Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Computational Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj computational materials
  3. articles
  4. article
Analysing heat transport in crystalline polymers in real and reciprocal space
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Analysing heat transport in crystalline polymers in real and reciprocal space

  • Lukas Reicht1,
  • Lukas Legenstein1,
  • Sandro Wieser1,2 &
  • …
  • Egbert Zojer1 

npj Computational Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atomistic models
  • Condensed-matter physics
  • Polymers
  • Theoretical chemistry

Abstract

Heat transport can be modelled with a variety of approaches in real space (using molecular dynamics) or in reciprocal space (using the Boltzmann transport equation). Employing two conceptually different approaches of each type, we study heat transport in crystalline polyethylene and polythiophene. We find that consistent results can be obtained when using highly efficient and accurate machine-learned potentials, provided that the physical intricacies of the considered materials and methods are correctly accounted for. For polythiophene, this turns out to be comparably straightforward, whereas for polyethylene, we find that the inclusion of higher-order anharmonicities is crucial to avoid a massive overestimation of the thermal conductivity. The responsible long-lived phonons are found at relatively high frequencies between 11 THz and 16 THz. This complicates the use of classical statistics in all molecular-dynamics-based approaches.

Similar content being viewed by others

Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals

Article Open access 04 May 2022

Heat transport in crystalline organic semiconductors: coexistence of phonon propagation and tunneling

Article Open access 14 February 2025

Discovery of liquid crystalline polymers with high thermal conductivity using machine learning

Article Open access 02 July 2025

Data availability

Datasets generated and/or analysed during the current study are available in the TU Graz Repository; https://doi.org/10.3217/jw2ym-g7r83.

Code availability

The modified version of Dynaphopy, that was used in this study, is available at www.github.com/sandrowieser/DynaPhoPy/tree/orig-ez-paper. VASP can be acquired from the VASP Software GmbH (see www.vasp.at); LAMMPS is available at www.lammps.org; MLIP is available at www.mlip.skol-tech.ru/download; the lammps-mlip interface (version 2) is available at www.gitlab.com/ashapeev/interface-lammps-mlip-2; Phonopy is available at www.phonopy.github.io/phonopy; Phono3py is available at www.phonopy.github.io/phono3py.

References

  1. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384 (2014).

    Google Scholar 

  2. Xu, Y. et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).

    Google Scholar 

  3. Yelishala, S. C., Murphy, C. & Cui, L. Molecular perspective and engineering of thermal transport and thermoelectricity in polymers. J. Mater. Chem. A 12, 10614 (2024).

    Google Scholar 

  4. Shen, S., Henry, A., Tong, J., Zheng, R. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251 (2010).

    Google Scholar 

  5. Shrestha, R. et al. Crystalline polymer nanofibers with ultra-high strength and thermal conductivity. Nat. Commun. 9, 1664 (2018).

    Google Scholar 

  6. Kim, T., Drakopoulos, S. X., Ronca, S. & Minnich, A. J. Origin of high thermal conductivity in disentangled ultra-high molecular weight polyethylene films: ballistic phonons within enlarged crystals. Nat. Commun. 13, 2452 (2022).

    Google Scholar 

  7. Ronca, S., Igarashi, T., Forte, G. & Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: solid-state processed Ultra High Molecular Weight Polyethylene tapes and films. Polymer 123, 203 (2017).

    Google Scholar 

  8. Liu, J., Xu, Z., Cheng, Z., Xu, S. & Wang, X. Thermal conductivity of ultrahigh molecular weight polyethylene crystal: defect effect uncovered by 0 K limit phonon diffusion. ACS Appl. Mater. Interfaces 7, 27279 (2015).

    Google Scholar 

  9. Cheng, P., Shulumba, N. & Minnich, A. J. Thermal transport and phonon focusing in complex molecular crystals: Ab initio study of polythiophene. Phys. Rev. B 100, 94306 (2019).

    Google Scholar 

  10. Reicht, L., Legenstein, L., Wieser, S. & Zojer, E. Designing accurate moment tensor potentials for phonon-related properties of crystalline polymers. Molecules 29, 3724 (2024).

