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Theoretical investigation of an atomic
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acceleration sensor for microgravity
environments
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We investigate the use of an atomic Fabry-Perot interferometer (FPI) with a pulsed non-interacting
Bose-Einstein condensate (BEC) source as a space-based acceleration sensor. We derive an analytic
approximation for the device’s transmission under a uniform acceleration, which we use to compute
the device’s attainable acceleration sensitivity using the classical Fisher information. In the ideal case
of a high-finesse FPI and an infinitely narrow momentum width atomic source, we find that when the
device length is limited, the atomic FPI can achieve greater acceleration sensitivity than a Mach-
Zender (MZ) interferometer of equivalent device length. Under the more realistic case of a finite
momentum width source, we identify the ideal cavity length for the best sensitivity. Although the MZ
interferometer now offers enhanced sensitivity within currently achievable parameter regimes, our
analysis demonstrates that the atomic FPI holds potential as a promising future alternative if narrow
momentum width atomic sources can be engineered.

The existing generation of atom interferometers have provided state-of-the-
art measurements of accelerations1,2, rotations3–7, gravitational fields8–14,
gravity gradients15–20, the fine structure constant21–23, and Newton’s grav-
itational constant24. With sufficient miniaturisation and ruggedization,
quantum sensors based on atom interferometry could enable new cap-
abilities in navigation25–30, civil engineering risk management31–33, mineral
exploration and recovery34,35, groundwater mapping and monitoring36, and
geodesy37–40. Atom interferometers are presently being developed formobile
operation on dynamic platforms, and have been deployed on ships41,42,
aircraft43–45, and in microgravity environments onboard sounding
rockets46,47 and the International Space Station48. Spaceborne operation in
particular has provided a strong motivation for next-generation atom-
interferometric development, since it could progress key questions in fun-
damental physics through low-frequency-band gravitational wave
detection49, weak equivalence principle violation tests50,51, and novel
experiments into dark energy52,53, dark matter54,55, and quantum gravity56,57.
Recent advancements in space-based atom interferometry have demon-
strated its potential for high-precision gravitational measurements, sig-
nificantly enhancing satellite geodesy and Earth observation40,58,59

There is a worldwide effort to decrease the size, weight, and power
(SWaP) of atomic inertial sensors whilst maintaining sensitivity, accuracy,
and stability on dynamic platforms in real-world environments27,35,60,61.
Efforts to address these challenges have largely focussed on improving the
performance of the standard three-pulse Mach-Zehnder (MZ) atom
interferometer, through innovations suchas largemomentumtransfer atom
optics62–69, improved atomic source quality and production rate70–76, novel
state readout77–79, error-robust quantum control80–84, and overcoming the
shot-noise limit through quantum entanglement generated from atom-
atom85–94 or atom-light95–103 interactions. However, another approach is to
consider alternatives to the standardMZ atom interferometer, which could
relax certain technological requirements and provide advantages in tight-
SWaP situations.

One alternative interferometry configuration is the atomic analogue of
a Fabry-Perot interferometer (FPI). In an optical FPI, light enters a cavity
formed by two parallel mirrors, and a resonant spectra is obtained by
scanning the incident wavelength. Optical FPIs have been extensively used
in a number of spectroscopic104–106 and sensing107,108 applications. In an
atomic FPI, the incoming light is replaced by atomic matter-waves and the

1ITEP, Department of Education, Central University of Kerala, Kasaragod, Kerala, India. 2Department of QuantumScience and Technology, The Australian National
University, Research School of Physics, Canberra, ACT, Australia. 3Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK. e-mail: manjuperumbil@cukerala.ac.in

npj Microgravity |           (2025) 11:37 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-025-00499-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-025-00499-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-025-00499-4&domain=pdf
mailto:manjuperumbil@cukerala.ac.in
www.nature.com/npjmgrav


mirrors are replacedby laser-inducedpotential barriers. Previous theoretical
studies into atomic FPIs have demonstrated that an ultracold Bose source
can produce high contrast Fabry-Perot interference fringes109–113, char-
acterised their resonance properties114,115, and investigated the potential use
of atomic FPIs in velocity selection116,117 and angle selection118. For the
experimental regimes achievable with current technology, a narrow
momentum width source such as a Bose-Einstein condensate (BEC) is
needed to achieve the high contrast resonant transmission peaks required
for useful sensing119. Operating in a regime where atom-atom collisional
interactions are negligible is also highly desirable, and can be obtained
through a Feshbach resonance120–122. The suitability of a noninteractingBEC
source for atomic Fabry-Perot interferometry has been validated in a recent
experimental demonstration using a 39K BEC source and optical barrier
potentials formed using a digital micromirror device123.

In this paper, we study the application of an atomic FPI as an accel-
eration sensor. A previous work has considered the suitability of atomic FPIs
for gravimetry through a numerical simulation analysis124. Here we take a
complementary analytic approach that aims to give deeper insights into the
optimal parameter regime and performance limits of an atomic FPI accel-
eration sensor. This approach allows us to assess whether there are regimes
where an atomic FPI could potentially offer superior performance as an
acceleration sensor compared to MZ interferometry. We are particularly
interested in situations where device size is highly constrained, such as in
space-based applications. Since we are interested in fundamental performance
limits, we consider only the case of a non-interacting BEC in this work.

Specifically, in Section “Methods”we derive an analytic expression for
the transmission of a non-interacting BEC through the atomic FPI in an
accelerating field, which we validate by numeric simulation of the Schrö-
dinger equation for N non-interacting particles. We first study in Section
“Acceleration sensitivity of an atomic FPI with a plane matter-wave input”
the ideal case of an infinitely narrowmomentumwidth source, and from the
transmission derive an approximate expression for the optimum Fisher
information (and consequently acceleration sensitivity). We then consider
in Sections “Space-Based Accelerometer Using a BEC With a Finite
Momentum Width” and “Optimising Cavity Length and Corresponding
Acceleration Sensitivity for a Particular MomentumWidth” atomic clouds
with a finite momentum width, and study the effect of finite momentum
widthupon the free parameterswhich lead tooptimal Fisher information. In
each case, in Sections “Comparing Acceleration Sensitivities of an Atomic
FPI and a MZ Interferometer” and “Comparing Sensitivities of a MZ
Interferometer and an Atomic FPI” respectively we compare the accelera-
tion sensitivity of a space-based atomic FPI to a space-based MZ inter-
ferometer of equivalentdevice size, to assess the futurepotential of anatomic
FPI as an alternative accelerometry device.

Results
Acceleration sensitivity of an atomic FPI with a plane matter-
wave input
We begin our investigation into the sensitivity of an atomic FPI as an
accelerometer by considering a BEC source with an infinitely narrow
momentum width. This provides intuition for parameter dependencies of
the sensitivity in the ideal case which optimises transmission through the
FPI119.

At first we vary themomentumkick~ki given to the cloud and calculate
the classical Fisher information for each case as shown in Fig. 1. FC varies
with ~ki which is shown in Fig. 1 for different cavity lengths. The sharp peaks
correspond to the point where transmission coefficientT ≈ 1, the reason for
which is discussed in detail in Section “Space-Based Accelerometer Using a
BEC With a Finite Momentum Width”. From Fig. 1 we can estimate the
optimum ~ki that gives the maximum FC (optimum FC) for each cavity
length.

Figure 2a shows the variation in optimum ~ki as a function of the cavity
length (the height of the first barrier is fixed here, resulting in a constant κ).
Here we can see that as the cavity length increases, optimum ~ki decreases.
This means that, for a fixed barrier height, the optimummomentum of the
atoms that gives maximum sensitivity to acceleration decreases with
increasing cavity length.

Figure 2b illustrates the variation in ~FC corresponding to optimum ~ki
as a function of cavity length. This shows that FC and hence the sensitivity
increases with increasing cavity length in the case of a cloud with infinitely
narrow momentum width.

The trend in Fig. 2 arises due to the changes in transmission peak
properties with variation in the cavity length. As the cavity length increases,
the linewidth of the resonant peaks gets narrower, leading to curves with
higher slopes (∂T/∂k)119. The relationship between the slope of the trans-
mission spectra and acceleration sensitivity can be obtained as follows.
Under uniform acceleration, the velocity of the cloud at the position of the
first barrier is v = v0+ at, where v0 is the initial velocity, t is the time taken to
reach the first barrier and a is the acceleration. This yields

∂T
∂a

¼ ∂T
∂k

∂k
∂a

¼ mt
ℏ

∂T
∂k

: ð1Þ

Equations (27) and (1) show that the classical Fisher information
increases with increasing ∂T/∂k. Hence, as the cavity length increases, an
increase in the slope (∂T/∂k) causes the increase in FC, as observed in
Fig. 2b. Here, the time t depends on the distance between the initial
position of the cloud and the position of the first barrier L. Hence, the
sensitivity depends on L.

Fig. 1 | The classical Fisher information (FC), in
the case of an infinitely narrow momentum width
source of atoms, is plotted (black curves) as a
function of the wave vector of atomic cloud (The
dimensionless wave vector, ~ki ¼ ki=κ, where κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mV1=ℏÞ

p
is the wave vector corresponding to

the characteristic energy of the first barrier). The
red curves illustrates the variation in transmission
coefficient T. Here, κ is kept constant and ki is varied
for different cavity lengths d. The peaks in FC are
shown to correspond to the transmission resonant
peaks. The optimum~ki that gives the highest value of
FC can be calculated from this plot. It shows that the
optimum FC and ~ki varies with cavity length.
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We now formulate a compact analytic expression for the classical
Fisher information that is straightforward to optimise, thereby providing a
‘best-case’ estimate of an atomic FPI accelerometer’s sensitivity. For an
infinitely narrow source, we obtain the Fisher information by substituting
Eq. (15) into Eq. (27). In calculating ∂T/∂a, we assume the dependence on
acceleration of finesse F and phase ϕa is insignificant compared to the
dependence on acceleration of k. Under that assumption, we obtain

~FC
approx ¼

16~d
2F 4π2Tmaxsin

2 2Φð~aÞð Þ ∂~kð~aÞ
∂~a

� �2

π2ðTmax � 1Þ � 4F 2sin2 Φð~aÞð Þ� �ðπ2 þ 4F 2sin2 Φð~aÞð ÞÞ2
;

ð2Þ
where

Φð~aÞ ¼ ϕa þ ~kð~aÞ~d; ð3aÞ

In Fig. 3, we compare this approximate expression (red dashed curve) to the
exact expression (black curve) computed numerically via Eq. (27). In the
region near the optimum (maximum) ~FC , the curves agree very well, vali-
dating the approximate expression in Eq. (2).

We now derive an expression for this optimum FC, and hence the
precision to which the acceleration can be inferred. We assume that the
acceleration is known ~(a ≈ a0), and we wish to determine small deviations
δa from this value. That is a = a0+ δa. We assume that
1. Tmax � 1 in an optimal parameter regime, as motivated by the results

of Fig. 10;

2. The optimum ~FC corresponds to the position of the resonant trans-
mission peak Tmax � 1, as shown in Fig. 5a). From Eq. (15), this
approximation corresponds to Φ(a) = nπ for n 2 Z.

In the limit δa0 → 0, we obtain

~FCopt
¼ 4~d

2F 2~L
2

ð~k2i þ ~a0~LÞπ2
: ð4Þ

Converting back to dimensional form gives

FCopt
¼ 16m4d2F 2L2

ℏ4π2 ki
2 þ 2m2La0

ℏ2

h i : ð5Þ

This is a key result of this paper, and can be used to efficiently
determine the fundamental acceleration sensitivity attainable by an
atomic FPI.

Comparing acceleration sensitivities of an atomic FPI and a MZ
interferometer
Having obtained an expression for the optimal Fisher information for
atomicFPI,wemaynowcompare that resultwith theoptimumsensitivityof
a MZ interferometer of equivalent interferometer length, since total device
length is the limiting constraint for many real-world applications. For
concreteness,we consider space-based accelerometry,which is a particularly
tight-SWaP deployment environment.

For a space-based system, we can approximate a0 = 0, and hence the
FCopt

and optimum sensitivity per particle of an atomic FPI can be found
from eqs. (25) and (5):

FCopt
¼ 16m4d2F 2L2

ℏ4π2k2i
; ð6aÞ

δaFPI ¼
1ffiffiffiffiffiffiffiffiffi
FCopt

q ¼ kiπℏ
2

4m2dFL
: ð6bÞ

In the case of a MZ interferometer, the per particle sensitivity is given
by9

δaMZ ¼ 1

kiT
2 ; ð7Þ

where ki is the effective momentum transferred to the atoms by the
beamsplitters of the interferometer. The total interferometer time, 2T is

Fig. 2 | Cavity length dependence of optimalmomentumand Fisher information
for an infinitely narrowmomentum-width source.Optimumparticlemomentum
(a) and the Fisher information corresponding to the optimum particle momentum
(b) as a function of the cavity length, in the case of an infinitely narrow momentum
width source of atoms. For each cavity length there exists an optimum ~ki and it

decreases with increasing cavity length. The optimumvalue of ~ki ranges from0.06 to
0.004 k0, where k0 = 2π/(780nm). Themaximum ~FC increases with increasing cavity
length. Hence in this case, sensitivity to acceleration can be improved by increasing
cavity length.

Fig. 3 | Comparison of the variation of ~FC with ~ki using exact (equation (27)-
dimensionless form) and approximate (equation (2)) expressions of ~FC in the
black and red dashed curve respectively. The blue curves illustrates the variation in
transmission coefficient (T). The approximate value of optimum ~FC agrees well with
the exact value near the optimum region. Here, ~d ¼ 80 and ~a ! 0.
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constrained to

T ¼ Lt
v
; ð8Þ

where v = ℏki/m is the velocity of the atoms when a0→ 0, and Lt is the total
lengthof the interferometer. For a fair comparison,we setLt to the same total
length as the atomic FPI: Lt = L+ 2w+ d. Substituting these into Eq. (7)
gives

δaMZ ¼ ℏ2ki
m2ðLþ 2wþ dÞ2 : ð9Þ

We can see immediately that making the device size Lt smaller results in
poorer sensitivity for both a MZ interferometer and an atomic FPI. How-
ever, Eqs. (6b) and (9) show that the scaling of sensitivity with device length
is different in each case.We are thereforemotivated to study the variation of
sensitivity δawith lengthL, whichwe show for a range of finesse valuesF in
Fig. 4. Here optimum values are used for ki, w and d119. For low length
(L < 0.4mm) and high finesse (F > 100), the fundamental sensitivity of an
atomic FPI surpasses that of a MZ interferometer.

Space-based accelerometer using a BEC with a finite
momentum width
Having compared an atomic FPI to aMZ interferometer for the ideal case of
infinitely narrowmomentumwidth,wenowconsider themore realistic case
of finite momentum width. This immediately presents a new challenge: if
this finite momentum width is greater than the cavity linewidth, only a
portion of the atomic cloud (inmomentum space) is on resonance and gets
transmitted. This reduces the resonant transmission (i.e., Tmax < 1), so in
order to achieve complete resonant transmission (i.e., Tmax ¼ 1) we are

immediately restricted to cavities with linewidth greater than the finite
momentum width of the cloud. As linewidth decreases as cavity width
increases, this puts an upper bound on the cavity width for an effective
atomic FPI119. For the cloud of finite momentum width, we consider a
Gaussian of full width at half maximum (FWHM) of Δk = 0.008k0, where
here k0 = 2π/(780 nm). Note that Δk ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
=σc, where σc=

ffiffiffi
2

p
is the

standard deviation of the Gaussian density profile, or equivalently a Gaus-
sian k-space density profile with standard deviation 1=ð ffiffiffi

2
p

σcÞ.
With that in mind, we now study how the atomic cloud’s finite

momentumwidth affects the dependence of the optimal Fisher information
~FC on the initialmomentumkick ~ki and cavity width ~d. In Fig. 5, we plot ~FC
as a function ~ki for an atomic cloud with infinitely narrow and finite
momentum width in Fig. 5a, b respectively. We use the parameters wκ = 1,
w = 1 μm and κ = 0.124 k0, as determined in ref. 119.

In Fig. 5b, we demonstrate that for a finite momentum width
source, the location of the optimum Fisher information ~FC shifts to no
longer coincide with the location of the transmission peak. ~FC is now
relatively small at the position of Tmax, and the optimum ~FC is shifted to
a point where the slope of the resonance curve is non-zero. To explain
this shift, lets first consider why the peak is at zero acceleration in the
case of an infinitely narrow momentum-width source. As the trans-
mission can be tuned to precisely 100% (at a = 0) in this case, the
reflection coefficient is precisely zero, and thus a small acceleration
causes a change in the reflection coefficient with high signal to noise
ratio. This is analogous to how the optimum operating point in an
optical Michelson interferometer is close to the dark port125. This is easy
to see by recalling Eq. (27):

FCðaÞ ¼
ð∂T=∂aÞ2
TðaÞ þ ð∂T=∂aÞ2

1� TðaÞ : ð10Þ

Fig. 4 | Plots comparing the acceleration sensitivities of a space-based (a0→ 0)MZ
interferometer (black curve) and an atomic FPI (red dashed curve) with
ki= 0.0596k0, w= 1 μm and d= 4 μm. Here the minimum change in acceleration
that can be detected, δa, is plotted as a function of length L, for varying finesse values
(a) F ¼ 1, (b) F ¼ 100 and (c) F ¼ 400. L is the initial distance between the BEC

and the first barrier in an atomic FPI. For a MZ interferometer, the total inter-
ferometer length Lt = L+ 2w+ d. A particular finesse can be achieved while varying
L, by manipulating barrier height accordingly. The sensitivity of an atomic FPI is
better than that of the comparisonMZ interferometer for high finesse and low length
scales.

Fig. 5 | Effect of source momentum width on transmission and Fisher infor-
mation. Transmission coefficient (red dashed curve) and classical Fisher infor-
mation (black curve) are plotted as a function of the atomic wave vector, (a) for an
infinitely narrow momentum width atomic cloud and (b) for a finite momentum

width atomic cloud. The optimum ~FC is positioned almost at the~ki corresponding to
the transmission peak in the first case. However, it deviates from the transmission
peak point when the cloud has a finite momentum width. Here, k0 = 2π/(780 nm).
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Around the transmission peak point, the curve can be approximated as a
quadratic,

TðaÞ ¼ Tmaxð1� Ca2Þ; ð11Þ

whereC is a constant. Under a uniform acceleration, k and a have a roughly
linear relationship, so at the transmission peak Tmax the derivative ∂T/
∂a∝ ∂T/∂k ≈ 0. For an infinitely narrow momentum width source,
Tmax ¼ 1, so thedenominator in theFisher informationT(1−T) = 0.Then,

lim
a!0

FC ¼ 0
1
þ lim

a!0

ð�2CaÞ2
Ca2

¼ 4C: ð12Þ

Hence, FC converges to a finite value. However, a source with non-zero
momentumwidth hasTmax < 1, so only the numerator approaches zero and
FC→ 0 at the transmissionpeak.Thus, thepeakFisher informationdoesnot
coincide with the transmission peak; so for a finite momentum width
source, we have to numerically determine the parameter regime which
optimises FC.

Optimising cavity length and corresponding acceleration sensi-
tivity for a particular momentum width
As before, we calculate the Fisher information ~FC as a function of initial
momentumkick~ki for a range of cavity widths ~d andmomentumwidths
Δk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
=σc which gives a maximum ~FC . For each cavity length

there is an optimum ~ki corresponding to the optimum Fisher infor-
mation ~FC and this optimum point changes with cavity length. How-
ever, the optimum ~ki is not changed by variation in the momentum
width Δk. This is because the optimum initial momentum kick ~ki
depends upon the location of the first resonant peak, which is inde-
pendent of the momentum width of the source. However, the
momentum width Δk does affect the height of the transmission peak,
and therefore the optimum ~FC

119. We thus plot the maximum ~FC that
occurs at the optimum ~ki as a function of cavity width ~d in Fig. 6 for
different source momentum widths Δk.

Unlike in the infinitely narrow momentum width case (see Fig. 2a),
there is not an unbounded increase in the optimum Fisher information ~FC
with cavitywidth ~d. Rather, ~FC reaches amaximumand thendecreases after

the cavity width ~d exceeds an optimal value. This optimal value arises
because the cavity linewidthdecreases as the cavitywidth increases119.When
the cavity width ~d exceeds the optimal value, the corresponding linewidth
becomes smaller than the momentum width Δk, and (as discussed earlier)
transmission through the atomic FPI is suppressed and the optimal Fisher
information ~FCopt

decreases.
Equivalently, as the momentum width increases, a larger linewidth

(and smaller cavity width) is needed for complete transmission. That is, the
peak in Fisher information ~FC occurs at a smaller cavity width. This trend is
illustrated in Fig. 7a, where we plot the cavity width d corresponding to the
maximum optimal Fisher information against the momentum width Δk.

We also find in Fig. 6 that the maximum optimal Fisher information
decreases as the momentum width increases. This is because, as shown in
ref. 119, resonant transmission is suppressed and transmission peaks
broaden as momentum width Δk increases. A decrease in Fisher informa-
tion corresponds to aworse sensitivity (i.e., a larger δa), as illustrated inFig. 7
by plotting δa as a function of momentum width Δk.

ComparingsensitivitiesofaMZInterferometerandanAtomicFPI
Having determined the optimum cavity width d for eachmomentumwidth
Δk, the device length Lt approximately given by the parameter L. We can
now study the relationship between optimum Fisher information and
length L.

In Fig. 8, we compare the sensitivity of an atomic FPI to a MZ inter-
ferometer of equivalent length L for three different momentum widths Δk.
For a currently experimentally-achievable momentum width
(Δk = 0.025k0

126), the MZ device achieves superior sensitivity. However, for
an order ofmagnitude narrowermomentumwidth (Δk = 10−3k0) an atomic
FPI can compete with a MZ device for small lengths, and for an order of
magnitude further (Δk = 5 × 10−4k0) the atomic FPI is more sensitive for
L < 0.2mm. Thus, the atomic FPI offers an effective compact alternative to
an atom interferometer, which can improve the sensitivity further once
cooling schemes can further narrow themomentumwidthof atomic clouds.

