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Selecting effective corrosion inhibitors from the vast chemical space is not a trivial task, as it is essentially infinite. Fortunately,
machine learning techniques have shown great potential in generating shortlists of inhibitor candidates prior to large-scale
experimental testing. In this work, we used the corrosion responses of 58 small organic molecules on the magnesium alloy AZ91
and utilized molecular descriptors derived from their geometry and density functional theory calculations to encode their molecular
information. Statistical methods were applied to select the most relevant features to the target property for support vector
regression and kernel ridge regression models, respectively, to predict the behavior of untested compounds. The performance of
the two supervised learning approaches were compared and the robustness of the data-driven models were assessed by

experimental blind testing.
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INTRODUCTION

Magnesium (Mg), the lightest structural metal, is a promising
material in automotive and aeronautic engineering due to its
outstanding mechanical properties as well as in medical industries
due to its biocompatibility'~3. However, Mg-based materials have
to be protected from corrosion to facilitate their application in
advanced engineering applications, as Mg is a highly reactive
metal. Surface coatings depict a reliable and effective strategy to
realize the corrosion protection of Mg by adding a barrier layer
between the substrate and the service environment>~. However,
scratches or cracks in the protective coating may lead to severe
local corrosion reactions®. This can be mitigated by incorporating
corrosion inhibitors into the coatings that will be released on
demand and inhibit corrosion in the damaged areas®®. It is
noteworthy that direct embedding of corrosion inhibitors into a
coating matrix’ may impair their functionality by no or limited
release'®'" or may release all corrosion inhibitors at once without
control once a defect occurs'?. Application of layered double
hydroxides (LDHs) intercalated with corrosion inhibitors is one of
the promising routes to achieve a controllable active corrosion
protection'®™'%, An LDH is an inorganic sheet-like clay with a
brucite structure in its pure Mg(OH), form. Thanks to the anion
exchange property of the LDH structure, the corrosion inhibitors
can be intercalated into this layered structure and their release
can be subsequently triggered by exchanging with an aggressive
corrosive species (e.g. chloride) to suppress corrosion reactions'2.
Aside from the inorganic corrosion inhibitors commonly inter-
calated in the LDHs such as vanadate'’, tungstate'’, and
molybdate'®, organic corrosion inhibitors have gained more and
more attention recently because a large number of organic
compounds have shown promising corrosion inhibition for Mg
and its alloys’. Furthermore, it has been demonstrated that small
organic molecules can be intercalated into LDHs'’~"°,

However, pure experimental studies on the intercalation of new
organic molecules into LDHs can be time-consuming, especially
when considering the large number of candidate molecules to
choose from?°. Aside from that, identification of an effective

organic corrosion inhibitor to be intercalated into LDHs (see Fig. 1)
to protect a specific type of Mg alloy can be very challenging due
to the large number of organic compounds with potentially useful
properties?'. Luckily, machine learning-based approaches promise
to facilitate the screening of useful compounds.

Machine learning (ML) has developed rapidly in recent years
due to the augmentation of algorithms and technological
advances in computing hardware??. While influencing our daily
life>32*, machine learning algorithms have also gained an
important role in material science®>?®. Different algorithms have
been applied in material discovery such as compound predic-
tion2’729, structure prediction3%3" and predicting material proper-
ties such as band gap®?, superconductivity®>, bulk and shear
moduli** and to identify effective corrosion inhibitors based on
quantitative structure-property relationships (QSPRs)3>3%. For the
latter, a number of different machine learning algorithms (e.g.
neural networks, kernel ridge regression, and random for-
ests)?'3738 were successfully developed to predict the corrosion
inhibiting effect of small organic compounds for different types of
Mg and its alloys”?'37, Aluminum alloys*>3¢3°, and Copper-based
materials®®. Naturally, a sufficiently large, diverse, and reliable
training dataset and a suitable modeling framework (usually based
on one or more machine learning algorithms), are two of the
crucial prerequisites for the development of predictive QSPR
models. A third key step is the selection of relevant input features
which can either be selected by chemical intuition®® or based on
statistical methods®’. Random forests (RFs) have proven to be a
useful algorithm for dealing with feature selection problems due
to their ability to calculate the importance of each feature*'. The
presence of correlated features, on the other hand, has been
shown to affect their ability to identify important features,
potentially lowering their accuracy*>™**. To address this issue, a
combination of random forests and recursive feature elimination
(RFE) is commonly used**** and its potential to select relevant
features to model corrosion inhibition efficiencies (IEs) of small
organic molecules has been demonstrated in a recent study’.

"Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht, Germany. 2Institute of Polymers and Composites, Hamburg University of Technology, Hamburg, Germany.
3Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany. *email: xuejiao.li@hereon.de; christian feiler@hereon.de

Published in partnership with CSCP and USTB

npj


http://crossmark.crossref.org/dialog/?doi=10.1038/s41529-023-00384-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41529-023-00384-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41529-023-00384-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41529-023-00384-z&domain=pdf
http://orcid.org/0000-0003-4276-8053
http://orcid.org/0000-0003-4276-8053
http://orcid.org/0000-0003-4276-8053
http://orcid.org/0000-0003-4276-8053
http://orcid.org/0000-0003-4276-8053
http://orcid.org/0000-0003-4312-7629
http://orcid.org/0000-0003-4312-7629
http://orcid.org/0000-0003-4312-7629
http://orcid.org/0000-0003-4312-7629
http://orcid.org/0000-0003-4312-7629
https://doi.org/10.1038/s41529-023-00384-z
mailto:xuejiao.li@hereon.de
mailto:christian.feiler@hereon.de
www.nature.com/npjmatdeg

X. Li et al.

Fig. 1 System schematic. Schematic representation of a layered
double hydroxide system with a large number of organic inhibitor
candidates.

In this work, corrosion inhibition responses of 58 small organic
molecules on Mg alloy AZ91 from a previous work” were used to
train a QSPR model. AZ91 was the selected substrate in this study
because our previous experimental work* proved that LDHs can
be directly synthesized at the surface of this alloy as a conversion
layer. The corrosion inhibition efficiencies of the samples in the
used dataset exhibit a higher variance than those used in other
Mg alloy prediction models?'7-38 so far which renders the use of a
machine learning algorithm with good generalization capabilities
a necessity. A potential algorithm that can be employed to
establish the QSPR workflow are support vector machines (SVMs)
which represent one of the most powerful, precise and robust
supervised learning methods due to their good theoretical
foundations and generalization capacity*®*’. They have been
widely applied to solve various complex real-world problems such
as: image classification®®, hand-written character recognition*’
and face detection®® in the past twenty years*. Applying the
same principle as SVMs, support vector regression (SVR) was
developed to solve regression problems with high accuracy®'-%3.
SVR>? has been used to develop a predictive model to investigate
the influence of the outdoor environment on the corrosion rates
of metallic materials>*>®, Furthermore, Liu et al.>® developed a
QSPR model based on SVR for Q235 steel using a limited number
of organic compounds, demonstrating that SVR is well suited for
small datasets. However, the use of small training datasets may
lead to overfitting and the validation of the prediction is an
essential part of the model development. Therefore, SVR was
chosen for the QSPR model construction in this work to
investigate its applicability for Mg-based datasets, and the quality
of the predictions was evaluated using experimental blind testing.
Moreover, approaches based on kernel ridge regression (KRR)*7>8
have already been applied to predict the effect of small organic
molecules on the corrosion behavior of commercially pure Mg?'.
As a result, the KRR approach was chosen as a benchmark for
comparing the performance of the SVR model. Unlike existing
models®*-38, where the number of selected features used to build
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the model was chosen manually, a two-step feature selection
method was proposed in this work, where the optimal number of
features is determined by the model. In the end, the QSPR model
developed in this work can assist the selection of an effective
organic corrosion inhibitor from a large number of organic
compounds, whose intercalation into the LDHs will be further
investigated to achieve the goal of corrosion protection for AZ91.

RESULTS AND DISCUSSION

The model construction in this work is based on the workflow
shown in Fig. 2. Further investigations of the feature selection
were carried out which is a key element in the development of an
ML model that predicts the corrosion |Es of small organic
molecules. Based on the selected features, two different QSPR
models (based on SVR and KRR algorithms) were trained to predict
the IEs of small organic molecules on AZ91 and their accuracy was
subsequently validated and compared based on experimental
blind testing using ten compounds which were not part of the
initial dataset.

Feature selection

A pool of 2876 distinct molecular descriptors was generated as
input features for the development of a QSPR model. After
omitting all molecular descriptors with constant values, the
remaining 876 were exposed to feature selection. An RFE based
on random forests approach was adopted to select a 25-tuple of
features out of the initial 876 features in the first step. More details
on the selection process of the selected 25 features are available
in the 'Methods’ section. An additional step was added to the
feature selection by gradually decreasing the number of used
input features, starting from the 25-tuple features that were
selected using RFE in the first step (see the feature selection
section of Fig. 2). In the second step of the feature importance
investigation, the initially selected 25 features were removed one-
by-one in 24 steps. Instead of applying RFE, the SVR and KRR
models were used directly to select features at each step together
with hyperparameter optimization and cross validations. At each
step, there is more than one possibility to remove a feature from
the previous step, e.g. there are twenty-five possibilities to remove
one feature from the selected 25 features. Attempts across all
possibilities were conducted and the possibility with the lowest
averaged root mean squared error (RMSE) of the IEs for the test
sets in the cross validation was selected at each step and plotted
in Fig. 3. The averaged RMSEs for the train sets in the cross
validation corresponding to the plot in Fig. 3 are listed in the
Supplementary Table 1. For the selected possibility, the removed
feature was defined as the least important feature in the previous
step. In the end, the selected 25 features were ordered according
to the previously defined importance, obtaining an order of
importance for the features.

