force MAE) and general chemi-
cal stability (secondary task: formation energy MAE).
(b) Computational cost versus primary task accuracy.
(c) Computational cost versus secondary task accuracy.
Computational performance for both GRACE-2L and
GRACE-FS architectures was evaluated on a 10-core
CPU and normalized per core. See text for details.
Figure 11. Architecture of GRACE models. (a)

Overall schematic of the model architecture. (b) Recur-
sive ACE basis evaluation details.


