

ARTICLE

OPEN

Insights on the corrosion thermodynamics of chromium in molten LiF-NaF-KF eutectic salts

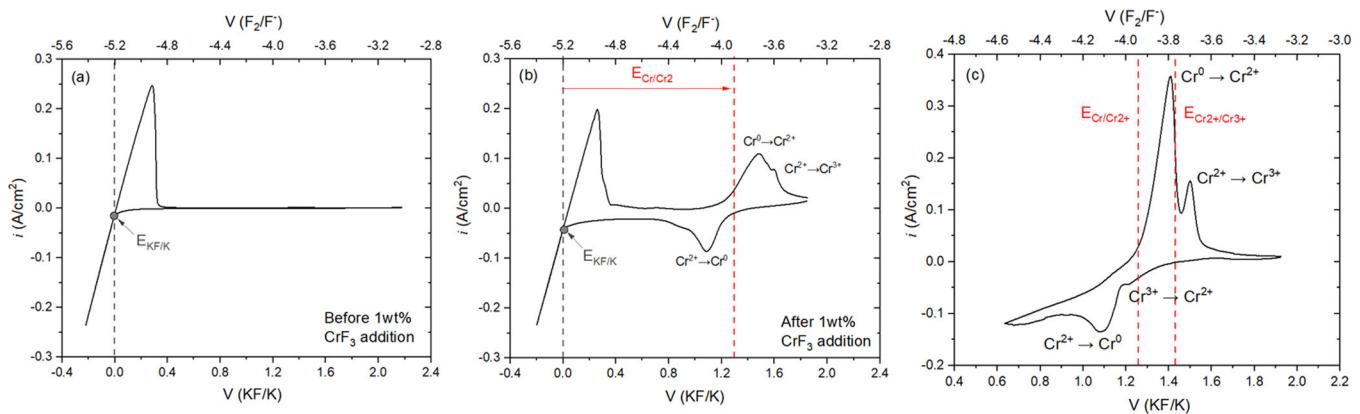
Ho Lun Chan¹✉, Elena Romanovskaya¹✉, Jie Qiu², Peter Hosemann² and John R. Scully¹

The thermodynamic stability of chromium in the Cr^0 , Cr^{2+} , and Cr^{3+} oxidation states considering various F^- ion coordination compounds was investigated in molten LiF–NaF–KF (FLiNaK) eutectic salt. Potential fluoride ion activity (F^- and CrF_3^-) diagrams were constructed to predict the most stable Cr oxidation states as a function of anion activity, solvation state of chromium ions and potential at 600 °C. The Gibbs free energies of these compounds were estimated by utilizing a combined cyclic voltammetry – Nernst theory analysis approach in FLiNaK salt. To verify the constructed diagrams, X-ray diffraction was utilized after exposure of Cr at various applied potentials to determine whether compounds detected in solidified FLiNaK salts agreed with thermodynamic calculations. This work aims to identify key thermodynamic factors that are significant to chromium corrosion for molten salt nuclear reactor applications. The F^- stability region spans the entire region where spontaneous corrosion of Cr occurs. Cr may be oxidized to Cr^{2+} and Cr^{3+} in the presence HF (due to moisture as an impurity) spontaneously except some conditions of $\text{p}^{1/2}\text{H}_2/\text{a}_{\text{HF}}$ etc. This situation is not changed qualitatively for various states of solvation between oxidized Cr solute in F^- solvent and this aspect is substantially similar for the two cases (pair 1: $\text{Cr}^0/\text{CrF}_3^-/\text{CrF}_6^{3-}$; pair 2: $\text{Cr}^0/\text{CrF}_4^{2-}/\text{CrF}_5^{2-}$) considered in this work.

npj Materials Degradation (2022)6:46; <https://doi.org/10.1038/s41529-022-00251-3>

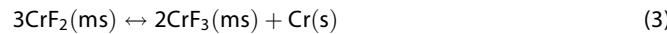
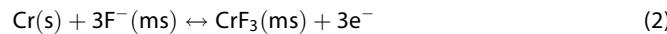
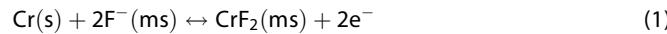
INTRODUCTION

Molten salt reactor (MSR) has been recognized as a promising system for generation IV nuclear reactor with improved safety and performance¹. Compared to the conventional light–water reactor (LWR), molten fluoride salts (e.g., LiF–NaF–KF, LiF–BeF₂ eutectic) operate in the temperature range between 600 °C and 900 °C and replace water as the medium to dissolve dissolved fissile materials¹ and transfer heat; in other words, molten fluoride salts can serve as both the solvents for the reactor fuel and coolant^{2,3}. The research and commercial development of MSR reactor center on solving technical problems that are deleterious to the safety and sustainability of this technology including reactor materials; and thus, the corrosion of metallic structural components should be addressed^{4,5}.


Fundamentally, the corrosion of metallic elements in MSRs has been posited to occur by electrochemical processes governed by mixed potential theory where the thermodynamic driving force for oxidative corrosion is determined by the difference in the Gibbs free energies of reaction between the reduction half-cell or cathodic reactions of the oxidants in the molten fluoride salts, coupled with anodic half-cell reactions associated with transition metals used in structural materials. Herein, we consider the Croxidation half-cell reactions producing oxidized chromium-fluoride compounds⁶. These are in turn based on the free energy of formation (ΔG_f^0) of the relevant reactants and products. However, these free energies may vary depending upon the specific Cr oxidation states and possible F^- coordination complexes that may form (e.g., CrF_2 , CrF_3 , FeF_2)^{7–9}. For instance, it has recently been argued that Cr^{2+} can exist as CrF_3^- or CrF_4^{2-} and Cr^{3+} may exist as CrF_5^{2-} , CrF_6^{3-} , and $\text{Cr}_5\text{F}_{17}^{2-}$ states in molten fluorides at 700 °C¹⁰.

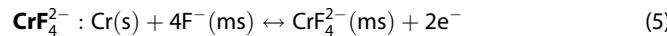
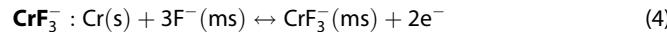
The origins of the oxidants can range from moisture impurities¹¹ (the cause of the dissolved hydrofluoric acid

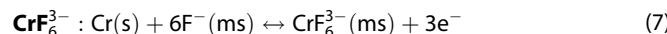
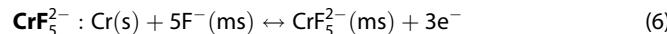
corrosion¹²), dissolved cations associated with metallic elements that originally were contained in air pre-formed oxides¹³, to the corrosion products themselves¹¹, such as reduction of Cr in CrF_3 or CrF_2 compounds originally generated from Cr metal corrosion^{11,14,15}. In technological applications, corrosion may result from differences in mixed potentials established by cold legs relative to hot legs^{16–19}. Chromium is a common alloying element for various candidate MSR reactor materials including alloys that exhibit good corrosion resistance in aqueous systems⁴. Since molten fluoride salt is a non-oxide forming environment with high solubility for oxygen and most oxides^{9,13,20}, the use of a protective Cr_2O_3 barrier layer is not suitable for this application²¹. This is further exacerbated by the fact that the ΔG_f^0 of chromium difluorides (CrF_2) is lower than those of iron and nickel fluorides (other major alloying elements)^{1,8}, and therefore Cr is predicted to exhibit the highest thermodynamic driving force for corrosion relative to candidate oxidizers discussed above. This is evidenced by phenomena such as selective Cr dissolution along grain boundaries^{7,22,23}.




Nevertheless, our understanding of the electrochemical corrosion process involved with Cr metal and its alloys in the molten salt is limited. The question remains open which oxidation state (Cr^{2+} or Cr^{3+}) is pertinent during Cr containing alloy corrosion. Thermodynamic predictions⁸ suggest that Cr has a high driving force to dissolve to the Cr^{2+} state due to the lower Gibbs free energy of the reaction producing CrF_2 (reaction 1). Direct dissolution to the Cr^{3+} state (reaction 2) has not been reported as a predominant reaction step⁶. Moreover, it is posited that the resultant Cr^{2+} state will then be converted to the Cr^{3+} state through the disproportionation reaction (reaction 3) in which Cr metal is redeposited on its

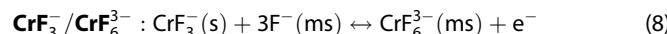
¹Center of Electrochemical Science and Engineering, University of Virginia, Charlottesville, VA 22903, USA. ²Department of Nuclear Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA. ✉email: hc4ry@virginia.edu; ggd2dr@virginia.edu

Fig. 1 Cyclic voltammogram of Pt wire in a FLiNaK salt at 600 °C. (a) shows the cyclic voltammogram before and after the addition of (b) 1.0 wt% and (c) 0.42 wt% of CrF₃ at 600 °C. a, b indicate the equilibrium potential of KF reduction (E_{KF/K}). The red dotted lines in (b) and (c) show the approximate experimentally determined equilibrium redox potential of Cr/Cr²⁺ redox couples (E_{Cr/Cr²⁺}).



surface²⁴.



where (ms) indicates a dissolved species in molten salt.