    Google Scholar 

  11. Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 92, 012001 (2023).

    Google Scholar 

  12. Müller-Plathe, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997).

    Google Scholar 

  13. Green, M. S. Random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954).

    Google Scholar 

  14. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).

    Google Scholar 

  15. Puligheddu, M., Xia, Y., Chan, M. & Galli, G. Computational prediction of lattice thermal conductivity: a comparison of molecular dynamics and Boltzmann transport approaches. Phys. Rev. Mater. 3, 085401 (2019).

    Google Scholar 

  16. Togo, A. & Seko, A. On-the-fly training of polynomial machine learning potentials in computing lattice thermal conductivity. J. Chem. Phys. 160, 211001 (2024).

    Google Scholar 

  17. Mortazavi, B. et al. Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: a MTP/ShengBTE solution. Comput. Phys. Commun. 258, 107583 (2021).

    Google Scholar 

  18. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).

    Google Scholar 

  19. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Google Scholar 

  20. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Google Scholar 

  21. Jinnouchi, R., Karsai, F. & Kresse, G. On-the-fly machine learning force field generation: application to melting points. Phys. Rev. B 100, 014105 (2019).

  22. Jinnouchi, R., Lahnsteiner, J., Karsai, F., Kresse, G. & Bokdam, M. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys. Rev. Lett. 122, 225701 (2019).

    Google Scholar 

  23. Wieser, S. & Zojer, E. Machine learned force-fields for an Ab-initio quality description of metal-organic frameworks. npj Comput. Mater. 10, 18 (2024).

    Google Scholar 

  24. Dong, H. et al. Molecular dynamics simulations of heat transport using machine-learned potentials: a mini review and tutorial on GPUMD with neuroevolution potentials. J. Appl. Phys. 135, 161101 (2024).

    Google Scholar 

  25. McGaughey, A. J. H., Jain, A., Kim, H. Y. & Fu, B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).

  26. Gu, X., Fan, Z. & Bao, H. Thermal conductivity prediction by atomistic simulation methods: recent advances and detailed comparison. J. Appl. Phys. 130, 210902 (2021).

    Google Scholar 

  27. Chaput, L. Direct solution to the linearized phonon Boltzmann equation. Phys. Rev. Lett. 110, 265506 (2013).

    Google Scholar 

  28. Li, Z., Xia, Y. & Wolverton, C. First-principles calculations of lattice thermal conductivity in Tl3 VSe4 : uncertainties from different approaches of force constants. Phys. Rev. B 108, 184307 (2023).

    Google Scholar 

  29. Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 237–291 (1960).

  30. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. B 79, 1715 (1999).

    Google Scholar 

  31. Seyf, H. R. et al. Rethinking phonons: the issue of disorder. npj Comput. Mater. 3, 49 (2017).

    Google Scholar 

  32. Simoncelli, M., Marzari, N. & Mauri, F. Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15, 809 (2019).

    Google Scholar 

  33. Legenstein, L., Reicht, L., Wieser, S., Simoncelli, M. & Zojer, E. Heat transport in crystalline organic semiconductors: coexistence of phonon propagation and tunneling. npj Comput. Mater. 11, 29 (2025).

    Google Scholar 

  34. Dettori, R., Beljonne, D., Colombo, L. & Melis, C. Coherent phonon transport in 2D layered metal organic frameworks. Sci. Rep. 15, 41337 (2025).

    Google Scholar 

  35. Han, Z., Yang, X., Li, W., Feng, T. & Ruan, X. FourPhonon: an extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 270, 108179 (2022).

    Google Scholar 

  36. Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 97, 079901 (2018).

    Google Scholar 

  37. Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. X 10, 21063 (2020).

    Google Scholar 

  38. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).

    Google Scholar 

  39. Han, Z. & Ruan, X. Thermal conductivity of monolayer graphene: Convergent and lower than diamond. Phys. Rev. B 108, L121412 (2023).

    Google Scholar 

  40. Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).