The trend of the black line in Fig. 3 shows that the optimal
number of features selected for the SVR model equals eight, since
the resulting model exhibits the lowest RMSE. The selected
molecular descriptors are P_VSA_LogP_2, Mor28e, HOMO,
MATS4v, Mor06s, GATS4p, MATS8m, and Mor15v, ordered by
their suggested feature importance. Except for the highest
occupied molecular orbital (HOMO) which is obtained from DFT
calculations, the other seven features are from three descriptor
categories (P_VSA-like descriptors>®, 3D-MoRSE descriptors®® and
2D autocorrelations®') obtained from the chemoinformatic soft-
ware package alvaDesc®2. P_VSA-like descriptors are based on the
van der Waals surface area of the compounds by summing up all
the atomic contributions. 3D-MoRSE descriptors incorporate the
whole molecule structure information by summarizing the atomic
pairwise information related to the scattering parameter based on
electron diffraction and then weighted by either of the properties,
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Fig. 2 Schematic representation of the ML workflow used in this study. A database of 58 small organic molecules and their corrosion
responses on AZ91 are employed as training database. First a pool of molecular descriptors to encode their molecular structure is generated
and exposed to a two-step sparse feature selection approach. The most relevant descriptors are subsequently used to train supervised
machine learning models to predict the behavior of untested chemicals. The small organic molecules for this step are selected following our

previously published ExChem?' approach.
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Fig. 3 RMSE varied with the number of features for both models.

25-tuple features selected after the application of RFE based on

random forests in Step 1 were removed one-by-one and the

minimum averaged RMSE of the test sets in the cross-validations

varied with the number of features for SVR (in black line) and KRR (in

red line) models.

e.g. mass, Sanderson electronegativity, van der Waals volume, and
atomic polarizability. The 2D autocorrelations descriptors are
calculated to provide the interdependence between atomic
properties (analogous to the 3D-MoRSE descriptors), which are
connected by a log function®®. All these three descriptor
categories focus on calculating the spatial distribution of a
generic molecular property rather than only considering the
atomic configurations.

In the KRR model, the optimal number of features resulted in
eleven as shown in Fig. 3. The eleven selected features were
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identified as Mor15v, HOMO, MATS8m, Mor30e, nRNH2, C-018,
GATS4p, MATS2i, Morlle, Mor06s, Mor28e, ordered by their
feature importance. It is noteworthy that six out of the eleven
features are identical with those selected for the SVR model. The
overlapping features are Mor15v, HOMO, MATS8m, GATS4p,
Mor06s, Mor28e. This finding implies that the HOMO energies
derived from DFT calculations, 3D-MoRSE descriptors, and 2D
autocorrelations descriptors seem to encode crucial structural
information concerning the prediction of the corrosion inhibition
efficiency of small organic molecules for AZ91. This observation
agrees well with the conclusion from Schiessler et al.3” where DFT
calculated features as well as 3D-MoRSE descriptors were
identified as important input features for an artificial neural
network using IEs of small organic molecules for the Mg-based
alloy ZE41 as a target property.

Apart from these three feature groups, a number of features
encoding functional group counts and atom-centered fragments
were identified for the top eleven features in the KRR model, e.g.
nRNH2 which directly encodes the number of aliphatic primary
amines. All five compounds that contain nRNH2 moieties in our
dataset are amino acids (Cysteine, Glutamic acid, Glycine,
DL-norleucine, and DL-phenylalanine) which exhibit negative
inhibition efficiencies. This finding agrees well with the conclusion
in Ref. 7 that amino acids accelerated corrosion of Mg alloys. The
corrosion acceleration behavior of amino acids can be attributed
to the solubility of their corresponding magnesium complex in
water®*6>, The feature C-018 from the class of atom-centered
fragments represents =CHX, where “=" depicts a double bond
and X any of the following heteroatoms: O, N, S, P, Se, or any
halogen. In the =CHX fragment, a sp>-hybridized carbon atom is
directly connected to a hydrogen and one of heteroatoms that are
denoted as X. In our training dataset, this specific functional group
is present in the compounds Kojic acid, Maltol, and Uracil (X
represents either O or N) whereas all three organic molecules
display negative IE values, as shown in Supplementary Fig. 1. It has
been proven that the complexes formed by these three
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compounds with magnesium are water-soluble®>~%”. Compared to
the capability to form complexes with metal ions, the solubility of
these complexes in water appears to be a more decisive factor in
determining the efficiency of the organic inhibitors. This observa-
tion agrees well with the work from Lamaka et al.” and Anjum
et al.'® that organic compounds whose complexes have a low
solubility in water exhibited a high inhibiting effect since they
delay corrosion by forming a protective barrier layer.