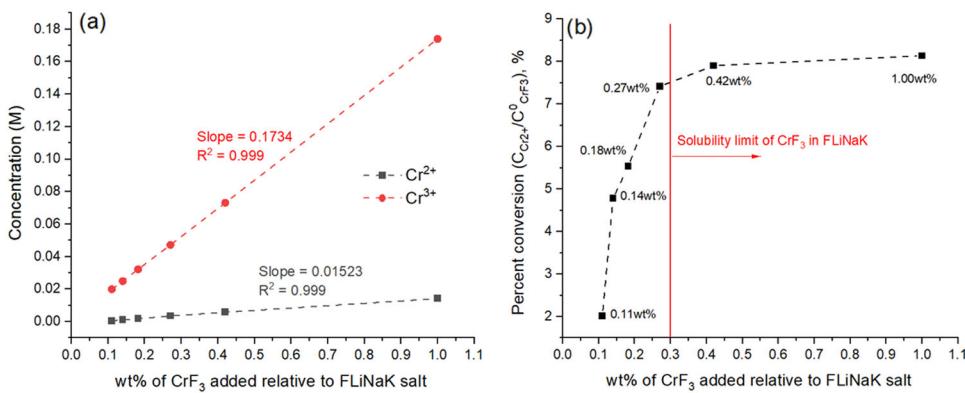
Recent progress in molten fluoride electrochemistry offers additional insights that help to interpret the corrosion mechanism of Cr. Wang et al. performed a detailed electrochemical study on a Pt wire electrode in a LiF-NaF-KF eutectic salt with the addition of CrF₂ at 600 °C²⁵. The X-ray diffractogram of the salt mixture quenched from 600 °C revealed the presence of crystalline CrF₃⁻ and CrF₆³⁻ phases, corresponding to the chromium oxidation state of Cr²⁺ and Cr³⁺ ions, respectively²⁵. A recent computational study by Winner et al. shows the solvated states of CrF₃⁻ and CrF₄²⁻ are possible for Cr²⁺. Moreover, CrF₅²⁻, CrF₆³⁻, and Cr₅F₁₇²⁻ are possible for Cr³⁺ in molten fluorides at 700 °C¹⁰. However, it is unclear which solvated structure will form naturally during the spontaneous corrosion process. Nevertheless, fluoride solvation should be considered in understanding the mechanism of Cr corrosion. Thus, reactions 1–3 can be modified to reactions 4–9 through the following. It is noted that only reaction steps that involve the transfer of 1 mole of e⁻ is considered to be the Cr²⁺/Cr³⁺ conversion reaction:


Oxidation from Cr⁰ to Cr²⁺:

Oxidation from Cr⁰ to Cr³⁺:

Oxidation from Cr²⁺ to Cr³⁺:

Based on the literature, the prior approach to understand the thermodynamics of molten fluoride salt corrosion centers on (1) systematically ranking the Gibbs free energies of possible half-cell reactions (ΔG_f°) and associated half-cell reaction potentials (E⁸), and (2) developing phase stability diagrams, which depict regions


of stable phases as a function of chemical compound activities (e.g., a_{CrF_2} , a_{CrF_3} , a_{LiO_2}), partial pressures of oxygen (P_{O_2}) and/or fluorine gas (P_{F_2}), and/or potential (E)^{7,11,13,26,27}. While the goal is to predict the most favorable reaction, both approaches have not considered the Cr-F solvation phenomenon reported in recent literature¹⁰, which is critical since it affects the potential range over which thermodynamic stability of Cr⁰, Cr²⁺ and Cr³⁺ is obtained. This, in turn, affects corrosion. In addition, these stability, or predominance, diagrams have limited flexibility since the oxidizing chemical potential is sometimes expressed as gaseous partial pressure (e.g., P_{O_2}). In molten salt corrosion, it is a thermodynamic variable rather than measurable or quantitative property, making it difficult to determine the exact point which Cr locates in a phase stability, or predominance, diagram. This provides a literature gap and an opportunity to develop potential-activity diagrams that can be utilized to predict under what conditions Cr is oxidized or immune to dissolution as a function of electrode potential and fluoride ion activities (two measurable, quantitative properties) analogous to a classical Pourbaix diagram²⁸.

The objective of this work is to understand and predict the conditions for oxidative Cr corrosion in molten fluorides. This work aims to investigate Cr corrosion in LiF-NaF-KF (FLiNaK) eutectic salt, applicable to a MSR reactor²⁹. Thermodynamic analysis was carried out based on application of the Nernst potential to predict the predominant phase of charged, solvated ions as a function of fluoride ions activity and potential (the theory is discussed in detail in “Methods”). Electrochemical measurement coupled with X-ray diffraction (XRD) were utilized to verify the predicted thermodynamic stability regions for Cr⁰, Cr²⁺, and Cr³⁺ stability in FLiNaK salts at 600 °C.

RESULTS AND DISCUSSION

Cyclic voltammograms of Pt in FLiNaK-CrF₃ salts

Figure 1 shows the cyclic voltammograms on a Pt wire in FLiNaK salts with the additions of 1.0 wt% and 0.42 wt% of CrF₃ at 600 °C. In Fig. 1a, no Cr was present and the potassium fluoride (KF) reduction reaction was observed at the cathodic terminal of the scan, and its equilibrium potential (E_{KF/K}) was marked in both Fig. 1a, b. It is noted that all potential reported in this work will be referenced from this measured E_{KF/K} potential value. Hence, the reference potential used in this study is a quasi-reference E_{KF/K} potential. The method to obtain this value is further illustrated in “Methods”. In Fig. 1c, two redox couples were observed pertaining to the Cr/Cr²⁺ and Cr²⁺/Cr³⁺ redox reactions. It is noted that no particular species (e.g., CrF₂, CrF₃, CrF₃⁻, CrF₆³⁻) were assigned to describe the Cr²⁺ or Cr³⁺ oxidation state. The electrochemical

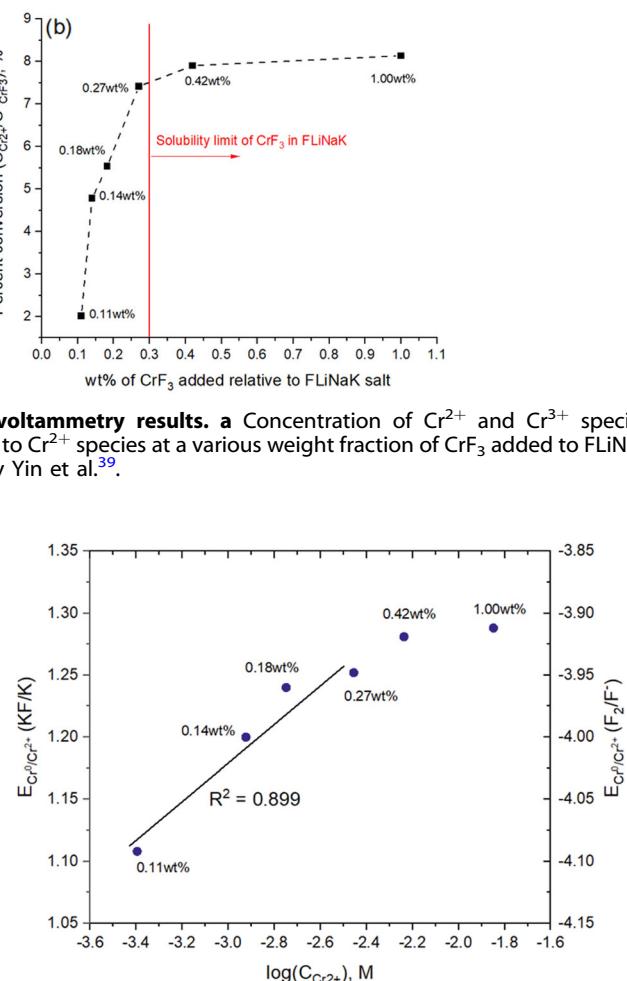
Fig. 2 The concentration of chromium ions calculated using cyclic voltammetry results. a Concentration of Cr^{2+} and Cr^{3+} species calculated based on Eqs. (18) and (19). **b** The percent conversion from CrF_3 to Cr^{2+} species at a various weight fraction of CrF_3 added to FLiNaK salts. The red line marks the solubility limit of CrF_3 in FLiNaK reported by Yin et al.³⁹.

behavior of the Pt wire in FLiNaK salts with either CrF_2 or CrF_3 additions have been extensively studied by multiple authors^{14,15,25,27,30}. It was reported that both redox reactions exhibit quasi-reversibility. The Nernst potential of Cr/Cr^{2+} ($E_{\text{Cr}/\text{Cr}^{2+}}$) and $\text{Cr}^{2+}/\text{Cr}^{3+}$ ($E_{\text{Cr}^{2+}/\text{Cr}^{3+}}$) redox pairs may be approximated at the midpoints between the oxidation and reduction peaks^{31,32}, which are marked the red dotted lines in both Fig. 1b, c.

However, in Fig. 1c, it can be seen that the $\text{Cr}^{3+}/\text{Cr}^{2+}$ reduction peak was very shallow. This peak cannot be clearly distinguished for a given weight percent of CrF_3 added^{33,34} (such as in Fig. 1b), making it difficult to precisely determine its peak potential and current. The smaller peak current and shallower peak shape may be due to the combined effects of the lower diffusivity of Cr^{3+} (an order of magnitude lower than that of Cr^{2+} at 600 °C in FLiNaK salts²⁵), and when the reduction reaction occurs not only on the Pt surface but elsewhere in the bulk molten salt²⁴.