    Google Scholar 

  41. Zhou, W. et al. Insight into the effect of force error on the thermal conductivity from machine-learned potentials. Mater. Today Phys. 50, 101638 (2025).

    Google Scholar 

  42. Tai, S. T., Wang, C., Cheng, R. & Chen, Y. Revisiting many-body interaction heat current and thermal conductivity calculations using the moment tensor potential/LAMMPS interface. J. Chem. Theory Comput. 21, 3649–3657 (2025).

    Google Scholar 

  43. Vercouter, A., Lemaur, V., Melis, C. & Cornil, J. Computing the Lattice thermal conductivity of small-molecule organic semiconductors: a systematic comparison of molecular dynamics based methods. Adv. Theory Simul. 6, 2200892 (2023).

    Google Scholar 

  44. Talaat, K., El-Genk, M. S. & Cowen, B. Extrapolation of thermal conductivity in non-equilibrium molecular dynamics simulations to bulk scale. Int. Commun. Heat. Mass Transf. 118, 104880 (2020).

    Google Scholar 

  45. Li, Z. et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J. Chem. Phys. 151, 234105 (2019).

    Google Scholar 

  46. Lampin, E., Palla, P. L., Francioso, P. A. & Cleri, F. Thermal conductivity from approach-to-equilibrium molecular dynamics. J. Appl. Phys. 114, 33525 (2013).

    Google Scholar 

  47. Melis, C., Dettori, R., Vandermeulen, S. & Colombo, L. Calculating thermal conductivity in a transient conduction regime: theory and implementation. Eur. Phys. J. B 87, 96 (2014).

    Google Scholar 

  48. Puligheddu, M., Gygi, F. & Galli, G. First-principles simulations of heat transport. Phys. Rev. Mater. 1, 060802(R) (2017).

    Google Scholar 

  49. Zaoui, H., Palla, P. L., Cleri, F. & Lampin, E. Length dependence of thermal conductivity by approach-to-equilibrium molecular dynamics. Phys. Rev. B 94, 54304 (2016).

    Google Scholar 

  50. Sun, H. Compass: an ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338 (1998).

    Google Scholar 

  51. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000).

    Google Scholar 

  52. Henry, A., Chen, G., Plimpton, S. J. & Thompson, A. 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Phys. Rev. B 82, 195131 (2010).

    Google Scholar 

  53. Ni, B., Watanabe, T. & Phillpot, S. R. Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation. J. Phys. Condens. Matter 21, 084219 (2009).

  54. Turney, J. E., McGaughey, A. J. H. & Amon, C. H. Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys. Rev. B 79, 224305 (2009).

    Google Scholar 

  55. Wang, X., Kaviany, M. & Huang, B. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022 (2017).

    Google Scholar 

  56. Zhang, Z. et al. Hydrodynamic phonon transport in bulk crystalline polymers. Phys. Rev. B 102, 195302 (2020).

    Google Scholar 

  57. Gu, X. & Yang, R. Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014).

    Google Scholar 

  58. Turney, J. E., Landry, E. S., McGaughey, A. J. H. & Amon, C. H. Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations. Phys. Rev. B 79, 064301 (2009).

    Google Scholar 

  59. He, Y., Savić, I., Donadio, D. & Galli, G. Lattice thermal conductivity of semiconducting bulk materials: atomistic simulations. Phys. Chem. Chem. Phys. 14, 16209 (2012).

    Google Scholar 

  60. Zhou, H., Zhou, S., Hua, Z., Bawane, K. & Feng, T. Impact of classical statistics on thermal conductivity predictions of BAs and diamond using machine learning molecular dynamics. Appl. Phys. Lett. 125, 172202 (2024).

    Google Scholar 

  61. Vienna Scientific Cluster. https://vsc.ac.at/systems/vsc-5/.

  62. Kamencek, T. et al. Evaluating computational shortcuts in supercell-based phonon calculations of molecular crystals: the instructive case of naphthalene. J. Chem. Theory Comput. 16, 2716 (2020).

    Google Scholar 

  63. Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015).

    Google Scholar 

  64. Shulumba, N., Hellman, O. & Minnich, A. J. Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017).

    Google Scholar 

  65. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  67. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).