Some of the molecular descriptors obtained from the chemoin-
formatics tool are arcane and cannot be easily linked to physical
properties since they are derived from extensive mathematical
manipulations of the chemical structure. Pearson tests provided a
better understanding of the correlation between the used input
features and IEs as well as a measure for their statistical
significance. The Pearson correlation coefficient measures the
linear relationship between two sets of data, which varies between
—1 and 1 with 0 implying no correlation while —1 and 1 implying
exact negative and positive correlations, respectively®®. For both
models, the correlation between the individual features and the
IEs is moderate to weak since the values of the determined
correlation coefficients in Fig. 4a, b are not higher/lower than £0.5,
where the most pronounced negative and positive correlations
are —0.5 and 0.2, respectively. This observation agrees well with
the findings of Guyon et al.%° that the selected features are on
their own not necessarily the most relevant with respect to the
target property. For the correlation between the selected features,
neither of the correlations is considered as a strong relationship
(>0.9) and most of the correlations (over 90%) are interpreted as
weak relationships (0.1—0.39) or are negligible (<0.1) according to
the definitions in the work of Schober et al.?®. Moreover, the
p-value between the used input features and IEs was calculated
and illustrated in Supplementary Fig. 2, where the p-value is an
indicative measure whether the correlation is statistically sig-
nificant. The weak correlations between most of the selected
features largely ensure that there is no redundant feature selected
as input for the models. Although most of the selected features
are only weakly correlated with the target property itself, the
results indicate that they can still be used to build a predictive
model when used as a group due to underlying synergistic effects
which is in good agreement with previous works®”-38,

In summary, the feature selection method proposed in this work
is able to increase the accuracy of the predictions in the cross-
validation stage by applying the step-wise reduction to the group
of features which was selected based on RFE in the first step.
Moreover, the proposed method can be employed to perform RFE
for SVR with a radial basis function (RBF) kernel, since only the
linear kernel is currently supported in scikit-learn’®. Another
advantage of this proposed method is that there is no prerequisite
on the number of features to be selected, therefore all possible
combinations of feature groups are explored in the feature
selection and a comprehensive exploration can be guaranteed.

Model validation

Hyperparameters for the SVR and KRR models were optimized in a
grid search with 5-fold cross validations together with the feature
importance investigation. As a result, the set of hyperparameters
for the SVR (random_state=10, C=17, y=0.1) and the KRR
(random_state =10, a=0.1, y=0.1) were selected respectively.
For both models, the value selected for the random state
parameter (random_state) is identical which indicates the same
split of the dataset into train and test sets in the cross validations.
After the selection of the hyperparameters, the full initial dataset
was used to fit the two models and then these models were
applied to predict the behavior of the blind test compounds to
evaluate their robustness. The experimental and predicted values
for the 10 compounds in the blind tests are listed in Table 1. The
predicted values for the piperazine derivatives 1 and 2 are marked
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in brown for both models as their predicted acceleration
efficiencies are significantly less negative than the corresponding
experimental values, which are beyond the inhibition efficiency
range of the chemicals used as initial dataset in this work.
However, it is noteworthy that both compounds were correctly
predicted to accelerate the dissolution of AZ91. These two
compounds were excluded in the following analysis since they
are outside of the domain of applicability of the used initial
dataset.