Concentration of CrF_2 and CrF_3 in FLiNaK

Upon the addition of CrF_3 in FLiNaK salts, it was expected that deposited Cr particles and CrF_2 would be formed by the disproportionation reaction (reaction 3) as observed by Liu et al.²⁴ Determining the exact concentration of CrF_2 and CrF_3 in FLiNaK salts is important to the thermodynamic analysis used in the later part of this work. Given that the Cr/Cr^{2+} and $\text{Cr}^{2+}/\text{Cr}^{3+}$ reactions are quasi-reversible^{14,25,30,35–38}, the Randles–Ševčík relation


(Eq. (10)) was used to estimate the concentration of ionic species at a known scan rate and peak current densities:

$$i_p = 0.4463nFAC_b D^{\frac{1}{2}} \left(\frac{nFv}{RT} \right)^{1/2} \quad (10)$$

where i_p is the peak current density; n is the moles of electrons transferred; A is the area; C_b is bulk concentration; v is the scan rate; D is the diffusivity; R is the universal gas constant $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; T is temperature. To approximate the concentration of Cr^{2+} species in our FLiNaK– CrF_3 salt, the ratio of peak current densities associated with Cr/Cr^{2+} and $\text{Cr}^{2+}/\text{Cr}^{3+}$ reactions were determined, yielding:

$$\frac{C_{\text{Cr}2+}}{C_{\text{Cr}3+}} = \frac{i_{\text{Cr}/\text{Cr}2+}^{\text{peak}}}{i_{\text{Cr}2+/\text{Cr}3+}^{\text{peak}}} \left(\frac{D_{\text{Cr}3+}}{D_{\text{Cr}2+}} \right)^{1/2} \quad (11)$$

where $i_{\text{Cr}/\text{Cr}2+}^{\text{peak}}$ and $i_{\text{Cr}2+/\text{Cr}3+}^{\text{peak}}$ are the peak current densities in the CV associated with the Cr/Cr^{2+} and $\text{Cr}^{2+}/\text{Cr}^{3+}$ oxidation peaks, and $D_{\text{Cr}2+}$ and $D_{\text{Cr}3+}$ are the diffusivities of Cr^{2+} and Cr^{3+} related species, which were reported by Wang and Zhang²⁵ to be 2.55×10^{-5} and $7.74 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ in FLiNaK salts at 600 °C. Using the

Fig. 3 The Nerst potentials associate with $\text{Cr}^0/\text{Cr}^{2+}$ redox reaction at different calculated concentrations of Cr^{2+} ions in FLiNaK at 600 °C. The left y-axis shows the potential relative to the pseudo KF/K potential and the right y-axis shows that calculated potential referenced to the F_2/F^- potential.

disproportionation reaction (3) as the basis for stoichiometric conversion, the resulting ratio of Cr^{2+} to Cr^{3+} concentration when Cr^{3+} is added can also be expressed as:

$$\frac{C_{\text{Cr}2+}}{C_{\text{Cr}3+}} = \frac{3x}{C_{\text{CrF}_3}^0 - 2x} \quad (12)$$

where x represents the moles reacted. Using Eqs. (11) and (12), the concentration of Cr^{2+} and Cr^{3+} species as a function of initial CrF_3 concentration ($C_{\text{CrF}_3}^0$) can be obtained as shown in Fig. 2a. Both Cr^{2+} and Cr^{3+} species follow a linear relationship with $C_{\text{CrF}_3}^0$ as shown in Eqs. (13) and (14):

$$C_{\text{Cr}2+}^0 (\text{M}) = 0.0152 C_{\text{CrF}_3}^0 (\text{wt\%}) \quad (13)$$

$$C_{\text{Cr}3+}^0 (\text{M}) = 0.173 C_{\text{CrF}_3}^0 (\text{wt\%}) \quad (14)$$

The percent conversion of initial CrF_3 to Cr^{2+} species was computed and shown in Fig. 2b. The red line marks the solubility limit of CrF_3 in FLiNaK salts, which was calculated to be 0.3 wt% by Yin et al.³⁹. Prior to CrF_3 saturation, the percent conversion increased and plateaued when 0.42 wt% of CrF_3 was introduced, which is consistent with thermodynamic prediction³⁹. Upon saturation, it was determined that about 7.71% of CrF_3 was

converted to CrF_2 , close to the percent conversion value reported by Peng et al.³⁶.

Estimating the Gibbs free energy of formation of solvated chromium fluorides

Figure 3 shows the experimental Cr/Cr^{2+} Nernst potential ($E_{\text{Cr}/\text{Cr}^{2+}}$) indicated by symbols versus the calculated Cr^{2+} concentration (Eq. (13)) on a logarithmic scale. The solid line is a fit to the data that can be fitted against Eq. (15). Between 0.11 and 0.27 wt% CrF_3 addition, the $E_{\text{Cr}/\text{Cr}^{2+}}$ potential exhibits a positive linear relationship with the log-scale concentration, which is consistent with the general Nernst expression of the ($\text{Cr} \rightleftharpoons \text{Cr}^{2+} + 2\text{e}^-$) half-cell redox reaction:

$$E_{\text{Cr}/\text{Cr}^{2+}} = E_{\text{Cr}/\text{Cr}^{2+}}^0 + \frac{2.303RT}{2F} \log(a_{\text{Cr}^{2+}}) \quad (15)$$

$$E_{\text{Cr}/\text{Cr}^{2+}} = E_{\text{Cr}/\text{Cr}^{2+}}^0 + \frac{2.303RT}{2F} \log(\gamma_{\text{Cr}^{2+}}) + \frac{2.303RT}{2F} \log(C_{\text{Cr}^{2+}}) \quad (16)$$

At 0.42 wt% and 1.00 wt%, the $E_{\text{Cr}/\text{Cr}^{2+}}$ potentials measured were similar. This was likely related to the saturation of CrF_3 in FLiNaK when concentrations greater than the solubility limit of 0.3 wt% of CrF_3 was introduced³⁹, resulting in the formation of distinct K_2CrF_5 or K_3CrF_6 phases in FLiNaK³⁹. When the solubility limit is exceeded, the FLiNaK salt remains at a constant relative concentration of Cr^{2+} and Cr^{3+} in the FLiNaK salts, in which case the measured $E_{\text{Cr}/\text{Cr}^{2+}}$ potential values will not change.

The linear region in Fig. 3 can be fitted and extrapolated to determine the standard electrode potential ($E_{\text{Cr}/\text{Cr}^{2+}}^0$) using the y-intercept of Eq. (16). Using a similar electrochemical approach²⁷, Massot et al. reported that $\gamma_{\text{Cr}^{2+}}$ (activity coefficient of Cr^{2+}) to be close to unity in LiF-NaF salts at 700 °C²⁷. In this work, $E_{\text{Cr}/\text{Cr}^{2+}}^0$ was found to be $-3.41 \text{ V}_{\text{F}_2/\text{F}^-}$, which is similar to $-3.35 \text{ V}_{\text{F}_2/\text{F}^-}$ the pure compound reference state value of CrF_2 from the thermochemical database (HSC Chemistry software 6.1)²⁷. Using Eqs. (17) and (18) to relate $E_{\text{Cr}/\text{Cr}^{2+}}^0$ to ΔG_f^0 of Cr^{2+} , the ΔG_f^0 of Cr^{2+} was calculated to be $-657.7 \text{ kJ/mol F}^-$, which is similar to the literature value of ΔG_f^0 of CrF_2 reported in Table 1⁴⁰.

$$\Delta G = -nF\Delta E_{\text{Cr}/\text{Cr}^{2+}}^0 \quad (17)$$

$$\Delta G = \Delta G_f^0(\text{Cr}^{2+}) - \Delta G_f^0(\text{Cr}) \quad (18)$$

In molten fluorides, the Cr^{2+} oxidation state can also possibly exist in the forms of CrF_3^- or CrF_4^{2-} species¹⁰. To obtain their ΔG_f^0 values, the half-cell redox reactions of Cr/CrF_3^- and $\text{Cr}/\text{CrF}_4^{2-}$ were first separately considered. To determine the precise $E_{\text{Cr}/\text{Cr}^{2+}}^0$ standard electrode potentials pertaining to the Cr/CrF_3^- ($E_{\text{Cr}/\text{CrF}_3^-}^0$) and $\text{Cr}/\text{CrF}_4^{2-}$ ($E_{\text{Cr}/\text{CrF}_4^{2-}}^0$) solvated states, we can consider the Nernst expression for reactions 4 and 5:

$$E_{\text{Cr}/\text{CrF}_3^-} = E_{\text{Cr}/\text{CrF}_3^-}^0 + \frac{2.303RT}{2F} \log\left(\frac{a_{\text{CrF}_3^-}}{a_{\text{F}^-}^3}\right) \quad (19)$$

$$E_{\text{Cr}/\text{CrF}_4^{2-}} = E_{\text{Cr}/\text{CrF}_4^{2-}}^0 + \frac{2.303RT}{2F} \log\left(\frac{a_{\text{CrF}_4^{2-}}}{a_{\text{F}^-}^4}\right) \quad (20)$$

Table 1. Standard Gibbs free energy of formation (ΔG_f^0) of potassium fluoride and chromium-fluoride compounds at 600 °C.