    Google Scholar 

  68. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  69. Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006).

    Google Scholar 

  70. Bedoya-Martínez, N. et al. Toward a reliable description of the lattice vibrations in organic molecular crystals: the impact of van der Waals interactions. J. Chem. Theory Comput. 14, 4380 (2018).

    Google Scholar 

  71. Bedoya-Martínez, N. et al. DFT-assisted polymorph identification from lattice Raman fingerprinting. J. Phys. Chem. Lett. 8, 3690–3695 (2017).

    Google Scholar 

  72. George, J., Wang, R., Englert, U. & Dronskowski, R. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene. J. Chem. Phys. 147, 074112 (2017).

    Google Scholar 

  73. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153 (2016).

    Google Scholar 

  74. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  75. Togo, A. Phono3py Documentation. https://phonopy.github.io/phono3py/tips.html.

  76. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    Google Scholar 

  77. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 1 (2011).

    Google Scholar 

  78. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Google Scholar 

  79. Zhang, T., Wu, X. & Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C. 118, 21148 (2014).

    Google Scholar 

  80. Surblys, D., Matsubara, H., Kikugawa, G. & Ohara, T. Methodology and meaning of computing heat flux via atomic stress in systems with constraint dynamics. J. Appl. Phys. 130, 215104 (2021).

  81. Surblys, D., Matsubara, H., Kikugawa, G. & Ohara, T. Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys. Rev. E 99, 051301 (2019).

    Google Scholar 

  82. Boone, P., Babaei, H. & Wilmer, C. E. Heat flux for many-body interactions: corrections to LAMMPS. J. Chem. Theory Comput. 15, 557 (2019).

    Google Scholar 

  83. Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014).

    Google Scholar 

  84. Knoop, F. et al. TDEP: temperature dependent effective potentials. J. Open Source Softw. 9, 6150 (2024).

    Google Scholar 

  85. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783 (2002).

    Google Scholar 

Download references

Acknowledgements

This research was funded in whole, or in part, by the Austrian Science Fund (FWF) [primarily Grant-https://doi.org/10.55776/P33903 and in part also https://doi.org/10.55776/P36129]. For the purpose of open access, the authors have applied a CC-BY public copyright license to any author accepted manuscript version arising from this submission. We also acknowledge the Graz University of Technology for support through the Lead Project Porous Materials @ Work for Sustainability (LP-03). The computational results have been achieved using the Austrian Scientific Computing (ASC) infrastructure, clusters VSC-4 and VSC-5.

Author information

Authors and Affiliations

  1. Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Graz, ST, Austria

    Lukas Reicht, Lukas Legenstein, Sandro Wieser & Egbert Zojer

  2. Institute of Materials Chemistry, TU Wien, Vienna, Austria

    Sandro Wieser

Authors
  1. Lukas Reicht
    View author publications

    Search author on:PubMed Google Scholar

  2. Lukas Legenstein
    View author publications

    Search author on:PubMed Google Scholar

  3. Sandro Wieser
    View author publications

    Search author on:PubMed Google Scholar

  4. Egbert Zojer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, E.Z. and L.R.; methodology, L.R. and S.W.; software, L.R. and S.W.; validation, L.R.; formal analysis, L.R.; investigation, L.R.; resources, E.Z.; data curation, L.R.; writing-original draft preparation, L.R.; writing-review and editing, E.Z., L.R., L.L., and S.W.; visualization, L.R.; supervision, E.Z.; project administration, E.Z.; funding acquisition, E.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Egbert Zojer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

SI-paper_heat_transport_rev2.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reicht, L., Legenstein, L., Wieser, S. et al. Analysing heat transport in crystalline polymers in real and reciprocal space. npj Comput Mater (2026). https://doi.org/10.1038/s41524-026-01988-0

Download citation

  • Received: 26 March 2025

  • Accepted: 26 January 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41524-026-01988-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Editorial policies
  • Journal Metrics
  • About the partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Computational Materials (npj Comput Mater)

ISSN 2057-3960 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing