Abstract
Heat transport can be modelled with a variety of approaches in real space (using molecular dynamics) or in reciprocal space (using the Boltzmann transport equation). Employing two conceptually different approaches of each type, we study heat transport in crystalline polyethylene and polythiophene. We find that consistent results can be obtained when using highly efficient and accurate machine-learned potentials, provided that the physical intricacies of the considered materials and methods are correctly accounted for. For polythiophene, this turns out to be comparably straightforward, whereas for polyethylene, we find that the inclusion of higher-order anharmonicities is crucial to avoid a massive overestimation of the thermal conductivity. The responsible long-lived phonons are found at relatively high frequencies between 11 THz and 16 THz. This complicates the use of classical statistics in all molecular-dynamics-based approaches.
Similar content being viewed by others
Data availability
Datasets generated and/or analysed during the current study are available in the TU Graz Repository; https://doi.org/10.3217/jw2ym-g7r83.
Code availability
The modified version of Dynaphopy, that was used in this study, is available at www.github.com/sandrowieser/DynaPhoPy/tree/orig-ez-paper. VASP can be acquired from the VASP Software GmbH (see www.vasp.at); LAMMPS is available at www.lammps.org; MLIP is available at www.mlip.skol-tech.ru/download; the lammps-mlip interface (version 2) is available at www.gitlab.com/ashapeev/interface-lammps-mlip-2; Phonopy is available at www.phonopy.github.io/phonopy; Phono3py is available at www.phonopy.github.io/phono3py.
References
Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384 (2014).
Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).
Yelishala, S. C., Murphy, C. & Cui, L. Molecular perspective and engineering of thermal transport and thermoelectricity in polymers. J. Mater. Chem. A 12, 10614 (2024).
Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251 (2010).
Shrestha, R. et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018).
Kim, T., Drakopoulos, S. X., Ronca, S. & Minnich, A. J. Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals. Nat. Commun. 13, 2452 (2022).
Ronca, S., Igarashi, T., Forte, G. & Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: solid-state processed Ultra High Molecular Weight Polyethylene tapes and films. Polymer 123, 203 (2017).
Liu, J., Xu, Z., Cheng, Z., Xu, S. & Wang, X. Thermal conductivity of ultrahigh molecular weight polyethylene crystal: defect effect uncovered by 0 K limit phonon diffusion. ACS Appl. Mater. Interfaces 7, 27279 (2015).
Cheng, P., Shulumba, N. & Minnich, A. J. Thermal transport and phonon focusing in complex molecular crystals: Ab initio study of polythiophene. Phys. Rev. B 100, 94306 (2019).
Reicht, L., Legenstein, L., Wieser, S. & Zojer, E. Designing accurate moment tensor potentials for phonon-related properties of crystalline polymers. Molecules 29, 3724 (2024).
Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023).
Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997).
Green, M. S. Random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954).
Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).
Puligheddu, M., Xia, Y., Chan, M. & Galli, G. Computational prediction of lattice thermal conductivity: a comparison of molecular dynamics and Boltzmann transport approaches. Phys. Rev. Mater. 3, 085401 (2019).
Togo, A. & Seko, A. On-the-fly training of polynomial machine learning potentials in computing lattice thermal conductivity. J. Chem. Phys. 160, 211001 (2024).
Mortazavi, B. et al. Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: a MTP/ShengBTE solution. Comput. Phys. Commun. 258, 107583 (2021).
Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
Jinnouchi, R., Karsai, F. & Kresse, G. On-the-fly machine learning force field generation: application to melting points. Phys. Rev. B 100, 014105 (2019).
Jinnouchi, R., Lahnsteiner, J., Karsai, F., Kresse, G. & Bokdam, M. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys. Rev. Lett. 122, 225701 (2019).
Wieser, S. & Zojer, E. Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks. npj Comput. Mater. 10, 18 (2024).
Dong, H. et al. Molecular dynamics simulations of heat transport using machine-learned potentials: a mini review and tutorial on GPUMD with neuroevolution potentials. J. Appl. Phys. 135, 161101 (2024).
McGaughey, A. J. H., Jain, A., Kim, H. Y. & Fu, B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).
Gu, X., Fan, Z. & Bao, H. Thermal conductivity prediction by atomistic simulation methods: recent advances and detailed comparison. J. Appl. Phys. 130, 210902 (2021).
Chaput, L. Direct solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 110, 265506 (2013).
Li, Z., Xia, Y. & Wolverton, C. First-principles calculations of lattice thermal conductivity in Tl3 VSe4 : uncertainties from different approaches of force constants. Phys. Rev. B 108, 184307 (2023).
Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 237–291 (1960).
Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715 (1999).
Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comput. Mater. 3, 49 (2017).
Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809 (2019).
Legenstein, L., Reicht, L., Wieser, S., Simoncelli, M. & Zojer, E. Heat transport in crystalline organic semiconductors: coexistence of phonon propagation and tunneling. npj Comput. Mater. 11, 29 (2025).
Dettori, R., Beljonne, D., Colombo, L. & Melis, C. Coherent phonon transport in 2D layered metal organic frameworks. Sci. Rep. 15, 41337 (2025).
Han, Z., Yang, X., Li, W., Feng, T. & Ruan, X. FourPhonon: an extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 270, 108179 (2022).
Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 97, 079901 (2018).
Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. X 10, 21063 (2020).
Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).
Han, Z. & Ruan, X. Thermal conductivity of monolayer graphene: Convergent and lower than diamond. Phys. Rev. B 108, L121412 (2023).
Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).
Zhou, W. et al. Insight into the effect of force error on the thermal conductivity from machine-learned potentials. Mater. Today Phys. 50, 101638 (2025).