Compound	KF	CrF_2	CrF_3	Ref.	Note
ΔG_f^0 (kJ/mole)	-479.54	-660.6	-973.67	Barin ⁴⁰	Uncorrected
	-473.63	-656.3	-969.43	-	Supercooled corrected

Assuming that (i) the activity coefficient of Cr^{2+} ions in FLiNaK salts is unity^{8,27}, (ii) the activity coefficient of F^- ions is unity in FLiNaK salt since the F^- ions do not form complexes or a separate phase with Li^+ , Na^+ and K^+ ions^{8,9,41}, (iii) and the concentration of F^- ions is 49.3 M based on stoichiometric calculation (i.e., $\log(a_{\text{F}^-}) = 1.693$). The intercept of Eq. (16) can be related to that in Eqs. (19) and (20), resulting in the relations:

$$E_{\text{Cr}/\text{CrF}_3^-}^0 = E_{\text{Cr}/\text{Cr}^{2+}}^0 - 0.435 \quad (21)$$

$$E_{\text{Cr}/\text{CrF}_4^{2-}}^0 = E_{\text{Cr}/\text{Cr}^{2+}}^0 - 0.580 \quad (22)$$

Using these relations, the formal potentials of each Cr^{2+} solvated species may be estimated. The integers presented in Eqs. (21) and (22) are a function of the stoichiometric moles of F^- ions consumed, which is different depending on the solvated structure. For clarity purposes, the calculation of these standard potentials assumes that only one solvated state contributes to the Cr/Cr^{2+} redox reaction. In this work, the $E_{\text{Cr}/\text{CrF}_3^-}^0$ and $E_{\text{Cr}/\text{CrF}_4^{2-}}^0$ are found to be -3.848 and $-3.994 \text{ V}_{\text{F}_2/\text{F}^-}$, which are equivalent to the ΔG_f^0 values of -742.6 and -770.9 kJ/mol , respectively.

The method presented relies on identifying both the oxidation and reduction potentials of a redox reaction. However, it was previously mentioned that the reduction peak of $\text{Cr}^{3+}/\text{Cr}^{2+}$ was shallow, and could yield erroneous Nernst potentials. Therefore, the experimental-theoretical method utilized above may not yield reliable result when estimating the ΔG_f^0 of CrF_5^{2-} and CrF_6^{3-} species in this case.

An alternative approach was used. With UV-Vis absorption spectroscopy²⁴ correlated with cyclic voltammetry measurements³⁶, it was reported that the Cr^{2+} and Cr^{3+} states can coexist in equilibrium, saturated condition, upon the addition of CrF_2 or CrF_3 salts in FLiNaK. In Fig. 2b, it was found that 7.71% of Cr^{3+} was converted to Cr^{2+} species, which is similar to the value reported by Peng et al.³⁶ and Zhang et al.²⁵. Upon CrF_3 saturation, it is fair to assume that the ratio of $\text{Cr}^{2+}/\text{Cr}^{3+}$ activities (i.e., $a_{\text{CrF}_3}/a_{\text{CrF}_6}$ or $a_{\text{CrF}_4}/a_{\text{CrF}_5}$) were 0.0814.

Consider the Nernst equations for reactions 8 and 9:

$$E = E^0 + \frac{2.303RT}{F} \log\left(\frac{a_{\text{CrF}_6^{3-}}}{a_{\text{CrF}_3^-} a_{\text{F}^-}^3}\right) \quad (23)$$

$$E = E^0 + \frac{2.303RT}{F} \log\left(\frac{a_{\text{CrF}_5^{2-}}}{a_{\text{CrF}_4^-} a_{\text{F}^-}^4}\right) \quad (24)$$

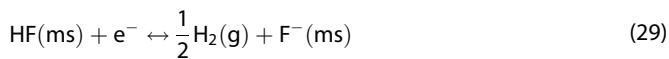
With a $\text{Cr}^{2+}/\text{Cr}^{3+}$ equilibrium activity ratio of 0.0814 and $\log(a_{\text{F}^-})$ of 1.693, Eqs. (23) and (24) can be simplified to the forms:

$$E_{\text{CrF}_6^{3-}/\text{CrF}_3^-}^0 = E_{\text{CrF}_6^{3-}/\text{CrF}_3^-}^0 + 0.690 \quad (25)$$

$$E_{\text{CrF}_5^{2-}/\text{CrF}_4^-}^0 = E_{\text{CrF}_5^{2-}/\text{CrF}_4^-}^0 + 0.104 \quad (26)$$

In this case, the standard or formal potentials of reactions 8 and 9 can be experimentally determined by measuring the redox potential of $\text{E}_{\text{Cr}^{2+}/\text{Cr}^{3+}}$ when FLiNaK salt is saturated with CrF_3 . In this work, $E_{\text{Cr}^{2+}/\text{Cr}^{3+}}$ was found to be $+1.43 \text{ V}_{\text{K}/\text{K}^+}$ or $-3.77 \text{ V}_{\text{F}_2/\text{F}^-}$. $E_{\text{CrF}_6^{3-}/\text{CrF}_3^-}^0$ and $E_{\text{CrF}_5^{2-}/\text{CrF}_4^-}^0$ were found to be -3.081 and $-3.667 \text{ V}_{\text{F}_2/\text{F}^-}$, respectively. Using Eq. (18) and the ΔG_f^0 values of CrF_3^- and CrF_4^{2-} previously determined, the ΔG_f^0 of CrF_5^{2-} and CrF_6^{3-} were calculated to be -1124.7 and -1039.9 kJ/mol , respectively. The summary of the ΔG_f^0 of solvated chromium fluorides is shown in Table 2. It is noted that Eqs. (21) and (22) were used to calculate the ΔG_f^0 in the case of solvated CrF_3^- or CrF_4^{2-} species using data presented by Massot et al.²⁷. The result of this work yields a similar value as compared in Table 2.

Table 2. Calculated standard Gibbs free energy of formation (ΔG_f^0) of solvated chromium-fluoride compounds based on cyclic voltammetry results at 600 °C.


Solvated state	CrF_3^- (Cr^{2+})	CrF_4^{2-} (Cr^{2+})	CrF_5^{2-} (Cr^{3+})	CrF_6^{3-} (Cr^{3+})	Ref.
ΔG_f^0 (kJ/mole)	−742.6	−770.9	−1124.7	−1039.9	This work
	−733.4 ^a	−761.7 ^a	−	−	Massot et al. ²⁷

^aThe Gibbs free energy of solvated chromium fluorides reported here were derived from the formal potential ($E^0_{\text{CrF}_2/\text{Cr}}$) reported by Massot, 2021 using Eqs. (21) and (22) in this work.

Stability of Cr^{2+} and Cr^{3+} in molten fluorides

The Nernst equations for key redox reactions involving CrF_3 , CrF_3^- , CrF_4^{2-} , CrF_5^{2-} , CrF_6^{3-} , and Cr species are listed in Table 3. The predominance region of each possible reaction product considered in Table 4 is plotted as a function of potential versus the F^- (Fig. 4) and the CrF_3^- (Fig. 5) activities on a logarithmic scale. The solid lines indicate equilibrium boundaries between the species considered. Given the complexity arising from the consideration of all solvated states, two pairs of solvated species (pair 1: $\text{Cr}^0/\text{CrF}_3^-/\text{CrF}_6^{3-}$; pair 2: $\text{Cr}^0/\text{CrF}_4^{2-}/\text{CrF}_5^{2-}$) were first independently considered.

Figure 4a, b illustrates the potential $\log(a_{\text{F}}^-)$ diagrams for pair 1: $\text{Cr}^0/\text{CrF}_3^-/\text{CrF}_6^{3-}$ (Fig. 4a) and for pair 2: $\text{Cr}^0/\text{CrF}_4^{2-}/\text{CrF}_5^{2-}$ (Fig. 4b) species in molten fluorides at 600 °C. The activities of all Cr ionic species were assumed be 10^{-6} M. All potentials displayed are with respect to the evolution of fluorine gas (F_2/F^-), whose potential value is calculated from the Nernst equation of reaction 27 (Table 3). The red vertical line at $\log(a_{\text{F}}^-) = 1.693$ indicates the fluoride activity corresponding to the FLiNaK salts. The blue and orange dashed line indicates the potential window of molten FLiNaK salts defined by reactions 27 and 28. The black dotted-dash line indicates the HF reduction reaction (reaction 29) at the various ratios of $\text{p}^{1/2} \text{H}_2/\text{a}_{\text{HF}}$:

In Fig. 4a, the CrF_3^- ions exist in a relatively narrow stability region, ~150 mV wide at the FLiNaK salt composition (red line). Above $-3.284 \text{ V}_{\text{F}_2/\text{F}^-}$, the CrF_6^{3-} species (+2 oxidation state) is predicted to be most thermodynamically stable. This behavior remains consistent in the range of $\log(a_{\text{F}}^-)$ studied. It is also noted that the equilibrium potential given by the Nernst potential for hydrogen evolution (reaction 29) exists at potentials above that $\text{CrF}_3^-/\text{CrF}_6^{3-}$ oxidation reaction (8), indicating the oxidizing power of HF towards spontaneous anodic dissolution of Cr leading to formation of solvated Cr^{2+} and Cr^{3+} . In Fig. 4b, the stability regions of Cr, CrF_4^{2-} , and CrF_5^{2-} species are shown. As the $\log(a_{\text{F}}^-)$ increases, the stability region of CrF_4^{2-} species widens, and then oxidized to CrF_5^{2-} through reaction 9. To verify which one of these situations actually exists when Cr is exposed to FLiNaK systems at 600 °C, high purity Cr was potentiostatically polarized to -5 , -4 , $-3.2 \text{ V}_{\text{F}_2/\text{F}^-}$ in FLiNaK salts at the same temperature (marked as the green, blue, red dots in Fig. 4). The composition of the solidified residual salts was analyzed with XRD. This will be discussed in the next section.

