ARTICLE OPEN

High responsivity and flexible deep-UV phototransistor based on Ta-doped β -Ga₂O₃

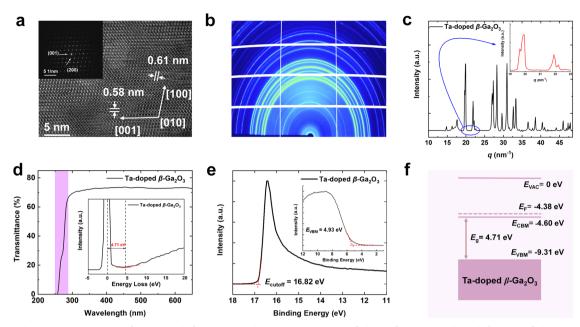
Xiao-Xi Li¹, Guang Zeng¹, Yu-Chun Li¹, Hao Zhang¹, Zhi-Gang Ji², Ying-Guo Yang o^{1,3 ⋈}, Man Luo⁴, Wei-Da Hu o⁴, David Wei Zhang^{1 ⋈} and Hong-Liang Lu^{1 ⋈}

Deep-ultraviolet (DUV) phototransistors have shown great potential applications in UV imaging, artificial intelligence, and wearable optoelectronics. Among a large number of wide bandgap semiconductors, the quasi-two-dimensional β -Ga₂O₃ is considered as an ideal candidate for DUV photodetector applications. Herein, we report a high responsivity (R) and fully flexible Ta-doped β -Ga₂O₃ DUV phototransistor which exhibits outstanding optoelectrical properties with a high R of 1.32×10^6 A/W, a large detectivity of 5.68×10^{14} Jones, a great photo-to-dark current ratio of 1.10×10^{10} %, a high external quantum efficiency of 6.60×10^8 %, and an ultra-fast response time of ~3.50 ms. Besides, the flexible Ta-doped β -Ga₂O₃ device also displays high reliability and mechanical flexibility that can sustain well after over 1×10^4 bending cycles. Moreover, high-contrast imaging of UV light was obtained on the flexible DUV detector arrays, which can be efficiently trained and recognized by an artificial neural network. Our findings offer a perspective to develop wearable optoelectronics and UV imaging based on high-performance flexible β -Ga₂O₃ DUV phototransistors, providing an inspiration for the future work in artificial intelligence and bionic robot fields.

npj Flexible Electronics (2022)6:47; https://doi.org/10.1038/s41528-022-00179-3

INTRODUCTION

Deep-ultraviolet (DUV) photodetectors with an advantage of directly converting UV into an electrical signal have recently attracted much attention, which play a key role in the fields of UV imaging, secure communication, biological detection, military detection, etc¹⁻³. Due to the outstanding characteristics of DUV photodetectors, such as high sensitivity, fast response speed, and low dark current⁴⁻⁷, various wide bandgap semiconductors (AIN, ZnO, GaN, and Ga₂O₃) have been expanded to DUV fields⁸⁻¹¹. Typically, quasi-two-dimensional (2D) β -Ga₂O₃ is considered as an ideal candidate for DUV photodetector applications because of its suitable direct bandgap of ~4.90 eV, high breakdown electrical field of ~9 MV/cm, outstanding thermal stability, high adsorption coefficient, etc. 12-14. However, the current high-performance β-Ga₂O₃-based UV photodetectors are usually fabricated on rigid substrates, which limit their applications in many novel device concepts such as transparent, wearable, and portable fields¹⁵.


It is no doubt that photodetectors based on flexible substrates could meet the growing demands of next-generation optoelectronics with low manufacturing cost, better portability, and lightweight design. Unfortunately, little attention of recent reports has been paid on the flexible β -Ga₂O₃ DUV photodetectors to date. Sooyeoun et al. fabricated β -Ga₂O₃ photodiode with graphene electrodes based on polyethylene terephthalate substrate, exhibiting a photo-to-dark current ratio (PDCR) of ~1 × 10⁶% and a responsivity (R) of ~29.8 A/W¹⁶; Wang et al. reported flexible graphene/amorphous Ga₂O₃ van der Waals heterojunction with a PDCR of ~1 × 10⁷% and a R of ~22.75 A/W¹⁷; etc. While the performances of the presented flexible β -Ga₂O₃ DUV photodiodes, especially in terms of R, are not competitive with their rigid devices¹⁸. Many strategies have been recently proposed to

improve the performance of flexible β -Ga₂O₃ DUV photodetectors. On one hand, better than the reported photodiodes, the phototransistors, as one kind of three-terminal photodetectors, have showed a significant advantage of the intrinsic current modulation, high intrinsic gain, and low dark current, which have been considered as an alternative solution to further improve the performance of DUV photodetectors¹⁹. On the other hand, for the material itself, various affordable and high-quality growth techniques for β -Ga₂O₃ bulk single crystals have been developed, including edge-defined film-fed growth, the optical floating zone (OFZ), the Czochralski, and so on²⁰.

Herein, the high-quality Ta-doped β -Ga₂O₃ single crystal has been grown by using an optimized OFZ method. Subsequently, a fully flexible high-performance β -Ga₂O₃ phototransistor on polyimide (PI) substrate was fabricated. The hexagonal boron nitride (h-BN) is selected as an ideal dielectric due to its large bandgap (5.97 eV), high breakdown field (8-12 MV/cm), atomically flat surface without unnecessary dangling bonds, and high thermal conductivity $[1700-2000 \, \text{W/(m K)}]^{21-23}$. The obtained β -Ga₂O₃ phototransistor exhibits a high R of 1.32×10^6 A/W, a large detectivity (D^*) of 5.68×10^{14} Jones, a great PDCR of $1.10 \times$ 10^{10} %, a high external quantum efficiency (EQE) of 6.60×10^{8} %, and an ultra-fast response time of ~3.5 ms. Then, the reliability and mechanical flexibility of the fabricated β -Ga₂O₃ phototransistor were explored. Besides, as a proof-of-concept, the flexible DUV detector arrays based on the present β -Ga₂O₃ phototransistors, combining with an artificial neural network (ANN), can perform image recognition efficiently and accurately. These results show that high-performance flexible DUV β -Ga₂O₃ phototransistors have great application potential in future wearable optoelectronics, UV imaging, and artificial intelligence fields.

¹State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, 200433 Shanghai, China. ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, 200240 Shanghai, China. ³Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute &, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204 Shanghai, China. ⁴State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083 Shanghai, China. ^Eemail: yangyingguo@sinap.ac.cn; dwzhang@fudan.edu.cn; honglianglu@fudan.edu.cn

Fig. 1 Material characterizations of Ta-doped β -Ga₂O₃, **a** The HR-TEM image of the exfoliated Ta-doped β -Ga₂O₃ flake. Inset: the SAED pattern of the exfoliated Ta-doped β -Ga₂O₃ flake. **b** 2D-GIXRD pattern of the Ta-doped β -Ga₂O₃, **c** The integrated 1D-GIXRD spectrum of the Ta-doped β -Ga₂O₃. **d** The transmittance spectrum of the Ta-doped β -Ga₂O₃ bulk single crystal. Inset: the REELS spectrum of the Ta-doped β -Ga₂O₃. **e** The UPS spectra of the Ta-doped β -Ga₂O₃. **f** The energy band diagram of the Ta-doped β -Ga₂O₃.

RESULTS AND DISCUSSION

Material characterizations of Ta-doped β-Ga₂O₃

To determine the morphology and crystalline phase of the obtained Ta-doped β-Ga₂O₃ material, the high-resolution transmission electron microscopy (HR-TEM) measurement was conducted. The spacings of lattice fringe shown in Fig. 1a were calculated to be ~0.61 and ~0.58 nm for (200) and (001) atomic planes respectively, which agrees well with the results reported in the literature²⁴. Notably, even with a suitable amount of Ta ion doping, there is almost no obvious lattice damage observed by the HR-TEM, indicating a good crystal quality of β -Ga₂O₃ material. The selected-area electron diffraction (SAED) pattern in the inset of Fig. 1a further confirms the perfect lattice symmetry and the lattice parameters of exfoliated β -Ga₂O₃ flakes. Synchrotron-based grazing incidence X-ray diffraction (GIXRD) measurement was used to analyze the fine crystalline structure of the β -Ga₂O₃ sample. The two-dimensional GIXRD (2D-GIXRD) pattern of Tadoped β -Ga₂O₃ is presented in Fig. 1b, which displays the clear and bright diffraction rings. Figure 1c shows the corresponding azimuthally integrated one-dimensional GIXRD (1D-GIXRD) spectrum of Ta-doped β-Ga₂O₃, demonstrating the typical peaks of β-Ga₂O₃, which are well consistent with the standard JCPDF (41–1103)²⁵. Notably, as shown in the inset figure, two diffraction peaks located at $q \sim 21.12 \,\text{nm}^{-1}$ and $22.49 \,\text{nm}^{-1}$, which are assigned to be (400) and (002) planes, show an obvious split in peak shape and a significant increase in peak intensity, implying the Ta⁵⁺ doping could effectively occupy the ion vacancies (or substitute Ga³⁺) and thereby improve the crystalline of the parent β -Ga₂O₃²⁶. Then, the optical transmittance spectrum of Ta-doped β -Ga₂O₃ bulk single crystal is analyzed in Fig. 1d. In the visible light region of 400-650 nm wavelength, the transmittance value of the current β -Ga₂O₃ bulk single crystal is ~73%. The cutoff absorption edge is located at ~260 nm. The energy band gap (E_q) of Ta-doped β -Ga₂O₃ is also determined to be 4.71 eV from reflection electron energy loss spectroscopy (REELS) in the inset of Fig. 1d. Furthermore, the ultraviolet photoelectron spectroscopy (UPS) measurement was employed to investigate the energy level alignment of Ta-doped β -Ga₂O₃. As displayed in Fig. 1e, the corresponding work function and valence band maximum (E_{VBM})

of the Ta-doped β -Ga₂O₃ are calculated to be 4.38 and 9.31 eV, respectively. Thus, the Fermi level (E_F) of the Ta-doped β -Ga₂O₃ sample is located at -4.38 eV. The E_{VBM} is located at 4.93 eV below the E_F . Combined with the E_g measured from REELS spectrum (4.71 eV for the present Ta-doped β -Ga₂O₃), the band diagram of Ta-doped β -Ga₂O₃ is summarized in Fig. 1f. Obviously, the E_F of Ta-doped β -Ga₂O₃ is above the conduction band minimum (E_{CBM}) with 0.22 eV, which would greatly contribute to increase the electron concentration²⁷.

Interface and electrical properties of the β-Ga₂O₃ device

Next, a Ta-doped β -Ga₂O₃ metal insulator semiconductor field effect transistor (MISFET) with h-BN dielectric was fabricated. The β-Ga₂O₃ and h-BN flakes were mechanically exfoliated and sequentially transferred onto a SiO₂/Si substrate. Firstly, the interface properties at Ta-doped β-Ga₂O₃/ h-BN heterostructure were investigated. Figure 2a shows the cross-sectional HR-TEM image of the stacked Ta-doped β-Ga₂O₃/h-BN heterostructure on the SiO₂/Si substrate. No obvious deformation or fault was observed in each layer and the interface β-Ga₂O₃/h-BN heterostructure. And from Fig. 2a it can be seen the thickness of exfoliated β -Ga₂O₃ flake is 165 nm. The HR-TEM image of an enlarged area for the interface of Ta-doped β-Ga₂O₃/h-BN heterostructure is displayed in Fig. 2b. Note that, the highly crystalline nature of the β -Ga₂O₃ and h-BN and atomically sharp interface at β -Ga₂O₃/h-BN heterostructure are evident. In addition, high-magnification cross-sectional HR-TEM images of the h-BN flake and the interface of Ta-doped β-Ga₂O₃/h-BN heterostructure were shown in Fig. 2c. The displacements of h-BN were calculated to 3.4 Å, which is consistent with the value in the literature²⁸. While the ordered lattice fringe formed at the β -Ga₂O₃/h-BN interface has a spacing of 4.0 Å, which is slightly larger than that in the bulk of h-BN, which might be attributed to the excessive residual stress at the interface of β -Ga₂O₃/h-BN²⁹. The corresponding energy band diagram of Ta-doped β-Ga₂O₃/h-BN heterostructure was established in Supplementary Fig. 1. It can be clearly seen that the β -Ga₂O₃/h-BN heterostructure system has a staggered band alignment (type II)³⁰. The valence and conduction band offsets (ΔE_V and ΔE_C) of Ta-doped β -Ga₂O₃/h-BN

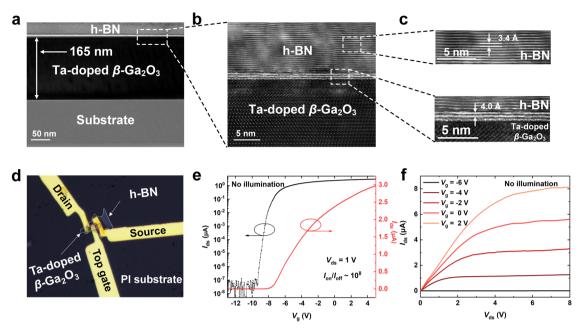


Fig. 2 Interface analysis and electrical properties of the Ta-doped β -Ga₂O₃ transistor. a Cross-sectional HR-TEM image of the stacked Ta-doped β -Ga₂O₃/h-BN heterostructure on SiO₂/Si substrate. b High-magnification HR-TEM image of an enlarged area for the interface of Ta-doped β -Ga₂O₃/h-BN heterostructure. c Top image: High-magnification cross-sectional HR-TEM image of the h-BN flake. Bottom image: high-magnification cross-sectional HR-TEM image of the interface of Ta-doped β -Ga₂O₃/h-BN heterostructure. d The optical microscopic image of the fabricated β -Ga₂O₃ transistor. e The transfer curves (l_{ds} - V_{g}) of the fabricated β -Ga₂O₃ transistor in log and linear scales under dark condition at V_{ds} = 1 V. f The output curves (l_{ds} - V_{ds}) of the fabricated β -Ga₂O₃ transistor.

heterostructure are 3.42 and 4.68 eV, which could provide a high sufficient barrier height to reduce electron tunneling through the interface due to quantum tunneling effect or thermal fluctuations³¹. Subsequently, to broaden applications in the emerging area such as wearable and portable electronics and optoelectronics, a flexible β-Ga₂O₃ phototransistor with h-BN dielectric was fabricated on PI substrate. The PI film was chosen as a flexible substrate due to its capability of withstanding high temperatures up to 350 °C and other advantages such as light-weight, low-cost, soft, and flat surface^{32,33}. The PI substrate used here was spincoated and cured on the glass film, which corresponds to the optical image (Supplementary Fig. 2). It can be found that the PI film shows high flexibility and foldability. Next, the optical microscopy image of the fabricated β -Ga₂O₃ transistor is shown in Fig. 2d. The length (L) and width (W) of the β -Ga₂O₃ channel are ~2.6 and ~2.5 μm in sequence. The measured thicknesses of β-Ga₂O₃ channel layer and h-BN dielectric layer by atomic force microscope (AFM) are ~199.5 and ~11.3 nm (Supplementary Fig. 3), respectively. Then, the electrical properties of the fabricated flexible β -Ga₂O₃ transistor were measured and analyzed. Figure 2e displays the transfer curves of the fabricated β -Ga₂O₃ transistor in log and linear scales under dark condition at $V_{\rm ds} = 1 \, \rm V$, which exhibits a high on/off current ratio ($I_{\rm on}/I_{\rm off}$) of ~10⁸ and a low offstate current ($I_{\rm off}$) of ~10 fA. The threshold voltage ($V_{\rm th}$) is extracted as $-8.30 \,\mathrm{V}$ using a linear extrapolation method at $V_{\mathrm{ds}} =$ 1 V. The transconductance (g_m) as a function of V_g is extracted using $g_{\rm m} = \frac{\partial I_{\rm ds}}{\partial V_{\rm o}}$ (Supplementary Fig. 4)³⁴. The maximum value of transconductance (g_{max}) can reach 0.49 μ S at $V_{\text{q}} = -6.65$ V. The field-effect electron mobility (μ_{fe}) is also extracted using the equation of $\mu_{\text{fe}} = \frac{L}{W \times C_{\text{ov}} \times V_{\text{ds}}} \times g_{\text{m}}$, where L and W are the length and width of β -Ga₂O₃ channel, and C_{ox} is the capacitance of gate dielectric per unit area³⁴. $C_{\rm ox}$ is calculated as 3.13×10^{-7} F/cm², using the formula of $C_{\rm ox} = \frac{\varepsilon_0 \varepsilon_r}{d}$ where ε_0 is the vacuum permittivity (8.854 × 10⁻¹² F/m), ε_r is the relative permittivity of h-BN (~4), and d is the dielectric thickness $(11.3 \text{ nm})^{34}$. And the peak value of $\mu_{\rm fe}$ is calculated to be 1.6 cm²/V·s. Figure 2f shows the output characteristic of β -Ga₂O₃ transistor where V_q varies from -6 to 2 V

with a step of 2 V. The sharp pinch-off and outstanding saturation of current can be clearly observed. These results show that $\beta\text{-}Ga_2O_3$ phototransistors have good gate tunability and electrical properties.

The photoelectrical properties of the β-Ga₂O₃ device

Subsequently the photoelectrical properties of the fabricated β -Ga₂O₃ phototransistor were investigated systematically. In general, the photocurrent generation mechanisms are mainly categorized as photoconductive (PC) and photogating (PG) effects for 2D material phototransistors³⁵. In the PC effect, the absorption of photons generates extra free carriers, increasing channel current, and thus the electrical resistance of channel was reduced (Supplementary Fig. 5). While PG effect is a particular example of the PC effect. If the photogenerated holes in n-type transistor are trapped in localized states of which energy near the valence band edge, they can perform as a local gate voltage ($\Delta V_{\rm g}$), effectively modulating the electrical resistance of semiconductor channel (Supplementary Fig. 6)³⁶. It is worth noting that the trapped photocarriers will prolong the lifetime of photogenerated carriers ($\tau_{photocarriers}$), usually leading to a large photoconductive gain ⁸⁷, as detailed in Supplementary Section S1 and Eq. (S1).

To investigate the mechanism of photocurrent generation in β -Ga₂O₃ channel, we measured I_{ds} - V_g characteristic under a series of illumination P_{in} at 250 nm excitation wavelength, as shown in Fig. 3a. The UV light source illuminates the surface of the device vertically and covers the entire channel. It is observed that the photocurrent (I_{ph}) of device increases with increasing illumination densities. Then the curves of I_{ph} as a function of V_g were plotted under different illumination P_{in} at $V_{ds}=1$ V in Fig. 3b. Obviously, I_{ph} increases with the optical power. On one hand, this phenomenon is caused by the higher illumination P_{in} that can excite more photogenerated carriers, in turn, enhancing the PC effect. On the other hand, it is caused by trapping more photogenerated holes, increasing the PG effect mentioned above. But for a fixed power, the photocurrent accesses a maximum value. It is because that the effective modulation of V_g affects PC

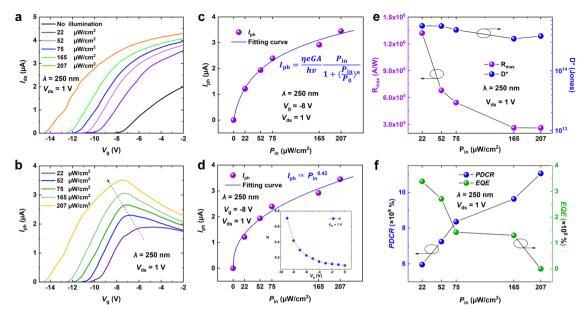


Fig. 3 The photoelectrical properties of the fabricated β-Ga₂O₃ phototransistor. At 250 nm excitation wavelength. a Transfer characteristic of the device under the dark and different illumination power intensities (P_{in}) conditions at $V_{ds} = 1 \text{ V}$. b Dependence of I_{ph} on V_g under different illumination P_{in} at $V_{ds} = 1 \text{ V}$. c The P_{in} dependence of I_{ph} curve at a fixed gate voltage of -8 V and $V_{ds} = 1 \text{ V}$. d The I_{ph} as a function of P_{in} at $V_g = -8 \text{ V}$ and $V_{ds} = 1 \text{ V}$. Inset: α as a function of V_g . e The corresponding R_{max} and D^* dependence of P_{in} . f PDCR and EQE values versus P_{in} at $V_{ds} = 1 \text{ V}$.

and PG effects³⁸. Moreover, the generated $I_{\rm ph}$ can be fitted successfully by the empirical Hornbeck-Haynes model (Supplementary Section S1 and Eq. (S2))³⁹. The P_{in} dependence of I_{ph} curve at a fixed gate voltage of $-8 \,\mathrm{V}$ is presented in Fig. 3c. The bule line is the fitting results according to Supplementary Equation S2, from which $\eta \frac{\tau_{\text{photocarriers}}}{\tau_{\text{transit}}} = 8606$ and n = 0.79 have been deduced, where η is the efficiency of converting absorbed photons to electrons, τ_{transit} is the transit time of carriers, and n is a phenomenological fitting parameter⁴⁰. According to the equation of $\tau_{\text{transit}} = \frac{L^2}{\mu_{fe}V_{ds}}$, τ_{transit} is calculated to be 42 ns where $L = 2.6 \, \mu \text{m}$, $V_{ds} = 1 \text{ V}$, and $\mu_{fe} = 1.6 \text{ cm}^2/\text{V} \cdot \text{s}$. According to the transmittance spectrum in Fig. 1d, a reasonable absorption rate of 30% is assumed. Then the values of G and $\tau_{\text{photocarriers}}$ can be derived to be about 2.8×10^4 and 1.2 ms, respectively. And the bandwidth of a photodetector without gain decay can be roughly defined as $f_{\rm 3-dB}=rac{1}{2\pi r_{
m photocarriers}}$. Therefore, the 3-dB bandwidth of the eta-Ga $_2$ O $_3$ phototransistor is calculated to be ~133 Hz. It is clearly that a larger G will cause a smaller 3-dB bandwidth due to the competing relationship between them. Then, the typical signatures of PC and PG effects are illustrated in Supplementary Section 2. Then I_{ph} - P_{in} curve at a fixed gate voltage of -8 V is extracted in Fig. 3d. The curve could be well fitted using the formula of $I_{\rm ph} \propto P_{\rm in}{}^{\alpha}$ where α is exponent. The obtained value of α is 0.42 in Fig. 3d, smaller than 1, confirming the existence of PG effect in the β -Ga₂O₃ phototransistor⁴¹. Subsequently, the same method was used to extract α under a series of fixed gate voltages and the α - $V_{\rm q}$ curve was plotted in the inset of Fig. 3d. It reveals that α ranges from 0.71 to 0.1 when $V_{\rm g}$ changes from -9 to 0 V, indicating that the PG effect has a V_{α} -dependent relation which is consistent to Supplementary Equation S3. It is also observed that V_{th} of n-type β -Ga₂O₃ device shifted in negative direction from -7.50 to -14.50 V, which can be clearly interpreted by PG effect. The dependence of the change of threshold voltage ($|\Delta V_{th}|$) on P_{in} was also extracted and plotted in Supplementary Fig. 7. The $V_{\rm th}$ drifts negatively with increasing P_{in} . It can be assumed that the local gate electric field formed by trapped holes effectively changes the Fermi level and generates more electrons in β -Ga₂O₃ channel, causing a stronger PG effect.

The critical parameters including R, D^* , PDCR, and EQE are extracted to further evaluate the performances of the fabricated β -Ga₂O₃ phototransistor⁴². The R of the β -Ga₂O₃ phototransistor is extracted firstly (Supplementary Fig. 8) from Fig. 3b using⁴³

$$R = \frac{I_{\rm ph}}{P_{\rm in} \times A} \tag{1}$$

where A is the active area of the phototransistor. From Eq. (1), it can be found that the R and I_{ph} meet the linear relationship under a fixed $P_{\rm in}$. Therefore, the trend of $I_{\rm ph}-V_{\rm g}$ and $R-V_{\rm g}$ curves is the same under a fixed power density. Then the maximum response ($R_{\rm max}$) was extracted from Supplementary Fig. 8 and plotted the corresponding R_{max} - P_{in} curve in Fig. 3e. This result shows R_{max} of the β -Ga₂O₃ phototransistor can reach 1.32 × 10⁶ A/W at a low illumination density of 22 µW/cm², which is much superior to previous reported β-Ga₂O₃-based photodetectors under similar power conditions^{7,4} It is also noteworthy that R_{max} monotonically decreases with increasing illumination P_{in} . It is owing to the gradually filled trap states³⁸, which is also related to the multi-faceted generation, separation, and transport processes of photogenerated carriers³⁴. In addition, D* is another photodetector parameter which indicates the signal-to-noise ratio, shot current, considering the thermal, generation-recombination, and background radiations⁴⁶. Assuming that the shot noise caused by dark current (Idark) is the main noise source of total noise, D^* can be given by

$$D^* = \frac{RA^{0.5}}{(2eI_{dark})^{0.5}} \tag{2}$$

where e is the electron charge ($\sim 1.6 \times 10^{-19}$ C), as displayed in Fig. 3e. It can be seen that the D^* reaches the maximum value of 5.68×10^{14} Jones at the illumination $P_{\rm in}$ of $22 \, \mu \text{W/cm}^2$ and maintains the same order of 10^{14} when a series of power changes, which is comparable to previous reported $\beta\text{-Ga}_2\text{O}_3$ photodetectors 46,48,49 . While this method neglected 1/f noise which predominates in the MISFET-based phototransistors 50 . In order to comprehensively evaluate D^* , the low frequency noise measurement is also conducted to extract the D^* which was defined as $D^* = R \times \frac{\sqrt{AB}}{l_N} = R \times \frac{\sqrt{A}}{S_n}$, where R is responsivity, A is the active area of the phototransistor in a unit

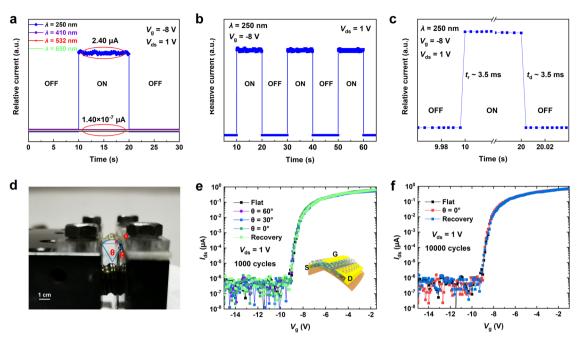


Fig. 4 The time response and stability properties of the fabricated β-Ga₂O₃ phototransistor. a Time-dependent photoresponse of β-Ga₂O₃ device under different wavelengths at $V_{ds} = 1 \text{ V}$ and $V_g = -8 \text{ V}$. b Time-dependent photoresponse of β-Ga₂O₃ device under 250 nm excitation wavelength at $V_{ds} = 1 \text{ V}$ and $V_g = -8 \text{ V}$. c Enlarged view of the rise and decay edges of the curve in b. d The real image of the bending state of the displayed flexible β-Ga₂O₃ device with a predefined bending angle. e Transfer curves of the device after the device is folded 10^3 cycles at different angles. f Transfer curves of the device after the device

of cm², B is the bandwidth, I_N is the measured noise current of the phototransistor, and S_n is the noise current density⁵¹. The Supplementary Fig. 9a shows that the noise power spectral density for $V_g = -8.45$, -8.00, -7.60, and -7.35 V, respectively. The Supplementary Fig. 9b shows the noise current density extracted from the Supplementary Fig. 9a at the noise frequency of 10^0 , 10^1 , 10^2 , and 10^3 Hz. It can be found that S_n increases when the V_g increases under a fixed noise frequency condition. As shown in Supplementary Fig. 10, the extracted D^* is 6.55×10^{13} Jones for $V_g = -8.45$ V under illumination $P_{\rm in}$ of $22~\mu{\rm W/cm}^2$ condition, which is lower 100 times than that extracted directly using the $I_{\rm dark}$ method $(8.65 \times 10^{15}$ Jones). Note that, this value of 6.55×10^{13} Jones is still very competitive with the reported literature 46,48,49 . Then, another photodetector parameter, PDCR is given by 50

$$PDCR = \frac{I_{ph}}{I_{dark}} \times 100\%$$
 (3)

which is used to evaluate the rejection ability for noise. Obviously, the PDCR exhibits an increasing trend with $P_{\rm in}$, as shown in Fig. 3f. In order to eliminate the influence of gate voltage on PDCR, we discussed the PDCR characteristic of the device at $V_g=-10\,\rm V$. The dark current at $V_g=-10\,\rm V$ is about $3.18\times10^{-8}~\mu\rm A$ and the $I_{\rm ph}$ under different $P_{\rm in}$ conditions at $V_g=-10\,\rm V$ has been shown in Fig. 3d. The PDCR can reach $5.96\times10^9\rm W$ under 22 $\mu\rm W/cm^{-2}$ and increase to $1.10\times10^{10}\rm W$ under 207 $\mu\rm W/cm^{-2}$. Finally, EQE means the ratio of the number of converting absorbed photons to electrons and the total number of excitation photons, which is extracted from the equation

$$EQE = \left(\frac{Rhv}{e}\right) \times 100\% \tag{4}$$

where h is Planck's constant $(6.626\times 10^{-34}\,\mathrm{J}\,\mathrm{s})$ and υ (=c/ λ) is the frequency of incident light⁴⁸. The EQE of the device decreases gradually with increasing P_{in} as shown in Fig. 3f. The largest EQE reaches $6.60\times 10^8\%$ under 22 μ W/cm² of P_{in} . These results indicate that the obtained β -Ga₂O₃ phototransistors have outstanding photoelectrical properties.

The time response and stability properties of the device

To further study the photoresponse properties of the β -Ga₂O₃ phototransistor, time-dependent measurements on the device under various conditions were conducted. Figure 4a shows the time-dependent properties of the β -Ga₂O₃ phototransistor under different excitation wavelength. The measurement was carried out at $V_g = -8 \text{ V}$ and $V_{ds} = 1 \text{ V}$ with the P_{in} density of 75 μ W/cm². Then, the rejection ratio is calculated as the ratio of R under 250 nm and visible (410, 532, and 650 nm) light illumination in Fig. 4a. The parameter can show the ratio of single and specific background radiation noise under illumination conditions⁴⁷. Very clearly, there is almost no photocurrent generation under 410, 532, and 650 nm light exposure. The current of the device is \sim 1.40 \times 10⁻⁷ μ A under the three visible light illumination while the current of the device is ~2.40 µA under 250 nm light illumination. The rejection ratio of β -Ga₂O₃ phototransistor between 250 nm/ visible light could reach 1.71×10^7 , which exhibits high spectral selectivity. It can be confirmed that the obtained β -Ga₂O₃ phototransistor is much more sensitive to DUV light than the visible and near-IR lights. Besides, from Fig. 4a, a quick rise of $I_{\rm ph}$ as soon as the 250 nm laser is turned on followed by a rapid drop back to initial values when the 250 nm laser is turned off under the chopping effect of the chopper. This implies that the β -Ga₂O₃ phototransistor can act as a sensitive UV-light-activated switch. To evaluate the repeatability and stability of the device's optical response characteristic under the excitation of 250 nm laser, time dependence I_{ph} curve was measured for several cycles in Fig. 4b. The illumination light is turned on and off at an interval of 10 s with a period of 20 s. It can be found that the ON-OFF switching behavior can be retained well. To obtain the rise time (τ_r) and decay time (τ_d) , Fig. 4c shows the enlarged view of the rise and decay edges of the curve in Fig. 4b. The observed switching duration for τ_r or τ_d is calculated only to be 3.5 ms, which is much faster than the reported values of other UV photodetectors^{52,53}. While according to the above statement, the response time of device can be further improved if the photogating effect is reduced because there exists a compromise between them.

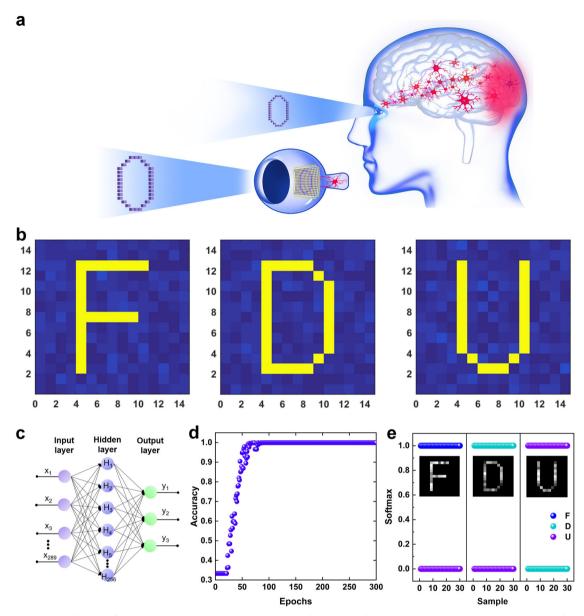


Fig. 5 The simulation of an artificial neural network (ANN) based the fabricated β-Ga₂O₃ phototransistor. a Schematic of simulating the human nerve visual system. b Illustration of corresponding UV detector arrays. c Illustration diagram of artificial visual-neural network. d The recognition rate of UV detector arrays recognizing image. e The probability for three possibility results when the letters in image database are input into the trained ANN.

Supplementary Table 1 provides a summary and comparison of key parameters for the reported UV photodetectors based on various materials. By contrast, the maximum R of β -Ga₂O₃ phototransistor $(1.32 \times 10^6 \text{ A/W})$ fabricated in this work is 100times more sensitive than the traditional material photodetectors (such as GaN (10⁴ A/W), SiC (0.18 A/W), ZnO (12 A/W), and others)^{54–59}. In addition, the R of β -Ga₂O₃ phototransistor is also improved by more than 100 times than the reported the perovskite-based UV photodetectors (BiOBr $(1.27 \times 10^4 \text{ A/W})$, $Ga_2In_4S_9$ (10⁴ A/W), $Sr_2Nb_3O_{10}$ (1.20 × 10³), and others)^{3,60–62}. Besides, Supplementary Table 2 summaries the photoresponse properties of the fabricated β-Ga₂O₃ phototransistor and compares some previous works on β -Ga₂O₃-based photodetectors. These results clearly reveal that the DUV β -Ga₂O₃ phototransistor fabricated in this work exhibits superior photoelectric performance, outperforming most reported UV photodetectors. The large responsivity stems from a strong PG effect on the β-Ga₂O₃ channel induced by the localized states in the β -Ga₂O₃ layer⁶. Finally, the reliability test of the β -Ga₂O₃ phototransistor on a flexible PI substrate was carried out. Figure 4d shows the operating platform in the experiment. We bent the device to 60°, 30°, and 0°, respectively. The transfer curves of the device after folding 10^3 times were shown in Fig. 4e. It is clear that the flexible β -Ga₂O₃ phototransistor exhibits negligible performance loss. In Fig. 4f, no performance deterioration can be observed even if the device was folded for 10^4 times at a bending angle of ~0°. It is believed that the proposed flexible β -Ga₂O₃ phototransistor has great potential in flexible UV image sensing applications due to the outstanding photosensitivity, flexibility, and stability.

An artificial neural network based on the β-Ga₂O₃ device

In recent years, the intelligent industry represented by robotics has been so flourishing that researchers are looking forward to developing human-like bionic robots^{11,63}. What's more, it also hoped that the detection range of the eyes of the bionic robot could exceed that of humans. High-performance flexible UV image sensors based on the fabricated β -Ga₂O₃ device make it possible for the robot's UV vision function. To this end, a UV detector array and an ANN are designed to artificially simulate the human vision system, as illustrated in Fig. 5a. The UV detector array composed of 15 × 15 pixels is designed to perceive the image. Images of the letters F, D, and U in Fig. 5b form a database used by artificial neural visual system. Obviously, images of letters formed by UV detector arrays show high contrast because the phototransistors based on β -Ga₂O₃ can produce a large I_{ph} under DUV light illumination, which makes it easier for robots to recognize and remember them. It is noted that all image signals were normalized. More detailed information is described in Supplementary Note 1. Next, a three-layer ANN was developed for training and recognizing the perceived images. As displayed in Fig. 5c, the three-layer ANN consists of input layer (225 neurons), hidden layer (128 neurons), and output layer (3 neurons). The image-recognition rate of UV detector array is illustrated in Fig. 5d. After 64 training epochs, the corresponding recognition rate could reach 0.99, which shows high image recognition efficiency. To further verify the high image recognition rate of the trained ANN, 90 image examples from above image database, including 30 "F" images, 30 "D" images, 30 "U" images, were chosen to input into the trained ANN. Then the probability for three possibility results was calculated and plotted in Fig. 5e. The results show the trained ANN has great recognition capability. As a result, the flexible UV detector array based on high-performance β -Ga₂O₃ phototransistors has a promising application in UV photosensitive imaging.

In summary, high performance and flexible DUV Ta-doped β -Ga₂O₃ phototransistor with the h-BN dielectric has been fabricated on PI substrate. The obtained Ta-doped β -Ga₂O₃ phototransistor exhibits a high R of 1.32×10^6 A/W, a large D^* of 5.68×10^{14} Jones, a great PDCR of 1.10×10^{10} %, a high EQE of 6.60×10^8 %, and a fast response time of ~3.5 ms. Moreover, the flexible Ta-doped β -Ga₂O₃ device displays high reliability and mechanical flexibility that can sustain well up to 10^4 bending cycles. Furthermore, the flexible DUV detector arrays based on high-performance Ta-doped β -Ga₂O₃ phototransistors, combined with an artificial neural network, can perform image recognition efficiently and accurately. These results show high performance flexible UV Ta-doped β -Ga₂O₃ phototransistors have great potential for applications in future wearable optoelectronics, UV imaging, and artificial intelligence fields.

METHODS

Fabrication of the flexible β -Ga₂O₃ transistor

Ta-doped β -Ga₂O₃ single crystal was grown by the OFZ technique. First, the β -Ga₂O₃ (6 N) and Ta₂O₅ (4 N) powders are mixed fully by the wet ball milling and pressed into a rod by a cold isostatic press. Next, the rod was sintered in air at 1450 °C for 20 h, using <010> oriented crystal as the seed. Finally, the crystal growth starts. The obtained crystals are intact with uniform color. The schematic diagram of the fabrication method of Ta-doped β -Ga₂O₃ is illustrated in Supplementary Fig. 11.

In this study, the 0.05 mol % Ta-doped β -Ga₂O₃ singe crystal was chosen due to its suitable active carrier concentration of $1.4 \times 10^{18} \, \mathrm{cm}^{-3}$. The fabrication of the flexible β -Ga₂O₃ phototransistor began by cleaning a glass substrate with isopropyl alcohol, acetone, and DI water, followed by dehydration with a nitrogen spray gun. After that, the soluble PI was deposited by spin-coating at 3000 r/min on the glass substrate and prebaked at 80 °C on a hot plate for 8 min to remove the organic solvent. Then the PI film was fully cured at 280 °C under ambient condition for 60 min. We spin-coated the soluble PI onto the glass substrate, overcoming the problem of plastic shrinkage with the high temperature processes. Next, the mechanically exfoliated β -Ga₂O₃ flake from the β -Ga₂O₃ bulk single crystal (the Raman spectrum of β -Ga₂O₃ flake is displayed in Supplementary Fig. 12) was drytransferred to the as-fabricated PI substrate. Subsequently, Ti/Al/Ni/Au (20/100/00/80 nm) stack electrodes were deposited as source and drain contract pads via a standard electron-beam lithography, metallization, and lift-off process. The device was then annealed at 350 °C in a high-vacuum furnace with a high

pure N_2 ambient for 3 h to improve ohmic contacts. Subsequently, the h-BN flake was also obtained by using the mechanical exfoliation method from a BN bulk single crystal (SixCarbon Technology Supplies) and subsequently transferred precisely onto the top of the pre-deposited β -Ga₂O₃ channel as the gate dielectric utilizing a poly (dimethylsiloxane) transfer method. Finally, the top-gate electrode of Ti/Au (10/70 nm) was patterned and deposited.

Microscopic and electrical characterizations

The active area of the phototransistor was measured to be $\sim 2.6 \times 2.5 \, \mu m^2$ in sequence, which was characterized by the high-precision optical microscope equipment (Olympus BX53M). The high-resolution structural analysis of samples including β -Ga₂O₃ flakes, h-BN flakes, and the interface of β-Ga₂O₂/h-BN heterostructure was characterized using HR-TEM (Talos F200X). The morphology and thicknesses of $\beta\text{-Ga}_2\text{O}_3$ channel and h-BN flakes were measured by AFM (Bruker Dimension Icon). The crystalline structure of β -Ga $_2$ O $_3$ samples was investigated by GIXRD which uses X-ray with a wavelength of 0.6887 Å. 2D-GIXRD pattern was obtained by a PILATUS detector at a distance of about 263 mm from the sample, and an exposure time of ~20 s. The optical transmittance characterization of β -Ga₂O₃ samples was investigated by UV-visible spectrophotometer (UV-3100). The UPS spectrum was acquired using a SPECS PHOIBOS 100 hemispherical analyzer, which was excited by an unfiltered He I (21.20 eV) gas discharge lamp. The electrical and optoelectronic properties of the β-Ga₂O₃ photodetector were measured with a semiconductor analyzer (Agilent B1500A). The UV source was provided by a deuterium lamp (THORLABS SLS204). Deuterium lamp irradiates directly the device surface through the optical fiber. The optical fiber illuminates the surface of the device vertically and covers the entire β -Ga₂O₃ channel. The response time was measured by using a chopper (C-995). The calibration of the incident power density is used by an optical power meter (THORLABS S120VC).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Received: 14 February 2022; Accepted: 27 May 2022;

Published online: 17 June 2022

REFERENCES

- Wang, D. et al. Bidirectional photocurrent in p-n heterojunction nanowires. Nat. Electron. 4, 645–652 (2021).
- Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).
- Gong, C. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gatecontrolled deep-ultraviolet phototransistors. Adv. Mater. 32, e1908242 (2020).
- 4. Hou, X. et al. High-performance harsh-environment-resistant GaO_X solar-blind photodetectors via defect and doping engineering. *Adv. Mater.* **34**, 2106923 (2022).
- Zheng, W., Huang, F., Zheng, R. & Wu, H. Low-dimensional structure vacuumultraviolet-sensitive (λ < 200 nm) photodetector with fast-response speed based on high-quality AIN micro/nanowire. Adv. Mater. 27, 3921–3927 (2015).
- Qin, Y. et al. Ultra-high performance amorphous Ga₂O₃ photodetector arrays for solar-blind imaging. Adv. Sci. 8, 2101106 (2021).
- 7. Ahn, J. et al. Ultrahigh deep-ultraviolet responsivity of a β -Ga₂O₃/MgO heterostructure-based phototransistor. *ACS Photonics* **8**, 557–566 (2021).
- Lee, M. et al. Accelerated learning in wide-band-gap AlN artificial photonic synaptic devices: impact on suppressed shallow trap level. *Nano Lett.* 21, 7879–7886 (2021).
- Li, H. et al. Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors. Small 16, 2004136 (2020).
- Dubey, A. et al. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. *Adv. Sci.* 7, 2002274 (2020).
- Wang, T., Liang, H., Han, Z., Sui, Y. & Mei, Z. Integrated flexible Ga₂O₃ deep UV photodetectors powered by environmental electromagnetic radiation energy. Adv. Mater. 6, 2000945 (2021).
- Huang, H. et al. High aspect ratio β-Ga₂O₃ fin arrays with low-interface charge density by inverse metal-assisted chemical etching. ACS Nano 13, 8784–8792 (2019).

- Alonso-Orts, M. et al. Wide dynamic range thermometer based on luminescent optical cavities in Ga₂O₃: Cr Nanowires. Small 18, 2105355 (2022).
- Chen, T. et al. Self-powered and spectrally distinctive nanoporous Ga₂O₃/GaN
 epitaxial heterojunction UV photodetectors. Adv. Photonics Res. 2, 2100049
 (2021).
- Kim, S. & Kim, J. Highly selective ozone-treated β-Ga₂O₃ solar-blind deep-UV photodetectors. Appl. Phys. Lett. 117, 261101 (2020).
- Oh, S., Kim, C. K. & Kim, J. High responsivity β-Ga₂O₃ metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics 5, 1123–1128 (2017).
- Wang, Y. et al. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga₂O₃ van der Waals heterojunctions. ACS Appl. Mater. Interfaces 12, 47714–47720 (2020).
- Yu, S. et al. High-detectivity β-Ga₂O₃ microflake solar-blind phototransistor for weak light detection. *IEEE Electron Device Lett.* 42, 383–386 (2021).
- Han, Z. et al. Boosted UV photodetection performance in chemically etched amorphous Ga₂O₃ thin-film transistors. Adv. Opt. Mater. 8, 201901833 (2020).
- Zhang, J., Shi, J., Qi, D. C., Chen, L. & Zhang, H. L. Recent progress on the electronic structure, defect, and doping properties of Ga₂O₃. APL Mater. 8, 020906 (2020).
- 21. Bae, J., Kim, H. W., Kang, I. H., Yang, G. & Kim, J. High breakdown voltage quasitwo-dimensional β -Ga₂O₃ field-effect transistors with a boron nitride field plate. *Appl. Phys. Lett.* **112**, 122102 (2018).
- Li, X. X. et al. Effective suppression of MIS interface defects using boron nitride towards high-performance Ta-doped-β-Ga₂O₃ MISFETs. J. Phys. Chem. Lett. 13, 3377–3381 (2022).
- Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. *Nat. Mater.* 3, 404–409 (2004).
- Ahn, S. et al. Effect of front and back gates on β-Ga₂O₃ nano-belt field-effect transistors. Appl. Phys. Lett. 109, 062102 (2016).
- Zhang, J. et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga₂O₃: Sn. J. Phys. Chem. Solids 67, 1656–1659 (2006).
- Wang, D., Ma, X., Xiao, H., Le, Y. & Ma, J. Ta-doped epitaxial β-Ga₂O₃ films deposited on SrTiO₃(100) substrates by MOCVD. *Mater. Sci. Semicond. Process* 128, 105749 (2021).
- Leedy, K. D. et al. Highly conductive homoepitaxial Si-doped Ga₂O₃ films on (010) β-Ga₂O₃ by pulsed laser deposition. Appl. Phys. Lett. 111, 012103 (2017).
- 28. Gao, L., Jin, X., Li, J., Li, Y. & Sun, J. BN/Si₃N₄ nanocomposite with high strength and good machinability. *Mater. Sci. Eng. A* **415**, 145–148 (2006).
- Sun, H. et al. Valence and conduction band offsets of β-Ga₂O₃/AlN heterojunction. Appl. Phys. Lett. 111, 162105 (2017).
- Zheng, W. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019).
- Zhang, K. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe₂/MoS₂ van der Waals heterostructures. ACS Nano 10, 3852–3858 (2016).
- Isaacson, S. G. et al. Fundamental limits of material toughening in molecularly confined polymers. Nat. Mater. 15, 294–298 (2016).
- Chen, Z. H., Fang, R., Li, W. & Guan, J. Stretchable transparent conductors: from micro/macromechanics to applications. Adv. Mater. 31, 1900756 (2019).
- Das, S., Chen, H., Penumatcha, A. & Appenzeller, J. High performance multilayer MoS₂ transistors with scandium contacts. *Nano Lett.* 13, 100–105 (2013).
- 35. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband midinfrared semiconductor. *Nat. Commun.* **9**, 1545 (2018).
- 36. Zhao, Q. et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. *Mater. Horiz.* **7**, 252–262 (2020).
- Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).
- 38. Fang, H. & Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 4, 1700323 (2017).
- 39. Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. *Nano Lett.* **7**, 1003–1009 (2007).
- Pradhan, B., Das, S., Li, J., Chowdhury, F. & Thomas, J. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 6, eaay5225 (2020).
- Island, J. O., Blanter, S. I., Buscema, M., van der Zant, H. S. & Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In₂Se₃ phototransistors. *Nano Lett.* 15, 7853–7858 (2015).
- Liu, Y. et al. Ga₂O₃ field-effect-transistor-based solar-blind photodetector with fast response and high photo-to-dark current ratio. *IEEE Electron Device Lett.* 39, 1696–1699 (2018).
- Zhang, X. et al. High-performance beta-Ga₂O₃ thickness dependent solar blind photodetector. Opt. Express 28, 4169–4177 (2020).

- Liang, H. et al. Flexible x-ray detectors based on amorphous Ga₂O₃ thin films. ACS Photonics 6. 351–359 (2018).
- 45. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. *Phys. Rev. Lett.* **89**, 106801 (2002).
- Zhao, B. et al. Solar-blind avalanche photodetector based on single ZnO-Ga₂O₃ core-shell microwire. Nano Lett. 15, 3988–3993 (2015).
- 47. Qiu, Q. & Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. *Adv. Mater.* **33**, 2008126 (2021).
- 48. Xu, Y. et al. Fast speed Ga_2O_3 solar-blind Schottky photodiodes with large sensitive area. *IEEE Electron Device Lett.* **41**, 997–1000 (2020).
- Wang, Y. et al. p-GaSe/n-Ga₂O₃ van der Waals heterostructure photodetector at solar-blind wavelengths with ultrahigh responsivity and detectivity. ACS Photonics 8, 2256–2264 (2021).
- Liao, F. et al. A dual-gate MoS₂ photodetector based on interface coupling effect. Small 16, 1904369 (2020).
- Kufer, D. & Konstantatos, G. Highly sensitive, encapsulated MoS₂ photodetector with gate controllable gain and speed. Nano Lett. 15, 7307–7313 (2015).
- Zhang, Y. Y. et al. High performance flexible visible-blind ultraviolet photodetectors with two-dimensional electron gas based on unconventional release strategy. ACS Nano 15, 8386–8396 (2021).
- Moudgil, A., Sharma, K. K. & Das, S. In₂O₃/TiO₂ heterostructure for highly responsive low-noise ultraviolet photodetector. *IEEE Electron Device Lett.* 67, 166–172 (2020).
- Liu, L. et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 9, 8142 (2017).
- Aldalbahi, A. et al. A new approach for fabrications of SiC based photodetectors.
 Sci. Rep. 6, 23457 (2016).
- Nasiri, N., Bo, R., Wang, F., Fu, L. & Tricoli, A. Ultraporous electron-depleted ZnO nanoparticle networks for highly sensitive portable visible-blind UV photodetectors. *Adv. Mater.* 27, 4336–4343 (2015).
- Xu, J. et al. Efficiency enhancement of TiO₂ self-powered UV photodetectors using a transparent Ag nanowire electrode. J. Mater. Chem. C 6, 3334–3340 (2018).
- Zhu, Y. et al. Novel ultraviolet photodetector with ultrahigh photosensitivity employing SILAR-deposited ZnS film on MgZnO. J. Alloy. Compd. 832, 155022 (2020).
- Wu, J. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015).
- Wang, F. et al. Liquid-alloy-assisted growth of 2D ternary Ga₂ln₄S₉ toward highperformance UV photodetection. Adv. Mater. 31, 1806306 (2019).
- Li, S., Zhang, Y., Yang, W., Liu, H. & Fang, X. 2D Perovskite Sr₂Nb₃O₁₀ for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020).
- Zhang, Y. et al. High-performance two-dimensional perovskite Ca₂Nb₃O₁₀ UV photodetectors. Nano Lett. 21, 382–388 (2021).
- Long, M., Wang, P., Fang, H. & Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019).

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 62027818, 61874034, 12175298, and 51861135105), and Natural Science Foundation of Shanghai (Nos. 18ZR1405000 and 20ZR1464100). The authors thank beamlines BL17B1, BL19U1, and BL01B1 staff at the SSRF and User Experiment Assist System of SSRF for their help. The authors thank Professor Chang-Tai Xia's group from Key Laboratory of Materials for High Power Laser Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, for providing the $\beta\text{-Ga}_2\text{O}_3$ bulk single crystal. And Chang-Tai Xia also acknowledges the National Natural Science Foundation of China (No. 51972319) and the Science and Technology Commission of Shanghai Municipality (No. 19520744400).

AUTHOR CONTRIBUTIONS

X.X.L. fabricated the device, measured the optoelectronic properties of the photodetector and analyzed the data. G.Z., Y.C.L., and M.L. assisted with device optimization and data analysis. H.Z., W.D.H., Z.G.J., and Y.G.Y. discussed the results. X.X.L. wrote the manuscript, and all authors reviewed it. H.L.L., Y.G.Y., and D.W.Z. conceived and supervised the project.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41528-022-00179-3.

Correspondence and requests for materials should be addressed to Ying-Guo Yang, David Wei Zhang or Hong-Liang Lu.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022