Tai, S. T., Wang, C., Cheng, R. & Chen, Y. Revisiting many-body interaction heat current and thermal conductivity calculations using the moment tensor potential/LAMMPS interface. J. Chem. Theory Comput. 21, 3649–3657 (2025).
Vercouter, A., Lemaur, V., Melis, C. & Cornil, J. Computing the Lattice thermal conductivity of small-molecule organic semiconductors: a systematic comparison of molecular dynamics based methods. Adv. Theory Simul. 6, 2200892 (2023).
Talaat, K., El-Genk, M. S. & Cowen, B. Extrapolation of thermal conductivity in non-equilibrium molecular dynamics simulations to bulk scale. Int. Commun. Heat. Mass Transf. 118, 104880 (2020).
Li, Z. et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J. Chem. Phys. 151, 234105 (2019).
Lampin, E., Palla, P. L., Francioso, P. A. & Cleri, F. Thermal conductivity from approach-to-equilibrium molecular dynamics. J. Appl. Phys. 114, 33525 (2013).
Melis, C., Dettori, R., Vandermeulen, S. & Colombo, L. Calculating thermal conductivity in a transient conduction regime: theory and implementation. Eur. Phys. J. B 87, 96 (2014).
Puligheddu, M., Gygi, F. & Galli, G. First-principles simulations of heat transport. Phys. Rev. Mater. 1, 060802(R) (2017).
Zaoui, H., Palla, P. L., Cleri, F. & Lampin, E. Length dependence of thermal conductivity by approach-to-equilibrium molecular dynamics. Phys. Rev. B 94, 54304 (2016).
Sun, H. Compass: an ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338 (1998).
Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000).
Henry, A., Chen, G., Plimpton, S. J. & Thompson, A. 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Phys. Rev. B 82, 195131 (2010).
Ni, B., Watanabe, T. & Phillpot, S. R. Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation. J. Phys. Condens. Matter 21, 084219 (2009).
Turney, J. E., McGaughey, A. J. H. & Amon, C. H. Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys. Rev. B 79, 224305 (2009).
Wang, X., Kaviany, M. & Huang, B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022 (2017).
Zhang, Z. et al. Hydrodynamic phonon transport in bulk crystalline polymers. Phys. Rev. B 102, 195302 (2020).
Gu, X. & Yang, R. Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014).
Turney, J. E., Landry, E. S., McGaughey, A. J. H. & Amon, C. H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Phys. Rev. B 79, 064301 (2009).
He, Y., Savić, I., Donadio, D. & Galli, G. Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem. Phys. 14, 16209 (2012).
Zhou, H., Zhou, S., Hua, Z., Bawane, K. & Feng, T. Impact of classical statistics on thermal conductivity predictions of BAs and diamond using machine learning molecular dynamics. Appl. Phys. Lett. 125, 172202 (2024).
Vienna Scientific Cluster. https://vsc.ac.at/systems/vsc-5/.
Kamencek, T. et al. Evaluating computational shortcuts in supercell-based phonon calculations of molecular crystals: the instructive case of naphthalene. J. Chem. Theory Comput. 16, 2716 (2020).
Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015).
Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006).
Bedoya-Martínez, N. et al. Toward a reliable description of the lattice vibrations in organic molecular crystals: the impact of van der Waals interactions. J. Chem. Theory Comput. 14, 4380 (2018).
Bedoya-Martínez, N. et al. DFT-assisted polymorph identification from lattice Raman fingerprinting. J. Phys. Chem. Lett. 8, 3690–3695 (2017).
George, J., Wang, R., Englert, U. & Dronskowski, R. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene. J. Chem. Phys. 147, 074112 (2017).
Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153 (2016).
Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Togo, A. Phono3py Documentation. https://phonopy.github.io/phono3py/tips.html.
Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).
Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 1 (2011).
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).
Zhang, T., Wu, X. & Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C. 118, 21148 (2014).
Surblys, D., Matsubara, H., Kikugawa, G. & Ohara, T. Methodology and meaning of computing heat flux via atomic stress in systems with constraint dynamics. J. Appl. Phys. 130, 215104 (2021).
Surblys, D., Matsubara, H., Kikugawa, G. & Ohara, T. Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys. Rev. E 99, 051301 (2019).
Boone, P., Babaei, H. & Wilmer, C. E. Heat flux for many-body interactions: corrections to LAMMPS. J. Chem. Theory Comput. 15, 557 (2019).
Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014).
Knoop, F. et al. TDEP: temperature dependent effective potentials. J. Open Source Softw. 9, 6150 (2024).
Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002).
Acknowledgements
This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [primarily Grant-https://doi.org/10.55776/P33903 and in part also https://doi.org/10.55776/P36129]. For the purpose of open access, the authors have applied a CC-BY public copyright license to any author accepted manuscript version arising from this submission. We also acknowledge the Graz University of Technology for support through the Lead Project Porous Materials @ Work for Sustainability (LP-03). The computational results have been achieved using the Austrian Scientific Computing (ASC) infrastructure, clusters VSC-4 and VSC-5.
Author information
Authors and Affiliations
Contributions
Conceptualization, E.Z. and L.R.; methodology, L.R. and S.W.; software, L.R. and S.W.; validation, L.R.; formal analysis, L.R.; investigation, L.R.; resources, E.Z.; data curation, L.R.; writing-original draft preparation, L.R.; writing-review and editing, E.Z., L.R., L.L., and S.W.; visualization, L.R.; supervision, E.Z.; project administration, E.Z.; funding acquisition, E.Z. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Reicht, L., Legenstein, L., Wieser, S. et al. Analysing heat transport in crystalline polymers in real and reciprocal space. npj Comput Mater (2026). https://doi.org/10.1038/s41524-026-01988-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41524-026-01988-0