The SVR and KRR models performed similarly well for the full
initial dataset, the blue points in Fig. 5a, b, where the predicted
and experimental values correlated well with an RMSE of around
10%. The performance of some of the blind test compounds that
were under- or overestimated, circled by red and blue dashed
circles or ellipses in Fig. 5, results in a relatively high RMSE value
for both employed models (84% for SVR and 69% for KRR).
Moreover, there is no strong positive correlation between the
predicted and experimental values for the eight compounds
(3-10) for both the SVR (coefficient = —0.571, p-value = 0.140) and
KRR (coefficient = 0.005, p-value = 0.991) models as these statis-
tical metrics are heavily affected by the outliers. Due to the
relatively large deviation between predicted and experimental
values for the eight compounds, an area of overlap between mild
inhibitors and mild accelerators was introduced for compounds
with experimentally determined values in the range of -30%
<lE<30%. For compounds in this area, the predicted values were
considered as reliable estimates if they fell within this range. From
Fig. 5, it can be seen that both SVR and KRR models under-
estimated 5-Nitrouracil (6, |Egreqkrr = —82%, |Epred,svg = —68%)
and Trimethylolpropane (10, IEg eqxrr = —49%, |Epred,svr = —48%)
in a similar way. There are other two outliers (2-Hydroxycinnamic
acid (3) and Trimesic acid (8)) in the SVR model as shown in
Fig. 5a. Even though there are two more outliers in the SVR model,
it is important to note that the predicted values for the other four
compounds in the blind test set correlated well with the
corresponding experimental values for the acetic acid 4
(IEpred,svk = —21%, IEexp. = —14%), the pyrazole 5 (IE,eq,svr = 9%,
[Eexp. = 16%) as well as the aliphatic (7 (IEpred,svr = 37%, |Eexp. =
30%)) and aromatic (9 (IEpeqsvk = 34%, |Eexp. = 52%)) carboxylic
acids with an RMSE of 11% and an R? of 0.782 in the SVR model.
The RMSE and R? calculated for the same non-outlier compounds
(4, 5, 7, 9) in the KRR model are 33% and 0.385, respectively.
These observations indicate that both the SVR and KRR models are
able to provide good estimates for the four blind test compounds
(4, 5, 7, 9). For the compounds where the predictions yielded
reliable estimates based on the SVR (4, 5, 7, 9) and the KRR (3, 4,
5, 7, 8, 9) models, the Pearson correlation coefficient and p-value
were calculated between their predicted and experimental values.
The predicted values of the SVR model (coefficient=0.93, p-
value = 0.071) show a higher correlation with the experimental
results than the KRR model (coefficient =0.60, p-value =0.214)
while the p-value of the SVR model indicates statistical relevance
of the prediction. The difference between these two models for
the given dataset is that the SVR model can provide a higher
accuracy of predictions for the non-outlier compounds while there
are fewer outliers in the KRR model.

Moreover, modulators exhibiting an aliphatic primary amine
(NRNH2), e.g. in an amino acid, or fragments with the general
formula R=CHX cause elevated corrosion rates in experimental
studies’. The results indicate that small organic molecules that
exhibit either of the above-mentioned functional moiety can most
likely be excluded from the screening for effective corrosion
inhibitors. However, they might have beneficial properties for
other applications such as battery electrolyte additives where a
controlled dissolution of the Mg-based anode material is
required’’. One out of the 10 compounds (5-Nitrouracil (6)) in
the blind test set contained a =CHX fragment, suggesting that it
has a negative IE value. However, in contrast to the predicted
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Fig. 4 Pearson correlation coefficients for the two models. a Pearson correlation among the selected 8-tuple features for the SVR model and
IEs. b Pearson correlation among the selected 11-tuple features for the KRR model and IEs.

negative inhibition efficiency, the experimental result showed that
5-Nitrouracil gave adequate inhibition performance. This could be
attributed to the nitro compounds of 5-Nitrouracil which have
been proven to be able to assist the corrosion protection of a
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variety of alloys’?~74. Furthermore, while Uracil has a negative IE
value (-151%), its substitution with a nitro moiety, 5-Nitrouracil,
results in a highly potent corrosion inhibitor (78%), indicating that
the nitro moiety plays a significant role in corrosion protection.
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Table 1.

Experimental and predicted values (IEs in %) for the blind test compounds.

Index Compound

IE (exp.) SVR (pred.) KRR (pred.)

1-Acetylpiperazine -563
o)\cm
1
2 [Nj 1-Amino-4-methylpiperazine -517
N
&,
Oy OH
3 o L 2-Hydroxycinnamic acid -24
HO
4 0 EI*O 2-Hydroxyphenylacetic acid -14
) Hsc/[N/\\N 3-Methylpyrazole 16
H
6 Y\ 5-Nitrouracil 79
O H (¢]
7 HOO OOH Tartronic acid 30
OH
Oy OH
8 ﬁ( Trimesic acid 67
HO OH
[e] [e]
OO OH
9 Ho o Pyromellitic acid 52
HO 00
10 "% Trimethylolpropane 20
HO

-21

-68

37

-89

34

-42

-53

-17

-82

60

23

23

-49

Red values indicate overestimated, while blue values indicate underestimated predictions. The brown values represent predictions that are qualitatively
correct but where the actual value is far outside of the range of the IEs used to train the model.

This observation is, however, not captured by neither of the
employed models because of the limited information on the effect
of a nitro functionality in our dataset as there are only two
compounds (5-Nitrobarbituric acid and 3-Methyl-2-nitrobenzoic
acid) that exhibit this functional moiety. This strongly indicates
that future experimental dataset need to include more com-
pounds with a nitro moiety to enable the model to recuperate the
impact of this group on the corrosion inhibiting effect.