Figure 4 predicts that Cr would remain as the Cr^0 state (in the “immunity” region) when it is polarized at or below $-5 \text{ V}_{\text{F}_2/\text{F}^-}$, and undergo active corrosion to either CrF_3^- or CrF_5^{2-} state at $-4 \text{ V}_{\text{F}_2/\text{F}^-}$, and either CrF_5^{2-} or CrF_6^{3-} state at $-3.2 \text{ V}_{\text{F}_2/\text{F}^-}$. Potentiostatic hold experiments coupled with XRD were used to verify these predictions. Figure 5 shows the XRD of FLiNaK salts after Cr

was potentiostatically polarized to $-3.2 \text{ V}_{\text{F}_2/\text{F}^-}$ for 50 h, $-4 \text{ V}_{\text{F}_2/\text{F}^-}$ for 50 h, and $-5 \text{ V}_{\text{F}_2/\text{F}^-}$ for 1 h.

In the pure solidified FLiNaK (Fig. 5a), the XRD patterns reveal diffraction peaks of KF, LiF and NaF with KF peaks sharing the highest percent intensity. When Cr metal was held at $-5 \text{ V}_{\text{F}_2/\text{F}^-}$ for 1 h, no significant mass loss of Cr was observed. However, the XRD pattern (Fig. 5b) of the tested salts shows low-intensity diffraction peaks corresponding to the presence of NaCrF_3 (peak 4) and KCrF_3 (peak 9) species. The presence of Cr may be attributed to the dissolution of a native Cr_2O_3 oxide film at the beginning of the experiment. It is noted that large cathodic reduction current density ($>1 \text{ A/cm}^2$) was observed after 1 h of potentiostatic hold (not shown) at this potential. This may either be due to formation of H_2 bubbles from HF reduction or the reduction of potassium on the Cr surface.

Figure 5c, d shows the XRD patterns of FLiNaK salts where a Cr coupon was potentiostatically polarized at $-4 \text{ V}_{\text{KF/K}}$ or $-3.2 \text{ V}_{\text{F}_2/\text{F}^-}$ for 50 h, respectively. In Fig. 5c, the presence of NaCrF_3 (peak 4) and KCrF_3 (peak 9) species were identified, corroborating with thermodynamic prediction. In Fig. 5d, the NaCrF_3 (peak 4), KCrF_3 (peak 9), K_2NaCrF_6 (peak 7), K_3CrF_6 (peak 8), $\text{Li}_2\text{NaCrF}_6$ (peak 10) compounds were identified, confirming the existence of both CrF_3^- and CrF_6^{3-} states. The CrF_3^- likely formed during the solidification of FLiNaK and maintained a thermodynamic equilibrium with the CrF_6^{3-} state²⁴. The K_2NaCrF_6 , K_3CrF_6 , $\text{Li}_2\text{NaCrF}_6$ compounds suggest that the Cr^{3+} ion has a coordination number 6 at the temperature studied.

Results obtained are in a good correlation with literature data and previous work on compound prediction reported in Ab-initio simulations¹⁰. In all potentials studied, no CrF_5^{2-} related compounds were detected. This indicates that the Cr/Cr^{2+} and $\text{Cr}^{2+}/\text{Cr}^{3+}$ seen in Fig. 1 likely correspond to the Cr/CrF_3^- and $\text{CrF}_3^-/\text{CrF}_6^{3-}$ redox couples.

During the corrosion of Cr, the activities of CrF_3^- and CrF_6^{3-} species in the FLiNaK salts are expected to increase over an exposure period. Therefore, it is useful to consider the change in thermodynamic driving forces (Table 3) with respect to the activities of CrF_3^- and CrF_6^{3-} ions under a defined constant of $\log(a_{\text{F}}^-)$ where ($\log(49.3) = 1.693$ for FLiNaK).

Figure 6 shows the potential-activity diagrams considering the predominant phases of Cr, CrF_3^- , and CrF_6^{3-} species as a function of $\log(a_{\text{CrF}_3^-})$ and potential. The equilibrium potential between Cr and CrF_3^- ions was computed from reaction 4 and exhibits a linear relationship with $\log(a_{\text{CrF}_3^-})$. The blue circular symbols shown in Fig. 6 are the experimental half-cell Nernst potential reported in Fig. 3, which are closely follow but slightly different from the thermodynamic predictions. Nevertheless, the boundary of these stability regions is sensitive to the ΔG_f^0 of solvated chromium fluorides (Table 2) utilized to construct these potential-activity diagrams. The use of cyclic voltammetry provides a relatively straightforward method to estimate these ΔG_f^0 values, but the method is sensitive to errors. For example, the uncertainties could be related to the use of quasi $E_{\text{KF/K}}$ potential, temperature distributions or natural convection effects during molten salt electrochemistry measurement or because the Nernst potential

Table 3. Equilibrium redox reactions and their thermodynamic expression utilized for the construction of potential concentration diagrams in molten fluoride salts.

Description	Reaction #	Chemical equation	Nernst equation/Gibbs free energy expression
Potential window for molten fluorides	27	$KF + e^- \leftrightarrow K + F^-$	$E = E^0 - \frac{2.303RT}{F} \log\left(\frac{a_{F^-}}{a_{KF}}\right)$
	28	$F_2 + 2e^- \leftrightarrow 2F^-$	$E = E^0 - \frac{2.303RT}{2F} \log\left(\frac{a_{F^-}^2}{p_{F_2}}\right)$
Direct dissolution from Cr^0 to Cr^{2+}	4	$Cr + 3F^- \leftrightarrow CrF_3^- + 2e^-$	$E = E^0 + \frac{2.303RT}{2F} \log\left(\frac{a_{CrF_3^-}}{a_{F^-}^3}\right)$
	5	$Cr + 4F^- \leftrightarrow CrF_4^{2-} + 2e^-$	$E = E^0 + \frac{2.303RT}{2F} \log\left(\frac{a_{CrF_4^{2-}}}{a_{F^-}^4}\right)$
Direct dissolution from Cr^0 to Cr^{3+}	6	$Cr + 6F^- \leftrightarrow CrF_6^{3-} + 3e^-$	$E = E^0 + \frac{2.303RT}{3F} \log\left(\frac{a_{CrF_6^{3-}}}{a_{F^-}^6}\right)$
	7	$Cr + 5F^- \leftrightarrow CrF_5^{2-} + 3e^-$	$E = E^0 + \frac{2.303RT}{3F} \log\left(\frac{a_{CrF_5^{2-}}}{a_{F^-}^5}\right)$
Oxidation of Cr^{2+} fluorides	8	$CrF_3^- + 3F^- \leftrightarrow CrF_6^{3-} + e^-$	$E = E^0 + \frac{2.303RT}{F} \log\left(\frac{a_{CrF_6^{3-}}}{a_{CrF_3^-} a_{F^-}^3}\right)$
	9	$CrF_4^{2-} + F^- \leftrightarrow CrF_5^{2-} + e^-$	$E = E^0 + \frac{2.303RT}{F} \log\left(\frac{a_{CrF_5^{2-}}}{a_{CrF_4^{2-}} a_{F^-}}\right)$
Solvation of chromium fluorides	–	$CrF_3 + 3F^- \leftrightarrow CrF_6^{3-}$	$\Delta G = \Delta G^0 + 2.303RT \log\left(\frac{a_{CrF_6^{3-}}}{a_{CrF_3}^3}\right)$
	–	$CrF_3 + 2F^- \leftrightarrow CrF_5^{2-}$	$\Delta G = \Delta G^0 + 2.303RT \log\left(\frac{a_{CrF_5^{2-}}}{a_{CrF_3}^2 a_{F^-}}\right)$
Reduction of hydrofluoric acid	29	$HF + e^- \leftrightarrow \frac{1}{2}H_2 + F^-$	$E = E^0 - \frac{2.303RT}{F} \log\left(\frac{p_{H_2}^{1/2} a_{F^-}}{a_{HF}}\right)$

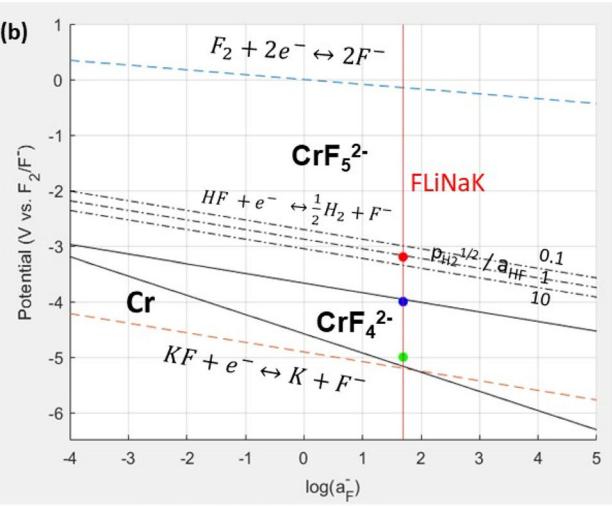
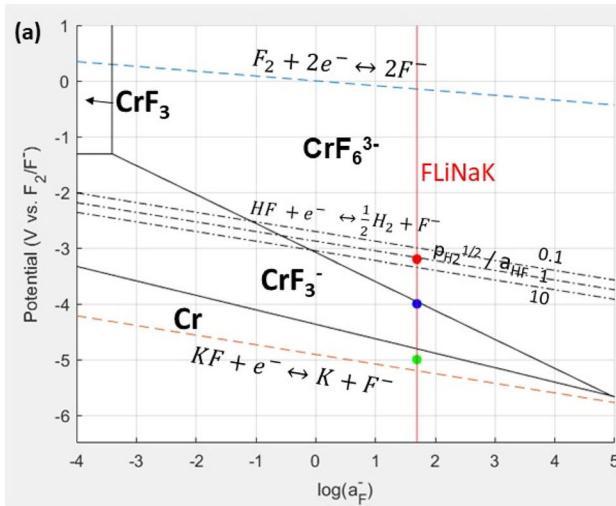
Table 4. Standard Gibbs free energy of formation (ΔG_f^0) of potassium fluoride and chromium-fluoride compounds at $T = 0$ Kelvin obtained from various thermodynamic databases.

Compound	KF	CrF_2	CrF_3	Ref.
ΔG_f^0 (kJ/mole)	–569.8	–777.7	–1172.7	Barin ⁴⁰
	–570.1	–777.1	–	Yoo ¹
	–562.1	–721.0	–1120.7	OQMD ^{46,47}
	–566.5	–817.4	–1174.0	Jain et al. ³⁴

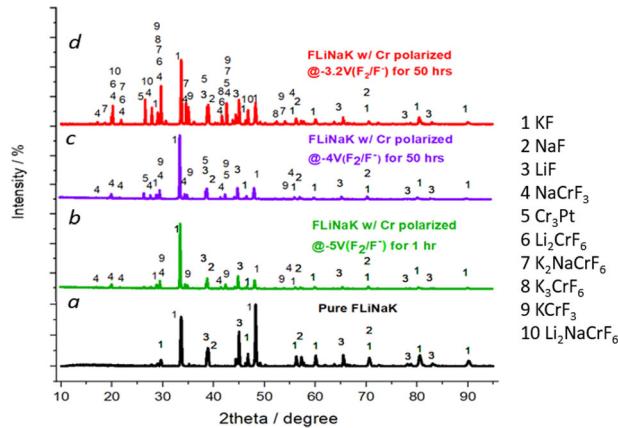
theory cannot completely describe the potential for the quasi-reversible reactions³¹.

Before reaching the CrF_3 solubility limit in FLiNaK salts, the CrF_3^-/CrF_6^{3-} equilibrium line shows a linearly decreasing potential with F^- ion activity consistent with the prediction of the Nernst equation. When the solubility limit is reached, the ratio of CrF_3^- to CrF_6^{3-} activities is assumed to be 0.0814 calculated assuming the 7.71% conversion shown in Fig. 2b. Therefore, the Nernst potential is a straight horizontal line since an equilibrium ratio was enforced. It is noted that the equilibrium potential of CrF_3^-/CrF_6^{3-} reactions in Fig. 6 is lower than that in Fig. 4a. This is because the CrF_3^-/CrF_6^{3-} activity ratio (Fig. 2b) was considered when constructing the potential $\log(a_{CrF_3^-})$ diagram; whereas all Cr ion activities were assumed to be 10^{-6} M in Fig. 4a, b.

One observation is that as the $p_{H_2}^{1/2}/a_{HF}$ ratio increases, the equilibrium potential of HF/H_2 reaction decreases and approaches to that of the CrF_3^-/CrF_6^{3-} reduction. As the CrF_3^- activity increases, the stability region of CrF_3^- – e^- – CrF_3 phase space becomes smaller. Practically, based on the estimated ΔG_f^0 , the Cr/CrF_3^- boundary will not intersect with that of the CrF_3^-/CrF_6^{3-} . Therefore, thermodynamic prediction indicates that the corrosion of Cr may always take place first through the direct dissolution to Cr^{2+} state in the form of CrF_3^- , and CrF_6^{3-} will then be formed electrochemically in either within the FLiNaK salts or Cr surface.



Ramifications towards spontaneous corrosion of Cr in FLiNaK

The diagrams (Figs. 4 and 6) indicate that the KF is oxidized at all potentials where Cr is oxidized to Cr^{2+} and Cr^{3+} . The F^- stability region spans the entire region where spontaneous corrosion of Cr occurs. Cr may be oxidized to Cr^{2+} and Cr^{3+} in the presence HF (due to moisture impurity) spontaneously except some extreme combinations of $p_{H_2}^{1/2}/a_{HF}$ etc. This situation is not changed qualitatively for different solvation of oxidized Cr with F^- and this aspect is substantially similar for the two cases (pair 1: $Cr^0/CrF_3^-/CrF_6^{3-}$; pair 2: $Cr^0/CrF_4^{2-}/CrF_5^{2-}$) considered in this work. Cr may be oxidized by HF and may be oxidized by other sufficiently noble metal impurities (not shown).


It is important to note that Figs. 4 and 6 are conventional thermodynamic stability fields that assume full reversibility of electrochemical reactions, uniform distribution of concentration, and chemical equilibrium between species. Readers must take caution when applying these principles to analyze actual complex corrosion system involving both kinetic and thermodynamic factors. Work is still ongoing to further verify and optimize the accuracy of potential-activity diagrams in molten fluoride salts, for example to theoretically calculate the Gibbs free energy of formation of solvated compounds in molten fluorides. The thermodynamic prediction presented here are consistent with literature the experimental findings of Liu et al.²⁴ and an ample number of electrochemical studies in FLiNaK salts^{14,25,30,35–38}. The potential-activity diagram developed in this work is also useful to help understanding the corrosion thermodynamics and kinetics of metallic alloys in molten fluoride salts, which will be illustrated in our future work.

Main results

- The Gibbs free energy of formation of CrF_3^- , CrF_4^{2-} , CrF_5^{2-} , and CrF_6^{3-} solvated chromium compounds were extracted from the analysis of cyclic voltammetry data on Pt wire in FLiNaK– CrF_3 salts at 600 °C. Based on classical thermodynamics including the Nernst equation, a E - $\log(a_F)$ analogous to a Pourbaix diagram was constructed for two systems: (i) $Cr/CrF_3^-/CrF_6^{3-}$ (ii) $Cr/CrF_4^{2-}/CrF_5^{2-}$ pertinent to Cr exposure in molten fluoride salts.

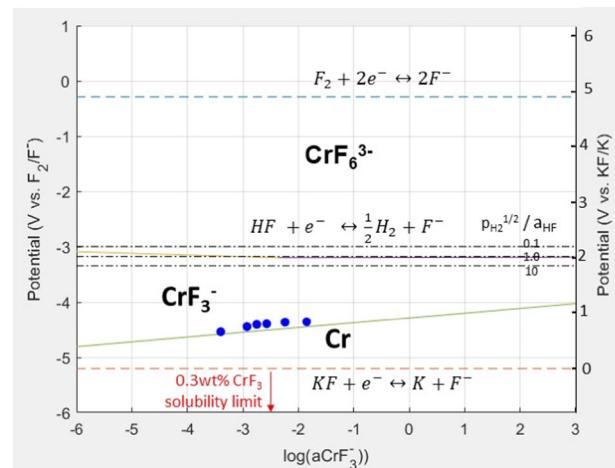
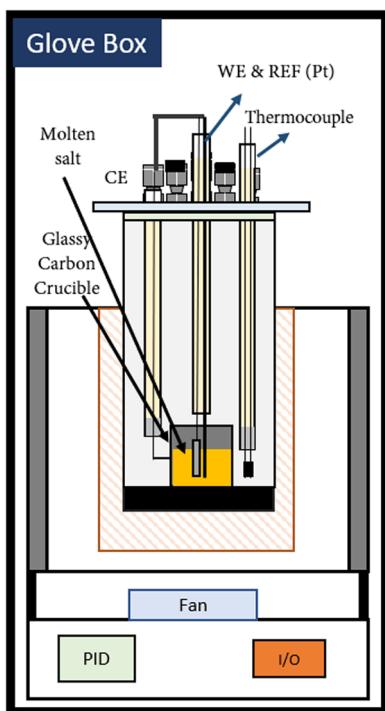

Fig. 4 Potential $\log(aF^-)$ equilibrium diagrams for Cr. a Considers the CrF_3^- and CrF_6^{3-} species and **(b)** the CrF_4^{2-} and CrF_5^{2-} solvated states. The red, blue, and green dots at $\log(aF^-) = 1.693$ mark the potentials for XRD results presented in Fig. 6. All Cr-F species were assumed to have an activity of 10^{-6} M.

Fig. 5 X-ray diffractogram of the solidified FLiNaK salt at room temperature. (a) displays the diffractogram baseline condition without Cr, and with Cr potentiostatically polarized to (b) $-5 \text{ V}_{\text{F}_2/\text{F}^-}$ for 1 h, (c) $-4 \text{ V}_{\text{F}_2/\text{F}^-}$ for 50 h, (d) $-3.2 \text{ V}_{\text{F}_2/\text{F}^-}$ for 50 h.

- To validate the prediction, a Cr coupon was potentiostatically held at selected potentials corresponding to the different thermodynamic stability regions, and the solidified salts were analyzed using X-ray diffraction. Experimental XRD results confirmed that the $\text{Cr}/\text{CrF}_3^-/\text{CrF}_6^{3-}$ described Cr corrosion thermodynamics in FLiNaK salts at 600°C , while CrF_4^{2-} or CrF_5^{2-} compounds were not detected by XRD.
- A E- $\log(a\text{CrF}_3^-)$ diagram based on the $\text{Cr}/\text{CrF}_3^-/\text{CrF}_6^{3-}$ system was also developed to predict the most thermodynamically favorable oxidation state for Cr corrosion. The prediction shows that the direct dissolution from Cr to CrF_3^- via a $+2$ charge is favored over all reasonable values of a_{HF} . F^- complexation assuming $\text{Cr}/\text{CrF}_3^-/\text{CrF}_6^{3-}$ compared to CrF_4^{2-} or CrF_5^{2-} produces E- a_{HF} diagrams which are similar but have distinct differences.
- The E- $\log(a\text{F}^-)$ diagram indicates that the K is oxidized to K^+ existing as KF at all potentials where Cr is oxidized to Cr^{2+} and Cr^{3+} . The F^- stability region spans the entire region where spontaneous corrosion of Cr occurs. Cr may be oxidized to Cr^{2+} and Cr^{3+} in the presence HF (due to moisture impurity) spontaneously except for some conditions of $p_{\text{H}_2}^{1/2}/a_{\text{HF}}$ etc.

H.L. Chan et al.


Fig. 6 Potential- $\log(a\text{CrF}_3^-)$ equilibrium diagram for Cr in FLiNaK salts ($\log(aF^-) = 1.693$) at 600°C . The blue dot indicates the experimental equilibrium redox potential of the Cr/Cr^{2+} half-cell reactions reported in Fig. 4.

This situation is not changed qualitatively for various states of solvation between oxidized Cr solute in F^- solvent and this aspect is similar for the two cases (pair 1: $\text{Cr}^0/\text{CrF}_3^-/\text{CrF}_6^{3-}$; pair 2: $\text{Cr}^0/\text{CrF}_4^{2-}/\text{CrF}_5^{2-}$) considered in this work.

METHODS

Setup, sample, and salt preparation

High purity Cr rectangular sheet (99.995%, Alfa Aesar) with the dimension $20 \times 1.5 \times 3$ mm were used. Coupons were metallographically prepared to 1200 grit surface finish using silicon carbide polishing papers. The FLiNaK salt was prepared by weighing LiF (99.85%, Fisher Scientific), NaF (99.99%, Fisher Scientific), KF (99.5%, Fisher Scientific) into the stoichiometric ratio of 46.5, 11.5, and 42 mol%, respectively. Prior to mixing, these salts were dried in a vacuum furnace for 48 h at 100°C , and then transferred to a N_2 -filled glove box with controlled O_2 and H_2O levels below <0.1 ppm. Nevertheless, during this transfer process, it is expected that the salts could absorb water from moist air during transfer (relative humidity of the laboratory was about 30%). In all, 30 g of FLiNaK salt were used for each experiment. The mass

Fig. 7 Schematics of the experimental setup used for molten salt electrochemical characterization.

ratio of salt to Cr coupon is approximately equivalent to 0.03 g of FLiNaK/g of Cr.

The setup to perform electrochemical measurement is shown in Fig. 7. All measurements were carried out in a N_2 -filled glove box in a modified muffle furnace at 600°C. A glassy carbon crucible (99.999%, Fisher Scientific) was used as both the salt container and counter electrode, and a Pt wire was used as a Pt/PtO/ O^{2-} quasi-reference electrode based on a controlled oxygen level. The working electrode was either a Cr coupon spot welded to a Ni200 wire or a platinum wire (99.997%, Alfa Aesar™). All the electrodes were fed through an alumina tube and placed in a quartz tube to ensure sturdy connections. A Gamry interface 1000 potentiostat was used to perform electrochemical tests. To minimize impurities pertaining to residual water moisture or oxygen, prior to the insertion of test electrodes, the salt mixture was heated to 600°C for 3 h under the flow of ultra-high purity N_2 gas (99.999%).

Reference potential determination


For a more meaningful and reliable comparison between thermodynamic prediction and electrochemistry results, the electrode potential was represented relative to both the potassium fluoride reduction (reaction 27, KF/K) and fluorine gas evolution (reaction 28, F_2/F^-).

The redox potential for reaction 27 can be experimentally measured using a cyclic voltammetry technique performed on a Pt wire in molten fluoride salts²⁷. This method has also been utilized by Massot et al.²⁷, Shay et al.⁴², and Wang et al.³³. The technique involves polarizing the Pt wire to a cathodic (negative) direction until a sharp increase in reduction current corresponding to KF reduction is detected, and the scan is reversed to oxidize the K deposited on the Pt wire surface. An example cyclic voltammogram is shown in Fig. 1a. The equilibrium potential of reaction 27 was estimated at the position between the oxidation peak (KF/K). Once the KF/K potential was known, the F_2/F^- potential was calculated using the Nernst equation (in FLiNaK salts where $\log(a_{F^-}) = 1.693$, $E_{KF/K} = -5.206 V_{F_2/F^-}$).

Thermodynamic analysis

In this project, a systematic thermodynamic analysis was carried out to predict the most favorable reaction for Cr dissolution as a function of potential and fluoride ion activities. Firstly, consider a general, reversible,

half-cell electrochemical reaction in molten fluorides as shown:

where x describes the number of fluoride ions reacted per atom of Cr. The Nernst Equation for reaction 30 can be represented by the Nernst equations as⁴³:

$$E_{M/MF_x^{n-x}} = E_{M/MF_x^{n-x}}^0 + \frac{2.303RT}{nF} \log\left(\frac{a_{MF_x^{n-x}}}{a_F^n \cdot a_M}\right) \quad (31)$$

$$E_{M/MF_x^{n-x}} = E_{M/MF_x^{n-x}}^0 + \frac{0.173}{n} \log\left(\frac{a_{MF_x^{n-x}}}{a_F^n \cdot a_M}\right) \quad (32)$$

where $E_{M/MF_x^{n-x}}$ is the Nernst potential (or equilibrium redox potential), R is the universal gas constant, T is the temperature in K, n is the number of electrons transferred to complete the reaction shown one time, F is the Faraday's constant of 96,500 coulombs/mol of e^- , a_i ($=_i C_i$) is the ion activity, and $E_{M/MF_x^{n-x}}^0$ is the standard electrode potential of the half-cell reaction. The $E_{M/MF_x^{n-x}}^0$ can be related to ΔG_f^0 through Eqs. (17) and (18) (see introduction).

Table 1 shows the ΔG_f^0 of potassium and chromium-fluoride compounds obtained from Barin et al.⁴⁰. Since the melting point of KF, CrF_2 , CrF_3 is higher than 600°C, the ΔG_f^0 at supercooled state was used instead. This is calculated by the summation of their solid state ΔG_f^0 and the fusion energy (ΔG_f^0)^{6,44} obtained by the following equations:

$$\Delta G_f^0 = (H_{l,F}^0 - H_{s,F}^0) - T(S_{l,F}^0 - S_{s,F}^0) \quad (33)$$

where the subscript "l" is liquid phase and "s" is solid phase. The values of $H_{l,F}^0$, $H_{s,F}^0$, $S_{l,F}^0$, $S_{s,F}^0$ values were obtained from the FactSage 8.0 SGTE pure substances database (v13.1)⁴⁵. It is noted that the ΔG_f^0 of fluoride ion (F^-) is assumed to be 0 and the partial pressure of fluorine gas (F_2) is assumed to be 1 atm so reaction 28 can be a reference for other electrochemical reactions. To ensure the reliability of the ΔG_f^0 values used in this work, the ΔG_f^0 values from various thermodynamic databases are listed in Table 4. It is noted that these values represent the condition at $T = 0$ K. The ΔG_f^0 values from Barin et al.⁴⁰ are consistent with Yoo¹ and with two open source thermodynamic databases: Open Quantum Materials Database (OQMD)^{46,47} and Materials Project (MP)³⁴. The method to convert the formation energy reported in OQMD and MP, from eV/atom to the standard unit of kJ/mol, can be found in the work of Lany et al.⁴⁸.

To predict the thermodynamic stability of Cr, the equilibrium redox reactions that are possible involving the Cr^0 , CrF_3 , CrF_3^- , CrF_4^{2-} , CrF_5^{2-} , CrF_6^{3-} species must be considered. Table 3 lists the possible redox reactions and their Nernst equations. The potential window offered by molten fluorides can be defined by the reduction of potassium fluoride (reaction 27) and fluorine gas evolution (reaction 28). The Nernst potentials of possible redox reactions are computed as a function of electrochemical potential and fluoride ion activity. These results are presented in the form of a potential-activity diagram (vs. $\log(a_{F^-})$ and $\log(a_{CrF_3^-})$) applicable for molten fluoride salt, which is analogous to Pourbaix diagram developed for aqueous systems²⁸.

Estimating the Gibbs free energy of solvated chromium-fluoride ions

To perform a complete thermodynamic analysis, the Gibbs free energy of formation (ΔG_f^0) of various chromium-fluoride compounds (e.g. CrF_3^- , CrF_4^{2-} , CrF_5^{2-} , CrF_6^{3-}) needs to be known. However not all of these values are reported in the literature. In this work, an electrochemical method was used to determine the ΔG_f^0 values of these compound²⁷. The redox electrode potentials ($E_{M/MF_x^{n-x}}$) of Cr redox reactions (4–9) was determined from cyclic voltammetry performed on a platinum wire inserted in FLiNaK salts with the addition between 0.11 and 1 wt% of CrF_3 (97%, Fisher Scientific) at 600°C. The standard electrode potential ($E_{M/MF_x^{n-x}}^0$) was obtained by the extrapolation of $E_{M/MF_x^{n-x}}$ to 1 M MF_x^{n-x} in the FLiNaK salts. The ΔG_f^0 of possible chromium-fluoride compounds were calculated using Eq. 17²⁷.

Potentiostatic test and X-ray diffraction

To access the validity of thermodynamic predictions, a pure Cr coupon was potentiostatically polarized to $-3.2 V_{F_2/F^-}$ for 50 h, $-4 V_{F_2/F^-}$ for 50 h, $-5 V_{F_2/F^-}$ for 1 h in FLiNaK salts at 600°C using a Pt quasi-reference electrode and a glassy carbon crucible as a counter electrode. The details for the electrochemical setup is presented in the section "Setup, sample and salt preparation". The phase composition of solidified salts was analyzed by

XRD using the Malvern-Panalytical Empyrean diffractometer [wavelength Cu Ka (1.5405 Å)]. The PDF4+ database was used as the reference data. The software HighScore Plus was used for Rietveld refinements. The peak profile was refined by pseudo-Voigt function.

DATA AVAILABILITY

The authors declare that the data supporting the findings of this study are available within the paper. The supplementary data will be available upon reasonable request.

Received: 31 October 2021; Accepted: 28 April 2022;

Published online: 09 June 2022

REFERENCES

- Yoo, J. H. *Thermodynamic Data-Base for Metal Fluorides*, Technical Report Number: TR-1824, (Korea Atomic Energy Research Institute) KAERI, (2001).
- Dolan, T. J. *Molten Salt Reactors and Thorium Energy* (Woodhead Publishing, 2017).
- Serp, J. et al. The molten salt reactor (MSR) in generation IV: overview and perspectives. *Prog. Nucl. Energy* **77**, 308–319 (2014).
- Wright, R. N. & Sham, T. L. Status of Metallic Structural Materials for Molten Salt Reactors. Technical Report INL/EXT-18-45171; Argonne National Laboratory & Idaho National Laboratory (2018).
- Busby, J. et al. *Technical Gap Assessment for Materials and Component Integrity Issues for Molten Salt Reactors*. Technical Report ORNL/SPR-2019/1089; Oak Ridge National Laboratory (2019).
- Guo, S. et al. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. *Prog. Mater. Sci.* **97**, 448–487 (2018).
- Sridharan, K. & Allen, T. *Molten Salts Chemistry from Lab to Application - Chapter 12: Corrosion in Molten Salts* (Elsevier, 2013).
- Zhang, J. et al. Redox potential control in molten salt systems for corrosion mitigation. *Corros. Sci.* **144**, 44–53 (2018).
- Baes, C. F. The chemistry and thermodynamics of molten salt reactor fuels. *J. Nucl. Mater.* **51**, 149–162 (1974).
- Winner, N. et al. Ab-initio simulation studies of chromium solvation in molten fluoride salts. *J. Mol. Liq.* **335**, 116351 (2021).
- Wang, Y. et al. Effects of the oxidants H_2O and CrF_3 on the corrosion of pure metals in molten (Li,Na,K)F. *Corros. Sci.* **103**, 268–282 (2016).
- Pizzini, S. & Morlotti, R. Oxygen and hydrogen electrodes in molten fluorides. *Electrochim. Acta* **10**, 1033–1041 (1965).
- Ai, H. et al. Effects of O_2 —additive on corrosion behavior of Fe–Cr–Ni alloy in molten fluoride salts. *Corros. Sci.* **150**, 175–182 (2019).
- Wu, W. et al. Electrochemical behaviors of Cr(III) in molten LiF-NaF-KF (FLINAK). *J. Electrochem. Soc.* **13**, 225–234 (2018).
- Yoko, T. & Bailey, R. A. Electrochemical studies of chromium in molten LiF - NaF - KF (FLINAK). *J. Electrochem. Soc.* **131**, 2590–2595 (1984).
- Jordan, W. H. et al. *Aircraft Nuclear Propulsion Project Quarterly Progress Report*. Technical Report Number: ORNL-2221; Oak Ridge National Laboratory (1957).
- Koger, J. W. *Effect of FeF_3 Addition on Mass Transfer in A Hastelloy N: LiF-BeF₂-UF₄ Thermal Convection Loop System*. Technical Report Number: ORNL-TM-4188; Oak Ridge National Laboratory (1972).
- DeVan, J. H. & Evans, III, R. B. *Corrosion Behavior of Reactor Materials in Fluoride Salt Mixtures*. Technical Report ORNL-TM-328; Oak Ridge National Laboratory (1962).
- Jordan, W. H. et al. *Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending Sept. 10, 1956*. Technical Report Number: ORNL-2157; Oak Ridge National Laboratory (1956).
- Song, Y. et al. Solubility of Cr_2O_3 in molten fluorides with different ZrF_4 contents and fluoroacidities. *J. Electrochem. Soc.* **167**, 023501 (2020).
- Qiu, J. et al. Electrochemical study of the dissolution of oxide films grown on type 316L stainless steel in molten fluoride salt. *Corros. Sci.* **186**, 109457 (2021).
- Wang, Y., Liu, H., Yu, G., Hou, J. & Zeng, C. Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li,Na,K)F at 700 °C. *J. Fluor. Chem.* **178**, 14–22 (2015).
- Zhou, W. et al. Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt. *Nat. Commun.* **11**, 3430 (2020).
- Liu, Y. et al. Corrosion of Cr in molten salts with different fluoroacidity in the presence of CrF_3 . *Corros. Sci.* **169**, 108636 (2020).
- Wang, Y. & Zhang, J. Electrochemical properties of CrF_2 in FLINAK molten salt and the new analytical methods for their determination. *J. Electrochem. Soc.* **167**, 086503 (2020).
- Cramer, S. D. & Covino Jr., B. S. *ASM Handbook Volume 13A: Corrosion: Fundamentals, Testing, and Protection* (ASM International, 2003).
- Massot, L. et al. Corrosion products electrochemical behaviour into molten LiF-NaF: investigation of Cr(II) system. *J. Electrochem. Soc.* **168**, 026510 (2021).
- Pourbaix, M. *Atlas of Electrochemical Equilibria in Aqueous Solutions* (National Association of Corrosion Engineers, 1974).
- Sohal, M. S. et al. *Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties*. Technical Report Number: INL/EXT-10-18297; Idaho National Laboratory (2010).
- Ludwig, D. et al. High temperature electrochemistry of molten fluoride salt for measurement of dissolved chromium. *Corros. Eng., Sci. Technol.* **46**, 360–364 (2011).
- Elgrishi, N. et al. A practical beginner's guide to cyclic voltammetry. *J. Chem. Educ.* **95**, 197–206 (2018).
- Hamman, C. H. et al. *Electrochemistry*, 2nd edition. (Wiley, 2007).
- Wang, Y. *Species Chemistry and Electrochemical Separation in Molten Fluoride Salt*. PhD's thesis, Virginia Polytechnic Institute and State University (2019).
- Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. *APL. Materials* **1**, 011002 (2013).
- Zakharova, V. V. et al. Electrochemistry of iron, nickel and chromium in LiF-NaF-KF (FLINAK) eutectic melt: a cyclic voltammetry study. *AIP Conf. Proc.* **2313**, 050039 (2020).
- Peng, H. et al. Electrochemical investigation of the stable chromium species in molten FLINAK. *RSC Adv.* **5**, 76689–76695 (2015).
- Zheng, G. & Sridharan, K. Corrosion of structural alloys in high-temperature molten fluoride salts for applications in molten salt reactors. *JOM* **70**, 1535–1541 (2018).
- Doniger, W. H. & Sridharan, K. Application of voltammetry for quantitative analysis of chromium in molten 2LiF-BeF₂ (FLiBe) salt. *J. Electrochem. Soc.* **838**, 73–81 (2019).
- Yin, H. et al. Thermodynamic modeling of LiF-NaF-KF-CrF₃ system. *J. Fluor. Chem.* **209**, 6–13 (2018).
- Barin, I., Knacke, O. & Kubaschewski, O. *Thermochemical Properties of Inorganic Substances* (Springer Berlin Heidelberg, 1977).
- Bieber, A. L. et al. Fluoroacidity evaluation in molten salts. *Electrochim. Acta* **6**, 5022–5027 (2011).
- Shay, N. W. *Electrochemical Sensor Development for Fluoride Molten Salt Redox Control*. Master's thesis, Ohio State University (2017).
- Jones, D. A. *Principles and Prevention of Corrosion* (Prentice Hall, 1996).
- Guo, S., Shay, N., Wang, Y., Zhou, W. & Zhang, J. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept. *J. Nucl. Mater.* **496**, 197–206 (2017).
- Bale, C. W. et al. FactSage thermochemical software and databases—recent developments. *CALPHAD* **33**, 295 (2009).
- Saal, J. E. et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). *JOM* **65**, 1501–1509 (2013).
- Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. *npj Comput. Mater.* **1**, 1–15 (2015).
- Stevanović, V. et al. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. *Phys. Rev. B* **85**, 115104 (2012).

ACKNOWLEDGEMENTS

Research primarily was supported as part of fundamental understanding of transport under reactor extremes (FUTURE), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). This work was performed in the Department of Materials Science and Engineering (DMSE) in the Center for Electrochemical Science and Engineering (CESE) at the University of Virginia. Utilization of the Malvern-Panalytical Empyrean diffractometer were supported by Nanoscale Materials Characterization Facility (NMCF) with National Science Foundation (NSF) under award CHE-2102156.

AUTHOR CONTRIBUTIONS

H.L.C. and E.R. conceived the methodology to obtain the needed thermodynamic data and designed the experiments to obtain free energies of formation and Nernst potentials. H.L.C., E.R., and J.Q. performed the experimental analysis. H.L.C. was responsible for thermodynamic analysis and diagrams construction and prepared the original draft with input from J.R.S. and E.R. J.R.S. guided application of corrosion thermodynamic criteria for spontaneous corrosion with H.L.C. and E.R., edited and reviewed the manuscript. J.R.S. and P.H. conceptualized and directed the project. P.H. was responsible for funding acquisition and overall project themes within F.U.T.U.R.E. All the authors contributed to the interpretation of the experimental data and discussed the results. All authors discussed the data interpretation. All co-authors contributed during reviewing of the final manuscript. All authors approved the final version.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Ho Lun Chan or Elena Romanovskiaia.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2022, corrected publication 2022