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Tunable flexible artificial synapses: a new path toward a
wearable electronic system
Kunlong Yang 1, Sijian Yuan2, Yuxiang Huan3, Jiao Wang2, Li Tu2, Jiawei Xu2, Zhuo Zou2, Yiqiang Zhan2, Lirong Zheng2 and
Fernando Seoane3,4,5

The flexible electronics has been deemed to be a promising approach to the wearable electronic systems. However, the
mismatching between the existing flexible deices and the conventional computing paradigm results an impasse in this field. In this
work, a new way to access to this goal is proposed by combining flexible devices and the neuromorphic architecture together. To
achieve that, a high-performance flexible artificial synapse is created based on a carefully designed and optimized memristive
transistor. The device exhibits high-performance which has near-linear non-volatile resistance change under 10,000 identical pulse
signals within the 515% dynamic range, and has the energy consumption as low as 45 fJ per pulse. It also displays multiple synaptic
plasticity features, which demonstrates its potential for real-time online learning. Besides, the adaptability by virtue of its three-
terminal structure specifically contributes its improved uniformity, repeatability, and reduced power consumption. This work offers
a very viable solution for the future wearable computing.
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INTRODUCTION
The flexible electronics has become a very attractive field. Tons of
flexible devices have been reported during the past decades, with
different device structures and materials, working as sensors,1–3

computing blocks,4 or display units.5,6 For noncomputing compo-
nents, the achievements are very satisfactory. Lots of devices step
toward practical use, for example, the electronic skins3,7,8 and the
wearable sensors.1 However, when it comes to the computing
component, the situation is not comforting. The existing flexible
transistors are still difficult to have comparable performance to
silicon devices. Although there were some demonstrations for
flexible circuit4,9 based on the conventional computing architec-
tures, e.g., von Neumann and Modified Harvard, the functions and
performance were very limited and clearly insufficient for
processing those numerous less structured10 information receiv-
ing from the environment and the human body. Without a
powerful flexible computing block, the final goal of having a full-
wearable electronic system is far beyond our reach.
In recent years, the brain-inspired computing has been proved

to have the features of high parallelism, energy efficiency and fault
tolerance,11 which would enhance the performance dramatically.
As a proof-of-concept, the artificial neural network has already
achieved a success on software level using the and central
processing unit (CPU) and graphics processing unit (GPU) on
conventional computers and proved its effectiveness on cognitive
computing.11 With the help of this new approach, we will have
much better chance to deal with the numerous and abstract
information processing tasks, which is the main role for the
wearable systems. But a direct transplant of that way into the

flexible computers is hard, the same dilemma still exists because
of the unsatisfied flexible device performance.
The new neuromorphic architecture can be a better solution.

On one hand, it has the merged computing and memory blocks,
which have not only the features of the brain-like computing, but
also no bottle-neck of conventional computing architecture.12,13

On the other hand, the characteristics of brain-like computers
which is fault-tolerant and highly parallel lower the requirements
on device performance (such as speed and yield) significantly,
thus offers a new chance for flexible device-based computers. By
having a flexible hardware implementation of the neuromorphic
system, the neuromorphic computing and the flexible electronics
could achieve a mutual promotion thus lead to a high-
performance wearable computing system.
For a flexible neuromorphic system, the key element is the

flexible artificial synapse which exhibits synaptic plasticity—i.e.,
the values of weights are adaptable to the stimulating history.14

Nowadays, more and more works about memristor-based synaptic
devices are emerging because of the bright future for their using
in neuromorphic computers.15,16 For example, a multiplier and
memory array need hundreds of transistors in a CPU-/GPU-based
artificial neural network, while in a neuromorphic system, only one
synaptic device will be sufficient to achieve the same function.
This further facilitates the realize of flexible neuromorphic system
by decreasing the required flexible device number. However, the
artificial synapses with physical flexibility are rare. Up to date,
there are only few published works achieved flexible artificial
synapse,17–19 but most of them have the same or even worse
problems as rigid synaptic devices, which suffered from low
multilevel states number, high energy consumption, poor
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repeatability and uniformity, etc., thus are still obstructing their
practical use. This is mainly caused by the unsatisfied working
mechanism, such as less-controlled forming and rupture of
conductive filaments.20,21 Although some efforts already have
been done to overcome these shortcomings, the best choice of
working mechanism, materials and device configuration is still
under investigation.
Hysteresis during electrical characterization is a well-known

effect in electronic devices.22,23Commonly this effect is believed to
be a weakness because it increases the instability. However, since
hysteresis always bonds with the stimulation-history-related
current, it can actually work as the source of synaptic behavior.
In regard to its application as an artificial synapse, the source of
hysteresis should induce prominent hysteresis, stably exist, and
have a simple fabrication process. There were evidences showed
that the H2O/O2 redox couples near the dielectric–channel
interface in the organic transistors trap electrons through
electrochemical reactions, causing an prominent hysteresis
behavior.24,25 The reaction occurs throughout the channel area,
working as an average effect, which means that its reliability is
higher than that of the randomly-formed filament mechanism.
Also, the H2O/O2 redox couples are unlimited in nature, offering a
near-intrinsic large hysteresis in the device, and this feature
provides a simple fabrication process and broad option of
materials. Among all the alternative materials, single-wall-
carbon-nanotube’s (SWCNTs) exceptional stability in various
environments and mature production technology further ensure
its potential for mass production. More importantly, a new device
configuration instead of the commonly used real or pseudo two-
terminal devices26 can be adopted to optimize the device
performance by taking full use of the three terminals in a field-
effect transistor structure. This configuration minimizes power
consumption (both static and dynamic power consumption) and
offers a chance to effectively modulate the device after its
fabrication, improving the device functionality, uniformity and
repeatability.
In this work, by setting the drain and source of a field-effect

transistor as presynaptic and postsynaptic neurons (the source
terminal was always connected to the ground) and using the gate
as a tuning terminal (Fig. 1a, b), an artificial synapse based on a
gate-tunable flexible memristive transistor (FMT) was fabricated
using a convenient processes based on SWCNT and polymer
composite on a hydrophilic dielectric layer. The implemented
prototype devices have memristive features that are comparable
to those of state-of-the-art inflexible and flexible synaptic
devices,16,17,27 which has the near-linear nonvolatile resistance
change under 10,000 identical pulse signals over a wide range
(515% of the lowest current), with a power consumption as low as

45 fJ. Furthermore, the gate-tunable behavior helps improve the
uniformity, repeatability, and even power consumption of the
devices. Various synaptic plasticity were also demonstrated, such
as paired-pulse facilitation (PPF), long-term potentiation (LTP), and
spike-timing-dependent plasticity (STDP). The artificial synapse
can either be excitatory or inhibitory, depending on the gate
modulation. The device could keep functioning under bending
conditions thus strengthened its potential in wearable applica-
tions. Our FMT showed superiority than the existing flexible
artificial synapses on various aspects, such as the energy
consumption, device dimension, states capacity, states linear-
ity,17,19 and showed more kinds of synaptic plasticity.17–19 To
further illustrate its applicability, a simulated neuromorphic
computing network was implemented in a single-layer modeled
with the governing function extracted from the implemented
flexible artificial synapse.

RESULTS
Working mechanism
A FMT was fabricated using a SWCNT network/polymer composite
combined with a Al2O3 dielectric. The schematic structure and
photograph of the FMT are shown in Fig. 1b, c. A hydrophilic Al2O3

dielectric was used to induce more H2O/O2 redox couples as trap
states. SWCNTs and a poly(9,9-dioctylfluorene-co-bithio-phene)
(F8T2) blend were dip-coated in the channel area (see Methods
section). The entire process adopted the simplest field-effect
transistor fabricating process, and the polymer was mainly used
for better dispersion and film formation of SWCNTs. In addition, it
offered visible light absorption for further photoelectrical applica-
tion potential.
A prominent anticlockwise shaped hysteresis in the transfer

characteristic curve was observed in our devices (Fig. S1,
supplementary information). The chemical potential of the H2O/
O2 redox couple (−5.3 eV when pH= 6)24 lies near the top of
SWCNTs’ valance band (−4.9 eV),28 which enables electrons to
easily transfer from SWCNTs to H2O/O2 redox couples via the
electrochemical reaction indicated in the following equation24:

2H2Oþ O2þ4e�#4OH�:

The electrochemical potential difference between the SWCNT
and H2O/O2 redox couples can be controlled by the applied gate
electrical field.24,25,29 This reaction traps electrons as immobile
negative centers (OH−) near the dielectric–channel interface,
leading to an electrostatic screening of the gate field, which
affects the channel current Ids. Because this reaction requires a
long time to achieve an equilibrium state, the population of

Fig. 1 Schematics and working mechanism. Schematics of (a) a biological synapse and (b) artificial synapse. c Photograph of flexible artificial
synapses. d Pinched Ids−Vds curve with Vg set as 0 V (L= 20 µm, W= 50 µm), and the insets indicate the mechanism of the memristive feature
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electrons trapped near the interface is different according to the
stimulate history; thus, stimulation-history-related states show up.
It is worth mentioning that the hydrophilic dielectric (not
restricted to Al2O3) is important for the existence of abundant
trap states. For comparison, smaller hysteresis and less remarkable
memristive functions have been observed in hydrophobic
polymer dielectric transistors (Figs. S2, S3). This means that
hydrophobic dielectric layers were not good-enough candidates
for implementation in memristive devices. Also, we think the
hydrophilic dielectric layers can provide adequate H2O/O2 redox
couples under normal environment, so the relative humidity
change in the atmosphere would not change the device
performance dramatically. Figure S4 indicates that the hysteresis
gaps of the FMT are nearly the same under different relative
humidity, which further strengthens our assumption. Then, the
fabricated FMTs were characterized electrically to test their
properties as artificial synapses.

Memristive features
Figure 1d shows the typical current–voltage characteristics of FMT.
Vs and Vg were set to 0 V, and the insets illustrate the working
mechanism. The pinched hysteresis loop across points I= 0 and V
= 0, a fingerprint of a memristor, indicates the memristive
characteristic of the device.30 We can divide the process into four
stages. At stage 1, the electrochemical potential of the SWCNTs
was pushed higher than that of the H2O/O2 redox couples thus
more electrons were trapped and accumulated near the dielectric
layer. And at stage 2, most of the previously trapped electrons
were still there due to the slow equilibrium speed, and the
continued trapping process created new states different from
those in stage 1. When Vd was positive (Vgd < 0) (stage 3 and 4),
the trapped electrons were gradually extracted. Less trapped
electrons in stage 4 compared with stage 3 led to a smaller Ids.
Figure 2a shows four consecutive sweeps, which were measured
across the device. For consecutive negative Vd sweeps, Ids

increased compared with the previous sweeps (also backward
sweep exceeded its forward sweep). This behavior specifically
indicated the time-and-voltage-related resistance,30 which fits the
definition of a memristor. Figure S5 (supplementary information)
shows the consecutive sweep for positive voltage.
In neuromorphic computing, pulsed signals are more expected

to occur. The response to Vd pulses with different amplitude
values and durations is demonstrated in Fig. 2b. The Ids change
over the initial current (ΔI/I0) after each pulse was used to indicate
the degree of responses to different Vd pulses. Generally speaking,
the higher and longer the positive/negative voltage pulse, the
more significantly Ids decreased/increased. FMTs showed a
bidirectional response to the inputs. The results in Fig. 2c show
the Ids of 1000 identical positive Vd pulses and 1000 identical
negative Vd pulses. With same input pulses, the device con-
ductivity gradually changed, which is the key feature of a
memristive device.
A series of characterizations was performed to demonstrate the

key metrics of FMTs, such as the ability of continues resistance
change, energy consumption, dynamic range and linearity. We
measured the response to 10,000 Vd pulses with a 10 ms width
and 20mV amplitude at Vg= 1 V. From Fig. 2d, we observe that
the memristive feature was maintained with good linearity during
the entire test, which provided a large amount of states. To reduce
energy consumption, a Vd pulse with a low amplitude was applied,
which led to a relatively small Ids, as well as gate leakage (~1 nA).
The total energy consumption per spike was as low as 45 fJ, which
was comparable or even lower than a biological synapse.10 As
shown in Fig. 2d, Ids did not saturate. To obtain the full dynamic
range, pulses with longer widths were used. Figure 2e demon-
strates that Ids changed by 515% compared with the initial current,
which indicates its large dynamic range. The large amount of
resistance states with low energy consumption was crucial for
neuromorphic computing, which however has not been success-
fully reported yet. The demonstrated minimal resistance changes
were large which reflected the less-controllable working

Fig. 2 Memristive features of the FMT. a Consecutive I–V scanning at a negative Vds. b Responses to pulses with different intensities and
durations. c Read current for 1000 identical positive pulses (Vd= 1.7 V, 175ms pulse width, 336ms period) followed by 1000 identical negative
pulses (Vd=−2 V, 175ms) with Vg= 0 V. After each pulse, the read current was measured at Vd= 0.1 V (small enough at Vg= 0 V to eliminate
the effect of the reading process) to show the current change induced by the previous pulse. The interval between two writing pulses was
161ms. d Response to 10,000 pulses (−20mV, 10ms pulse width, 15ms period) at Vg= 1 V. e Response to 10,000 pulses (−20mV, 100ms
pulse width, 150ms period) at Vg= 1 V. a, b were tested on a device with L= 20 µm and W= 50 µm, (c) was tested on a device with L= 80 µm
and W= 100 µm, (d, e) were tested on a device with L= 30 µm and W= 200 µm
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mechanism. To achieve a resistance change, high-intensity voltage
signals were needed, and that would increase the current thus
lead to a high energy consumption. What was worse, the dynamic
ranges of those devices were small so that resistance change
saturated quickly, and this was also a reason of the limited
resistance state number. In our FMT, the required input voltage
across the presynaptic and postsynaptic terminals was successfully
compromised by the gate terminal, thus showed an improved
performance. The gate terminal benefited the FMT in various
aspects, and we will discuss more in the next section.

Gate-tuning function
Due to the structure and working mechanism, the functions of this
FMT can be extended using the third terminal, the gate, which
benefits device performance. Figure 3a shows that with different
gate voltages Vg, the I–V curves are different, suggesting a gate
tuning possibility. This behavior is further illustrated in Fig. 3b,
where the amplitude and sign of the current change ΔI/I0, which is
caused by a single Vd pulse (−5 V, 1 s), can be modulated
according to the voltage value Vg at the gate terminal as follows: a
positive Vgd (Vgd= Vg− Vd) increases Ids after a Vd pulse, while a
negative Vgd decreases Ids after a Vd pulse. In other words, while
keeping Vd fixed, the amplification/attenuation function of the
memristor can be tuned using Vg by changing the sign of Vgd.
Moreover, it was observed that the magnitude of amplification
and attenuation was positively correlated with the value of Vgd.
There were three aspects by which the gate tuning function

benefited device performance. First, the fabrication process
introduces variation between devices and decreases uniformity.
Unfortunately, the widely used conductive filament memristors’
uncontrollable working mechanism has made this issue more
severe and hard to be fixed because of the two-terminal
nature.18,31 Using the gate tuning function, the device variation
could be compensated by applying an extra adjusting voltage on
the gate terminal. As a proof-of-concept, Fig. 3c demonstrates a
uniformity improvement by the gate tuning function. In a lot of

applications which use paired-memristors as a single synapse (as
the case will be shown in simulation section), the difference in
current ΔI over each input pulse matters most instead of the
current value itself.11 And since the linear region was more
favorable, we here used the average ΔI in the linear region (which
can be roughly calculated by dividing the total current change by
the pulse number in the linear region) as an indicator of the
device feature. It is obvious that the tuned devices showed
obvious narrower distribution range comparing to the original
devices thus improved the uniformity.
Repeatability in a device is also of paramount importance. Gate

tuning can be used to increase the performance repeatability of a
FMT. The same characterization was performed on one device for
several times. For each test, the ΔI-pulse relationships were
inconsistent (see Fig. 3d). However, by initializing the device with
Vg scanning, the ΔI–pulse relationships on one device were nearly
identical, as shown in Fig. 3e. This valid method, which was
provided by the gate terminal, not only ameliorated repeatability
but also avoided extra initializing operations on working terminals
(source and drain), which was always difficult in real fabricated
circuits. A more detailed discussion of the gate tuning function
can be found in the supplementary information.
Finally, gate tuning can decrease energy consumption. The

device had zero static power consumption since the input voltage
and the output current were synchronized which means if there
were no input spikes, there were no energy consumption. While
applying input signals, the key parameter Vgd was the potential
difference between Vg and Vd, which means that either Vg or Vd
provide equivalent contributions to Vgd. Since the trapping and
detrapping of electrons was mainly controlled by the amplitude
and sign of Vgd, the current change ΔI over each input pulse could
be controlled by either Vg or Vd. To obtain a greater ΔI, the
amplitude of Vgd needed to be larger. However, application of a
large voltage Vd to the drain would eventually increase Ids and,
consequently, increase energy consumption. Instead, keeping the
gate voltage Vg at a high amplitude and the drain voltage Vd at
low amplitude, made the device more energy-efficient and

Fig. 3 Gate-tuning function of the FMT. a I–V scanning at different Vg biases. b Responses to identical Vds pulses (−5 V, 1 s) at different Vg. a, b
were tested on a device with L= 20 µm and W= 50 µm. c The current change per pulse at Vds=−4 V 10ms for 28 devices at the same Vg=
0 V (original) and different Vg (tuned). d Three tests without gate initialization. e Three tests with Vg from −2 V to 2 V, Vds= 0.1 V IV-scanning
initialization. c–e were tested on a device with L= 60 µm and W= 100 µm
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avoided performance loss. The previously shown energy con-
sumption, low to 45 fJ per pulse, which is demonstrated in Fig. 2d,
was obtained in this type of scenario, and Fig. S6 further illustrates
this low-power contribution.

Synaptic plasticity
Synapse plasticity is believed to be the biological foundation of
learning and memory.32 Here, different modes of synaptic
plasticity were realized in FMTs. Voltage spikes on two terminals
of the memristor represented the presynaptic and postsynaptic
spikes and triggered Ids as a postsynaptic current (PSC), which in
this case represented the synaptic weight (Fig. 1a, b).
For a synapse, STP refers to the strengthening or weakening of

the synaptic weight over a short period of time, normally from
tens of milliseconds to a few minutes,32 and is involved in
important brain functions, such as learning and attention.33 PPF is
a type of STP that deals with two close successive spikes on a
synapse. PSC, which is evoked by the second spike, is enlarged
compared with the former spike. Figure 4a shows the PPF effect in
our artificial synapse. Two identical presynaptic spikes (−3 V for
450ms with a 2-s interval) were applied to the presynaptic
neuron, and the later spike induced a larger PSC. Compared with
the previous spike, ΔPSC, which was induced by the second spike,
increased by 12%.

Unlike STP, LTP normally lasts for minutes or more. In the
human brain, LTP forms the basis of memory and learning.34,35 To
obtain LTP, a spike with a −6 V amplitude and 1450ms duration
was used as the presynaptic spike (with the same reading voltages
as in the PPF testing), as shown in Fig. 4b. PSC increased with the
spike and then decayed after it was over, but to a higher level than
the initial state, for tens of seconds to minutes. This long-term
facilitation of synaptic weight is similar to the LTP in a biological
synapse. As a contrast, a spike with a low amplitude and short
duration (−3 V, 450ms) was applied to the artificial synapse, and
PSC decayed to the initial state immediately after the spike passed
(Fig. S7). These results indicate that stronger stimulation leads to a
longer modification, similarly to the corresponding physiological
process in the human brain. In Fig. 3b, we have already seen that
the gate terminal could modulate the degree of the resistance
change. The testing process was similar with that of the STP and
LTP. So, it is natural to believe that the intensity of STP and LTP
would be related to the gate voltage.
Among synaptic plasticity, STDP has been widely studied and

used in both biological and artificial neuron networks.36 With the
development of neuromorphic engineering, the STDP mechanism
has been studied further and used in various applications.37,38

Taking the most commonly used asymmetric Hebbian learning
rule as an example, if a presynaptic spike precedes a postsynaptic
spike, the synaptic weight will be strengthened. By contrast, if the
presynaptic spike arrives later than the postsynaptic spike, the

Fig. 4 Synaptic plasticity of the FMT. a PPF and (b) LTP in an artificial synapse. A 100-mV reading voltage was applied before and after the
spike to monitor the current change ΔPSC with the minimized effect induced by the reading voltage. c STDP follows the asymmetric Hebbian
rule. d Excitatory synapses were achieved for Vg=−2 V, inducing an excitatory postsynaptic current (EPSC), while Vg=−7 V, inducing an
inhibitory postsynaptic current (IPSC). Both ΔPSCs were induced by a presynaptic spike with −5 V, 1 s. All data were tested on a device with L
= 20 µm and W= 50 µm
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synaptic weight will be depressed. The spike interval between the
presynaptic and postsynaptic neurons was Δt= tpost− tpre, and
the synaptic weight change from one spike was calculated as ΔW
= Ipost− Ipre/Ipre. The result is plotted in Fig. 4c. The proposed
artificial synapse in our study clearly exhibited the STDP. The
larger Δt, the smaller the change observed in the synaptic weight.
The data obtained can be fitted with a simple exponential curve:

W ¼ A � e� Δt=τð Þ þ B

where τ1= 132ms and τ2= 186ms. In addition, the SRDP, which is
another important feature in the human brain39; the relation
between synaptic weight change ΔW; and the spike intervals are
shown in Fig. S8. The SRDP was another feature of a biological
synapse, which always indicated a different response to different
frequent spikes. The SRDP feature of the FMT was measured and
shown in Fig. S9.
Typically, in the human brain, a neuron is either excitatory or

inhibitory. It is the role of specific neurotransmitters to determine
the type of neuron, while the neural spikes are always the same. In
such a case, when we try to mimic an excitatory or inhibitory
neuron or synapse, it is important to keep the input, namely, the
presynaptic spikes, the same. For an artificial synapse with only
two terminals, it is rather difficult to modulate its type without
changing the applied signals or device configuration (the
conventional way of achieving the transformation was to use a
reversed input signal). Our artificial synapse, due to the gate
tuning function, allowed us to modify the synapse type during

operation once the network was established. Specifically, the type
of function, an excitatory or inhibitory synapse, can be achieved in
one device with the same input (Fig. 4d). This feature allows for a
more flexible network structure and paves the way to new
algorithms and system architectures.

Physical flexibility
Physical flexibility was one of the key feature of the FMT. The
functioning and endurance of the FMT under bending conditions
were thus useful to evaluate its feasibility as a building block of
the flexible computer. We tested the transfer characteristic curves
and the pulse signal responses of a FMT under different bending
radius. Figure 5a shows the comparison of the transfer character-
istic curves under 4 mm, 6mm, 8mm bending radius, respectively.
With the bending radiuses was larger than 6mm, the current
decrease was negligible. But for the bending radius below 6mm,
then the current decreased about 60%. The pulse tests also reflect
this trend. From Fig. 5b, we can see with bending radius smaller
than 4mm, the ΔI per pulse (can be seen as the slope k) was
decreased. Both the hysteresis and the memristive features were
sustained under bending. The test setup is shown in Fig. S10.
The endurance after repeated bending operations was also

tested. From Fig. 5b, we can see the current–pulse relationship has
good linearity, we here use the slope k as an indicator of the ΔI per
pulse. The slope without bending was k0, after every 250 bending,
the same device was characterized with the same pulse test in Fig.
5b and extracted the slope k. We here use k–k0/k0 to indicate the

Fig. 5 Bending tests of the FMT. a Ids–Vgs curve under different bending radiuses. b Response to consecutive identical pulses (−1 V, 10ms
pulse width, 15ms period) at Vg= 0.5 V. c Variation of the ΔI per pulse under repeated bending actions
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variation caused by the bending operations. The bending was
performed in two directions; the negative bending numbers
corresponds to the negative radius bending. The bending radius
was ±6mm. The result is shown in Fig. 5c. The variation within
1000 bending operations shows not obvious trend. The average
variation was about +1.3%, and was about 9.9% if we consider the
absolute variation. This result also indicated that the change was
reversible. The performance would get back to the initial level if
the substrate was released back to flat. So, the current decrease
shown in Fig. 5a, b was assumed to be cause by the extended
channel length while bending.

Simulated neuromorphic network
To demonstrate the capabilities of the implemented artificial
synapses as building blocks of a neural network, a simple single-
layer perceptron12 was simulated using the operational model
obtained from the experimental characterization of the imple-
mented artificial synapse. The learning task required the neural
network to identify 10 numbers, 0–9, defined by 10 different
patterns and represented by 25 elements in a 5*5 black-white
matrix, see Fig. 6a. The function was implemented by training and
processing a neuromorphic network with 26 inputs, Vj, with j= 1,
2,… 25, for pixel input and V26 for constant bias, as shown in Fig.
6a. Four outputs of fi, (i= 1, 2, 3, 4) were calculated from:

fi ¼ tanh α �
X26

j¼1

WijVj

 !

These outputs were used to show the results of learning and
processing. Thus, 4*26 synapses with trainable synaptic weights
Wij were used to build the neural network, and each synapse
consisted of a differential pair (two memristors, one for potentia-
tion and the other for depression) to make the synaptic weights
be approxiemately zero. In this type of neuromorphic network, the
Manhattan update rule,40 which is shown in the supplementary
information, was chosen to train the system and update the

synapses weights. The flow chart of the training algorithm is
shown in Fig. 6b. The four outputs were encoded to represent ten
different patterns, as indicated in Table S1. In total, 1500 different
patterns containing 150 noisy versions of each target pattern were
used for training, and another 1510 patterns were used for testing.
The training and testing pattern sets are shown in Fig. S10. The
average accuracy was 92.13%, and all the testing results are
shown in the confusion matrix in Fig. 6c. The matrix was filled with
the number of results that correspond to different conditions. If
the predicted pattern (the input pattern) was the same as the
target pattern (the pattern evaluated by the system), then the
recognition was correct, which lies on the diagonal of the matrix.
This demonstration shows the feasibility of our artificial synapse
for neuromorphic implementation.

DISCUSSION
In conclusion, a new approach of wearable electronic system was
proposed by combining flexible devices and the neuromorphic
system. And the key element for this new architecture, a high-
performance flexible artificial synapse, was demonstrated based
on FMT. By transforming the undesired H2O/O2 redox couple
induced hysteresis in transistors into a remarkable origin of
memristive features, FMT was fabricated and its performance was
characterized. Thanks to its reliable working mechanism and the
unique gate tuning function, the artificial synapse has the
advantages of its number of states, dynamic range, repeatability,
uniformity, energy and cost efficiency, thus was very competitive
among the existing artificial synapses (both inflexible and flexible).
In addition, a series of synaptic plasticity, such as PPF, LTP, STDP,
and SRDP, was demonstrated, and even a transition between
excitatory and inhibitory PSC was revealed. The FMT could work
under bended states and showed good endurance for multiple
bending operations, thus makes it qualified for using in wearable
applications. Finally, as a proof-of-practicability, a simulated
neuromorphic network using the parameter extracted from the

Fig. 6 Simulated neuromorphic network using FMT data. a Single-layer perceptron to classify 5*5 binary images. b Flow chart of the training
algorithm. c Classification results, shown as a confusion matrix

Tunable flexible artificial synapses: a new path
K Yang et al.

7

Published in partnership with Nanjing Tech University npj Flexible Electronics (2018)  20 



artificial synapse was realized and achieved pattern recognition
and classification. This high-performance flexible artificial synapse
paves the new way toward the wearable electronic system.

METHODS
Device fabrication
The transistor was fabricated on a cleaned polyimide film (DuPont Kapton,
thickness 75 μm). First, the gate electrode was defined using photolitho-
graphy. Then, 8 nm of Cr and 50 nm of Au were deposited via thermal
evaporation followed by a lift-off process. An Al2O3 dielectric layer was
grown using ALD under 200 °C. The source and drain were fabricated on
top of the dielectric layer using the same method. Channel area was
defined by opening a window on the photoresist using photolithography.
Various channel area sizes were defined for investigating the performance.
The SWCNT/F8T2 composite was prepared by dispersing SWCNTs
(NanoIntegris, 99% semiconducting) in the F8T2 (Lumtec) solution in
toluene (Sigma-Aldrich) (0.2 mg/mL). The prepared architectures were
immersed in the composite solution for 7.5 h to deposit the SWCNT
network embedded in the F8T2 thin film.

Characterization
Electrical characterization was performed using a Keysight B1500A
Semiconductor Device Parameter Analyzer. The pulse and wave signals
were generated by programming the input manually using the listed IV-
scanning function except the 10,000 short pulse tests, which were
obtained from the pulse-mode of the Source/Measure Unit module.

Data availability
The data that support the findings of this study are available from the
corresponding author on request.
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