To gain more insights of the compounds which are outliers, the
pairwise distances based on the input features were calculated
between the compounds in the blind test and the initial dataset
used in building the models to evaluate the highly similar
structures for each blind test compound. A value of 1 in the
similarity matrix suggests high similarity while a value of 0
indicates no similarity. Figure 6a, b show the similarity matrix for
the eight blind test compounds and the initial data set for the SVR
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and KRR models, respectively. The top 5 similar structures
(containing the names and the inhibition efficiencies) for
5-Nitrouracil (6) are shown in Fig. 6 for both models. A similarity
order from high to low can be extracted for these 5 structures in
SVR (Uracil, Glycine, 5-Nitrobarbituric acid, DL-Phenylalanine,
Glutamic acid) and KRR (Uracil, Maltol, Kojic acid, Fumaric acid,
Urea). It is noteworthy that there are obvious similarity differences
for some of the top 5 similar structures such as the difference
between Uracil and Urea in the KRR model as shown in Fig. 6b.
This indicates the limitation of the dataset used in this work where
there are only 58 data points in total. As a consequence, there are
not enough structures in the dataset with higher or comparable
similarities to the similarity between Uracil and the blind test
compound 5-Nitrouracil (6). The IEs of these 5 similar structures
are ordered by similarity in Table 2. The same process was applied
to extract the top 5 similar structures and list their IEs in Table 2 for
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displayed for (a) SVR model and (b) KRR model. The blue points represent the full initial dataset (58 compounds, the names and IEs were listed
in the Supplementary Table 2). The orange points depict the blind test compounds. Please note that 1-Acetylpiperazine (1) and 1-Amino-4-
methylpiperazine (2) were excluded from the plot. Although their estimates were qualitatively correct (1: |Egreq,svr =-172%, |Epredkrr =

—108%, |Ecxy = —563%; 2: IEpreasv = —195%, |Epreakar = —109%, [Ecxp

= —517%), their measured values were far outside the models domain.

The corresponding structures of the plotted blind test compounds are shown at the bottom of the figure. Red and blue dashed circles or

ellipses mark the over- and underestimated compounds, respectively.

all the other outliers. Naturally, the predicted value for each outlier
is heavily influenced by the IEs of the top 5 similar structures. For
example, because the IEs of the top five similar structures for
compound 3 in the SVR model are all positive, the IE value
predicted by the model will be positive as well. This indicates that
our models are able to capture the similarity connections existing
in the dataset and make according predictions. The similarity
connections are however limited by the small size of our dataset,
resulting in the appearance of these outliers. The learning curves
for the SVR and KRR models (as illustrated in the Supplementary
Fig. 3) show that the averaged RMSEs for the test sets in the cross
validation decrease as the size of the training set increases,
although the averaged RMSEs of the test sets for both models are
higher relative to that of the train sets. One possible remedy is to
expand the dataset, so the averaged RMSEs of the test sets can
consistently decrease by adding additional training data.

In this work, the performance of two supervised machine
learning approaches (SVR and KRR) were assessed concerning
their robustness to predict the corrosion inhibition of small
organic compounds for AZ91. The blind tests for the models were
carried out to assess the reliability of each model. With the dataset
expanding in size and diversity in the future, similarity connec-
tions can be improved to increase the domain of applicability of
the model. Either of the described model approaches can then be
applied to predict the corrosion inhibition behaviors of a large
amount of organic compounds with higher confidence and select
promising inhibitors for AZ91, thus significantly decreasing
material costs and environmental impact of experiments while
accelerating the discovery of effective corrosion inhibitors.

In summary, small organic molecules exhibit great potential to
control the corrosion behavior of magnesium-based materials.
Selecting effective organic corrosion inhibitors from the vast space
of available compounds is not a trivial task and it cannot be solved
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by time- and resource-consuming experimental investigations
alone. QSPR models based on supervised learning techniques
such as SVR and KRR create great efficiencies in screening for
effective agents for corrosion control.

In this work, the RBF kernel was used to develop two predictive
data-driven models based on the available experimental IEs of
organic compounds for AZ91 from a previous work’. A pool of 876
input features derived from the cheminformatics software
package and DFT were generated and exposed to an initial
feature selection based on RFE to identify the feature group
consisting of 25 features with the highest relevance for the target
property. These 25 features were subsequently gradually reduced
to find the optimal number of features for the respective method
and the results indicate that lowest RMSE is obtained for 8 features
in the SVR and for 11 features in the KRR approach. There is a
considerable overlap between the two groups of selected features
as the energy levels of the HOMO derived from DFT, 3D-MoRSE
descriptors, and 2D autocorrelations descriptors ended up in the
final model for both cases, which agrees well with the findings in
our previous work®’.

Blind tests were carried out to assess the performance of the
two model frameworks that were investigated in this work. Of the
ten compounds in the blind tests, 1-Acetylpiperazine (1) and 1-
Amino-4-methylpiperazine (2) were predicted correctly to be
strong accelerators with IE values more negative than —100% by
both models. However, the experimentally derived values were far
outside the training IE range and hence, their predicted values
strongly underestimated. For the other eight compounds,
2-Hydroxyphenylacetic acid, 3-Methylpyrazole, Tartronic acid,
and Pyromellitic acid were correctly predicted by both models,
where the values predicted by the SVR model are closer to the real
values compared to the KRR model. In addition, both models
identified 5-Nitrouracil and Trimethylolpropane as outliers,
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Table 2. The IEs in % of the extracted top 5 similar structures from
Ref.” are listed in the similarity order from high to low (from 1st to 5th,
please note that 1st, 2nd, 3rd, 4th, 5th do not indicate the same
structures but refer to those that are most similar to the ones that
were tested in this work.) for the outliers in the SVR and KRR models.

although there are two more outliers for the SVR model. For each
of the outliers, there is a distinct variation for the IEs of its top 5
highly similar structures extracted from the dataset, which might
ultimately cause the false prediction of the IE value. This indicates
that the similarity connection of the structures is limited by
available data.

In conclusion, the two-step feature selection method proposed
in this paper can select the most relevant features while
improving the prediction accuracy of the SVR and KRR-based
QSPR models. After first reducing the pool of available features to
a 25-tuple using RFE, this feature set is subsequently systemically
screened for the best n-tuple to train the predictive model, rather
than relying on human intuition to choose the number and
composition of input features. Despite the limited training
dataset, the SVR-based model predicted robust estimates for
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the anti-corrosion performance of four and the KRR-based model
of six members of the blind test set whereas the SVR predictions
were closer to the experimental results while the KRR model
generalized better, resulting in fewer detected outliers. Outliers,
on the other hand, are not always a bad thing because they
provide guidance on which structural leitmotifs should be tested

IEexp  |Epred 1 2nd 3 4t 5th next to increase the domain of applicability and robustness of
the models. According to our results, substitution of the uracil

SVR 3 —24 51 26 56 18 45 24 . . . . X .
parent system with a nitro moiety (5-Nitrouracil (6)) results in a
6 79 —68 151 -8 71 —149 -84 highly potent corrosion inhibitor (IE =78%) compared to uracil
8 67 -89 38 n -9 125 52 (IE= —151%). However, our model fails to correctly predict the
0 20 —42 -27 -27 24 34 —106 behavior of this compound, and this structural leitmotif should
KRR 6 79 8  _151 —168 —90 83 _19 therefore be thg targgt of upcoming experiments to broa.den the
domain of applicability of our model. The new data points will

10 20 —49 —27 —91 54 —27 —129

subsequently be used to augment the training database and as a
consequence to improve the accuracy of the predictions for
broader area of chemical space. Feeding more training samples to
the model will facilitate an active design of experiments thereby
accelerating the selection of potent inhibitors for AZ91 and other
materials. This work demonstrates that data-driven models based
on SVR and KRR approaches not only provide a reliable basis to
generate predictive models and that they can be applied to
predict the corrosion inhibition efficiencies of small organic
molecules for Mg-based materials. Next, the selected inhibitors
will be investigated for intercalation in LDH to achieve an active
corrosion protection of AZ91. Finally, the machine-learning based
strategies developed in this work can also be adapted to explore
quantitative structure-property relationships in different applica-
tion fields given sufficient training data is available to train the
respective models.
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METHODS

58 organic compounds were extracted from the work of Lamaka
et al” for AZ91 and used as database in this work. These 58
organic compounds were selected based on the following three
requirements: the concentration of the tested inhibitor was 0.05 M
in 0.5 wt.% sodium chloride electrolyte (NaCl) pH neutral aqueous
solution, molecular weight (<350 Da) and inhibition efficiencies
ranging from —250% to 100%. The concentration was selected to
be 0.05 M due to the fact that the majority of organic compounds
were measured in this concentration for AZ91 and other
concentrations influenced the inhibition efficiency of a chemical
compound’. The chemical space was explored in a limited range
of molecular weight since we are interested in seeking for small
molecular organic inhibitors. The selection of the inhibition
efficiency range is a balance between the large number of
compounds, which is beneficial to build a model, and the small
range from the side of the accelerators since the exploration of
strong accelerators is out of interest in this work.

Feature generation and selection

After the data extraction, the molecular structures of these 58
compounds were built and optimized in the DFT calculations at
the TPSSh/def2SVP level of theory using the quantum chemical
software package Gaussian 167°. DFT-calculated features, espe-
cially the highest occupied (HOMO) and the lowest unoccupied
molecular orbital (LUMO), have been shown to be correlated to
the corrosion inhibition efficiencies of small organic molecules for
some Mg-based materials*37677. The optimized structures from
DFT were subsequently used as input in the cheminformatics
software package alvaDesc 1.0.22% to generate more features,
which were then combined with the HOMO and LUMO features to
the initial feature set. There are over 800 features for each
compound in the initial feature set, which significantly exceeds
the number of compounds in the initial dataset. At first, RFE based
on random forests was applied to select the 25-tuple features,
thus initially reducing the feature space. These selected 25
features can be different if the selection procedure is repeated
due to the random initialization in the random forests. The
selection procedure was repeated 50 times, obtaining 50 different
groups of selected top 25 features. These 50 distinct groups of
features obtained in step 1 are fed into the 5-fold cross validation
(as shown in Supplementary Fig. 4) of the SVR model. The feature
group with the lowest averaged test RMSE of the cross validation
in the SVR model was picked out of the 50 feature groups and is
the basis for searching the most relevant features for the SVR and
KRR models, respectively. The 25 features were reduced in a
stepwise manner (one feature per step) to remove insignificant
features in the model training. In each step, there is more than
one possibility to remove one of the total features and all
possibilities were investigated. The option which yielded the
lowest averaged test RMSE was selected at each step and the
preserved features were used for the next step. The number of
considered features ranged from 25 to 1. Applying this method,
the most relevant features which obtained the lowest averaged
test RMSE for the SVR and KRR models were selected, respectively.
After the selection of the optimal features for each model, the
continued stepwise procedure resulted in an order of importance
for the selected features, depending on their removed order.

Support vector regression and kernel ridge regression

SVR>278 and KRR>® approaches were selected to build the QSPR
models for the prediction of inhibition efficiency of small organic
compounds for AZ91 alloy with the assist of an RBF kernel. A
kernel function can map the nonlinear distribution data in the
input space to a higher-dimensional space where the regression
can be in a linear form. RBF kernel was selected in this work since
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it is the most widely used kernel in SYM’® and Smola et al®°
pointed out that the RBF kernel is generally a reasonable choice
for datasets with little information on their shape. After applying
the same feature selection process to each model, the most
relevant features were obtained. In this work, the high-
dimensional input vector is composed of the previously identified
most relevant features and the target values are the experimental
inhibition efficiency extracted from the work of Lamaka et al.”. The
regression is achieved by &-SVR and KRR, and the results obtained
from these two methods are compared and discussed in this work.
The difference between these two methods is their error loss
functions. While KRR applies a squared error loss, SVR employs an
e-insensitive loss as illustrated in the Supplementary Fig. 5.
Hyperparameters such as y of the RBF kernel (as seen in the
Supplementary Fig. 6), the regularization parameter C, which
manages the trade-off between the smoothness and overfitting of
the &-SVR, and the regularization parameter a for a similar trade-
off function in the KRR model, are tuned in a 5-fold grid search to
find optimal values with respect to the target property. Except for
these three mentioned parameters, the random state parameter
(random_state) which controls the split of the train and test sets
was also tuned in the 5-fold grid search to avoid the biased split
because of the relatively small dataset (58 compounds) and large
inhibition efficiency range (from —250% to 100%). The distribution
of the inhibition efficiencies is provided in the Supplementary
Fig. 7.

Similarity calculation

The similarity calculation used in this work is based on a distance
metric where the selected input features are the coordinates of
each compound in the corresponding high-dimensional feature
space. The RBF kernel used in the SVR and KRR model was applied
in the similarity calculation, which is defined as

k(x,y) = exp(—y|lx — y|[*), (1)

where x and y are the vectors of the selected input features for
two compounds, respectively.

Corrosion experiments

The dataset used in building the SVR and KRR models was
extracted from the work of Lamaka et al.” and therefore the
validation for these two models (blind tests) has been carried out
with the same experimental setup and under the same conditions.
For the selection of the compounds in the blind tests, Trimesic
acid and Pyromellitic acid were suggested by experimentalists
based on chemical intuition, whereas the remaining candidates
were selected by following the ExChem approach described in a
previous work?!, using a database of 7094 commercially available
compounds provided by Thermo Fisher Scientific. The IE of
compounds was calculated based on a hydrogen evolution test, in
which the amount of evolved hydrogen due to the corrosion of
magnesium is measured during immersion in a NaCl solution.
0.5g of AZ91 Mg chips with the surface area of 430+ 29 cm?%/g
from the same batch used in work of Lamaka et al. was immersed
in 0.5 wt.% NaCl solution without (reference solution) and with the
untested compounds. The chemical composition of the AZ91
chips is identical to the work of Lamaka et al. and is provided in
the Supplementary Table 3. The concentration of compounds was
0.05 M and the pH of solutions was adjusted to 7 + 0.1 by NaOH/
HCI. The hydrogen evolution measurements were repeated three
times for each solution and the average of calculated IEs was used
for the corresponding blind test data point. The IE was defined by
the following equation

B VE|Z _ Vlnh

IE o "2 100%, (2)
Ha
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where V' and V {

Inh are the volumes of H, evolved after 20 h of

immersion in the reference NaCl solution and the NaCl solution
containing the investigated chemical compound, respectively.
More details on the hydrogen evolution tests are available in the
original publication’.
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