Discussion
We have investigated the application of an atomic FPI as a space-based
acceleration sensor with a non-interacting pulsed BEC source. We used an
analytic approximation for the transmission of the FPI, and showed this

Fig. 6 | Optimum value of ~FC as a function of cavity length, for different momentum widths. ~FCopt
increases up to a maximum value and then decreases with increasing

cavity length. The optimum cavity length which gives ~FCopt
varies with the momentum width. Here, k0 = 2π/(780 nm).

Fig. 7 | Dependence of optimum cavity length and
acceleration sensitivity on source
momentum width. a Plot showing the optimum
value of the cavity length (which givesmaximum FC)
as a function of the momentum width of the BEC
source. The optimum cavity length decreases with
increasing momentum width. bMinimum detect-
able change in acceleration, δa decreases with
decreasing momentum width of the BEC source.
Hence acceleration sensitivity improves with
decreasing momentum width. Here,
k0 = 2π/(780 nm).
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expression agreed well with the exact transmission predicted by simulation
of the Schrödinger equation.We quantified the sensitivity of the atomic FPI
as an accelerometer using the classical Fisher information, and studied the
sensitivity of FPIs with an atomic cloud source of both infinitely narrow and
finite momentum width. In the case of an infinitely narrow momentum
width source, an approximate expression for the optimum Fisher infor-
mation and sensitivity was derived, and it was found that in the low length
and highfinesse regime an atomic FPI provided superior sensitivity to aMZ
interferometer of equivalent total device length.

When a finite momentum width source is used, there is suppression
of the transmission, particularly when the momentum width exceeds the
linewidth of the cavity, leading to an optimal cavity width for maximum
sensitivity.Wedemonstrated that the sentivity of the atomic FPI in the low
device length regime is promising, and if a narrower momentum width
can be realised, the atomic FPI could achieve greater sensitivity in the low
length regime. Therefore, if atomic cooling techniques continue to
advance in the coming years, the atomic FPI presents an exciting minia-
ture accelerometer.

These results are a best-case scenario: we have assumed a non-
interacting BEC, and have only worked in 1D. Detailed analysis of the
uncertainty in the cavity length, barrier height, atomnumber and velocity of
the atomic cloud are necessary in future work.

This work has focused on the atomic FPI as a space-based accel-
erometer. When applied as an earth-based accelerometer, the atomic cloud
gains significantly more energy in the accelerating period before the first
barrier. The barrier height must then be increased to exceed the atomic
energy (a necessary condition for the atomic FPI to function), which
necessitates a reduction in barrier width and cavity length as per the para-
meters determined in ref. 119. The barrier width required now is three
orders of magnitude smaller than achievable by existing laser focusing
methods. To overcome this difficulty, we propose an alternative scheme:
initially position the atoms on the right hand side of the barrier in Fig. 9, and
provide amomentumkick against the direction of the acceleration (towards

the barriers). The accelerationwill therefore reduce the energy of the atomic
cloud, so that an experimentally feasible barrier width may be used.

Methods
Model
We consider the transmission of a beam of particles through an atomic
Fabry-Perot ‘cavity’ made of two symmetric rectangular barriers in a uni-
form accelerating field (see Fig. 9a). We obtain a simplified model that is
analytically tractable bymaking twoassumptions. Firstly,we assume that the
effect of acceleration within the barrier can be neglected. This assumption
requires the barrier width (w) to be small compared to the distance between
the initial particle positions and thefirst barrier (L). Secondly,we account for
the acceleration potential energy the particles gain after travelling a distance
w+ d through the first barrier and the cavity by reducing the energy of the
second barrier by the particle’s energy gain:

V2ðaÞ ¼ V1 �maðwþ dÞ; ð13Þ

where m is the mass of each particle and a is acceleration (assumed to be
uniform over device length d+ 2w), V1 and V2 are the heights of the first
and second barriers, respectively. These two simplifications give the double
asymmetric rectangular barrier model shown in Fig. 9b.

Using this simplified model, we can analytically determine how
acceleration affects transmission through the atomic FPI. We first consider
the caseof an incomingplanewave. If the initialmomentumof theparticle is
ℏki, then classically after travelling a distance L under uniform acceleration
a, the particle’s energy changes by maL. Since the BEC will be prepared a
distance L from the first barrier, we therefore take the momentum of the
plane wave incident on the asymmetric double barrier system to be

ℏkðaÞ ¼ ℏki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2aL

ℏ2k2i

s
: ð14Þ

Fig. 9 | Accelerated atomic FPI: Schematic and
simplified analytical model. a Schematic diagram
of an atomic FPImade of two symmetric rectangular
barriers in an accelerating field. b Simplified model,
with an exact analytic solution, that approximates
the system shown in (a). Here ℏki is the initial
momentum of the particle, ℏk is the momentum of
the particle at the position of the first barrier, after
travelling a distance L, V1 and V2 are the heights of
the first and second barriers respectively, w is the
barrier width, and d is the cavity length.

(b)

V
1

d

w

L

V
2

k
i k

V

(a)

d

w

Lk
i k

w
w

V

Fig. 8 | Plot comparing the acceleration sensitivity as a function of length L of an
atomic FPI with that of a MZ interferometer, using a finite momentum width
BEC source for a space based system (a0 → 0). a–c use dκ = {7.55, 26.1, 32.89} and
ki/κ = {0.237, 0.106, 0.086} respectively, which are the optimum values

corresponding their specific momentum widths. Three plots compare the sensitiv-
ities using BECs with different momentum widths. For small device length and low
momentum width, the sensitivity of an atomic FPI surpasses that of a MZ
interferometer.

https://doi.org/10.1038/s41526-025-00499-4 Article

npj Microgravity |           (2025) 11:37 6

www.nature.com/npjmgrav


The probability of transmission through the double barrier system is given
by the transmission coefficient127

Tki
ðaÞ ¼ TmaxðaÞ

1þ 2F ðaÞ
π

� �2
sin2 kðaÞd þ ϕaðaÞ

� � ; ð15Þ

whereTmaxðaÞ is themaximum achievable transmission coefficient,F ðaÞ is
the finesse of the atomic Fabry-Perot cavity and ϕa(a) is a phase shift that
sets the resonance condition for the cavity. Our decision to denote the
dependence of ki explicitly will become clear shortly. In analogy with the
optical Fabry-Perot cavity, the maximum transmission coefficient and
finesse aremost intuitively expressed in termsof the reflection coefficients of
the two barriers (i.e., cavity ‘mirrors’), R1(a) and R2(a). Explicitly,

TmaxðaÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
R1ðaÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
R2ðaÞ

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðaÞR2ðaÞ

p
" #2

; ð16Þ

F ðaÞ ¼ π R1ðaÞR2ðaÞ
� �1=4

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1ðaÞR2ðaÞ

p ; ð17Þ

where

RjðaÞ ¼
Mþ

j ðaÞ2

M�
j ðaÞ2 þ coth2 βjðaÞw

h i ; ð18Þ

with

β1ðaÞ2 ¼
2m

ℏ2 ½V1 � EðaÞ�; β2ðaÞ2 ¼
2m

ℏ2 ½V2ðaÞ � EðaÞ�; ð19aÞ

M ±
j ðaÞ ¼

1
2

βjðaÞ
kðaÞ ±

kðaÞ
βjðaÞ

" #
: ð19bÞ

Here EðaÞ ¼ ℏkðaÞð Þ2=2m is the energy of the incident plane wave. The
phase shift ϕa(a) similarly depends upon the cavity ‘mirror’ parameters:

ϕaðaÞ ¼
1
2

π � ϕ1ðaÞ þ ϕ2ðaÞ
� �� �

; ð20Þ

where

ϕjðaÞ ¼ tan�1 M�
j tanh βjðaÞwj

� �h i
; j ¼ 1; 2: ð21Þ

The atomic system provides key differences compared to the well-
known optical FPI, including atomic mass and mirrors where the key
parameters canbe tuned.Hence the transmission spectrumof anatomicFPI
differs from that of an optical FPI in many ways. The reflectivity of optical
potentials exhibits distinct behaviour compared to conventional mirrors,
resulting in variations in reflectivity when scanning the momentum/energy
of the source atoms. Hence, unlike the optical case, in the atomic analog
scanning k and d are not equivalent. In section “Quantifying Acceleration
Sensitivity”, we analyze the effects of varying k and d separately to highlight
their distinct influences. The width and contrast of the peaks in the trans-
mission spectrum changes with change in wave number of the atomic
source.Nevertheless, aswe showbelow, in appropriately chosen regimes the
transmission depends sensitively on the acceleration, allowing an atomic
FPI to operate as a sensitive accelerometer.

It is straightforward to extend the above results to an incident
atomic cloud of non-interacting atoms with a spread of momenta. Since

the atoms do not interact, there is a one-to-one mapping between
incoming and outgoing momentum. Consequently, the overall trans-
mission is simply the integral over all transmission coefficients (indexed
by incident wavevector ki) weighted by the incident atomic cloud’s k-
space distribution P(ki):

TðaÞ ¼
Z

dki PðkiÞTki
ðaÞ: ð22Þ

We validate our analytic model by comparing to numeric simulation. In
particular, we simulate the evolution of the Schrödinger equation for a non-
interacting Gaussian BEC source, which we assume was in the ground state
of a harmonic trapping potential of trapping frequency ωz, before being
released and interacting with the atomic Fabrey-Perot cavity, formed by
external potential V(z). The transmission coefficient T is computed as

T ¼ NT

NT þ NR
; ð23Þ

where NT and NR, the number of transmitted and reflected particles, are
defined as

NT ¼
Z 1

zT

∣ψðz; tendÞ∣2 dz; ð24aÞ

NR ¼
Z zR

�1
∣ψðz; tendÞ∣2 dz: ð24bÞ

The transmitted and reflected regions are specified as z > zT =
z0+ 3σc+ L+ d+ 2w and z < zR = z0+ 3σc+ L respectively, where z0
denotes the initial position of the atomic cloud. The stopping time, tend is
chosen so that there are no atoms left in the cavity; this is quantified bywhen
NT/N andNR/N donot change bymore than 10−6 in a given time step.Here,
NðtÞ ¼ R1

�1 dz jψðz; tÞj2 is the normalisation of the wavefunction. The
external potential used is given byV(z) =Vb−maz, whereVb is the potential
generated by two barriers of widthw and heightV1 separated by distance d.
The simulation was completed using the open-source software package
XMDS2128 with an adaptive 4th–5th order Runge-Kutta interaction picture
algorithm.

In Fig. 10a we plot the transmission coefficient calculated via Eq. (15)
(black solid curve) and numeric simulation (red dotted curve) corre-
sponding to a range of ki/κ values, where κ is a momentum length scale
determined by κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV1=ℏ

2
p

. We use the cavity parameters for 85Rb
determined in ref. 119 (V1 = 3.83 × 10−32 J = 5.81 ℏωz, w = 1 μm and
d = 4 μm) with trapping frequency ωz = 2π × 10Hz in the presence of an
acceleration of a = 0. Similarly, in Fig. 10b we plot the transmission coeffi-
cient for a fixed ki/κ = 0.45 and varying a. In both instances, we observe that
the curve corresponding to Eq. (15) matches the simulation data very well,
validating the analytic model.

Now that we have an analytic function that connects transmission
coefficient (T), reflection coefficient (R) and acceleration (a), we can invert
that function to get acceleration from ameasurement that provides us with
an estimate of T and R. For a finite momentum width, the numeric rela-
tionship between T, R, and a can be used to calculate a using maximum
likelihood estimation.

Quantifying acceleration sensitivity
The smallest change in acceleration (δa) detectable by an accelerometer
quantifies the sensitivity of the device. For a cloud of N non-interacting,
uncorrelated atoms, this is given by the Cramér-Rao bound129

δa ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NFCðaÞ

p ; ð25Þ
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where FC(a) is the per-particle classical Fisher information130,131, given by

FCðaÞ ¼
X
m

ð∂Pm=∂aÞ2
PmðaÞ

: ð26Þ

HerePmðaÞ is the probability distribution (indexed bym) constructed from
measurements of a particular observable, and so FC(a) depends upon this
choice of observable. For the atomicFPI considered in thiswork,wemeasure
the number of transmitted and reflected atoms, yielding the transmission
and reflection coefficients T(a) and R(a) = 1 − T(a), respectively. These
coefficients are the probability distributions for transmission and reflection,
respectively, that we need to compute the classical Fisher information:

FCðaÞ ¼ ð∂T=∂aÞ2
TðaÞ þ ð∂R=∂aÞ2

RðaÞ

¼ ð∂T=∂aÞ2
TðaÞð1�TðaÞÞ ;

ð27Þ

where we have invoked ∂R/∂a =− ∂T/∂a. From Eq. (25), it follows that we
should optimise for higher FC, since that corresponds to a more sensitive
accelerometer.

In our analysis we use dimensionless parameters with 1/κ as the unit of
length and ℏκ as the unit of momentum, where κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mV1=ℏÞ

p
is the

wave vector corresponding to the first barrier. Specifically, we define

~d ¼ κd; ~L ¼ κL; ~k ¼ k=κ; ð28Þ

~a ¼ 2m2a

ℏ2κ3
; ~FC ¼ FCℏ

4κ6

4m4
: ð29Þ
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The data that support the findings in this study are available on request.
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