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XGBoost model for the quantitative
assessment of stress corrosion cracking
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This study employs a data-drivenmethodology to assess the susceptibility of Fe-Cr-Ni alloys to stress
corrosion cracking (SCC) in chloride-containing environments. Historical data from constant-load
SCC testing in boiling magnesium chloride were used to train an XGBoost regression model. This
model overcomes limitations related tomulticollinearity and insufficient sample sizes seen in previous
studies. The XGBoost model captures complex interactions between alloy compositions and
stresses, explaining 94.9% (R² = 0.949) of SCC susceptibility of the specimens. Shapley additive
explanations (SHAP) were employed to interpret the model, offering new metallurgical insights, such
as the critical role of nickel content. TheSHAPanalysis identified an optimal nickel range between 14.5
and 45 wt%, which markedly enhances SCC resistance. The XGBoost-SHAP framework in this work
comprehensively isolates the contributionsof chemical constituents and stress, offering apath toward
more systematic alloy design—departing from the traditional reliance on trial and error or serendipity.

Corrosion phenomena are of significant concern inmodern industry, given
their profound environmental and economic implications1. For instance,
recent studies project that by 2030, carbon dioxide (CO2) emissions from
steel replacement due to corrosion could represent up to 9.1% of worldwide
emissions, challenging efforts to meet international climate targets2,3. From
an economic standpoint, corrosion’s impact is equally substantial. A con-
sensus exists that the financial ramifications of corrosion may account for
3–5% of a nation’s annual gross domestic product (GDP), approximating
$2.2–$2.5 trillion annually4,5. However, these figures reflect only direct costs
in preventive measures and corrosion management6. Other indirect costs,
such as productivity losses, damage payouts, and environmental impacts,
lack a standardised measurement framework2,4. Nonetheless, it is hypo-
thesised that indirect costs attributable to corrosion could be on par with
direct ones; consequently, the cumulative economic impact of corrosion
might surpass 6.2% of the global GDP4,7.

As a result, considerable research has emphasised the importance of
mitigating heinous forms of corrosion, principally stress corrosion cracking
(SCC)8–10. It is a type of environmentally assisted cracking (EAC), respon-
sible for the catastrophic fracture of materials due to the synergistic inter-
action between mechanical loads, external, residual or both, and an
aggressive environment11. Stress corrosion cracking is pervasive and leads to
premature failures of structural alloys used in various industrial sectors,
including oil and gas, nuclear power, nuclear waste storage, and aerospace12.

Among themany strategies to prevent SCC, the selection of corrosion-
resistant alloys (CRAs) is often the preferred approach to ensuring the
service life of materials across a wide range of severe environments13,14.
Fundamentally, CRAs are engineered to exhibit reduced corrosion rates—
when compared to carbon steel—by promoting the formation of protective
passive surface films14,15. The protective passive layer minimises the sus-
ceptibility to localised corrosion attacks (i.e., pitting, crevice, and inter-
granular corrosion), which are precursors to various EAC mechanisms,
including SCC, certain forms of hydrogen embrittlement (HE), and cor-
rosion fatigue (CF)16. Despite their advantages, CRAs can still be susceptible
to SCCunder specific stress-environment-metallurgical state combinations.
Meanwhile, much debate remains regarding the underlying SCC mechan-
isms and how metallurgical conditions (e.g., composition and micro-
structure) influence SCC resistance15,17.

The development of CRAs has largely been unfolded through trial-
and-error, aided by laboratory testing and field experience14. Thus far, the
prevalent methodology in metallurgical alloy design consists of selecting a
primary component to meet specific property requirements, while con-
ferring secondary properties with a variety of alloying additions, thermo-
mechanical processing, and heat treatments15. Following this approach,
several investigations have provided insights into diverse alloy systems
resistant to SCC17–22. Consequently, a broad spectrum of multicomponent
alloys has been developed and commercialised, centred around a main
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component, and integrating diverse alloying constituents to achieve the
desired balance of in-service properties23.

In examining the design of CRAs, it is essential to understand the
specific roles and contributions of the alloying elements involved. For
example, stainless steel (SS) alloys are primarily based on iron (Fe) on
account of its formability, enabling easy shaping,manufacturing, and cost24.
Nickel (Ni) forms the basis of Ni-base alloys due to its high melting point
and capability to dissolve elements such as chromium (Cr), molybdenum
(Mo), and tungsten (W) without forming secondary phases25,26. Cr is
responsible for the formation of a passive film in both SS andNi-base alloys,
and it is well-known for its effectiveness in oxidising conditions15,27. Other
alloying elements, such asMo,W, nitrogen (N) and copper (Cu), are added
to promote repassivation in chloride-containing solutions, and to enhance
corrosion resistance in reducing environments15. Furthermore, additions of
carbon (C), titanium (Ti), and aluminium (Al) can be incorporated to
increase overall strength, or to improve high-temperature oxidation
resistance25. Nevertheless, the synergies among alloying elements have been
empirically inferred,withno comprehensive theoretical framework to assess
their interactions and effects on SCC resistance quantitively14.

Due to its inherent complexity, SCC necessitates a multidimensional
research approach. Thus, machine learning (ML) techniques present a pro-
mising avenue. These data-driven methods have extensively been employed
in computational alloymodelling28,29. RecentML applications have facilitated
comprehensive analyses of complex corrosion processes, including coupled
chemical and electrochemical reactions, solid-state dynamics, and biological
interactions30–33. An extensive review of ML applications in corrosion engi-
neering has been elegantly detailed by Coehlo et al.31

The current study introduces anML regressionmodel to quantify SCC
susceptibility. Emphasis is placed on the complex interactions between
alloying elements and the applied stresses contributing to SCC. The dataset
utilised compiles the information from the seminal works of Copson34 and
Staehle et al.35, encompassing 269 diverse Fe-Cr-Ni alloys tested in boiling
magnesium chloride (MgCl2). Our preceding publication36 thoroughly
interrogates these data and their associated SCC failure patterns using
unsupervised learning techniques, such as feature extraction and clustering.
The present work builds upon and extends the insights derived from the
aforementioned ML study.

Since SCC is amultivariate phenomenon, we employ extreme gradient
boosting (XGBoost)37, an ensemble learningmethod renowned for handling
highly dimensional data38. Recently, the XGBoost algorithm has effectively
predicted corrosion-relatedparameters across several engineering domains,
including the safety assessmentof pipelines, steel property optimisation, and
structural damage estimation39–41. In this study, our XGBoost regression
model evaluates the SCC susceptibility of SS and Ni-base alloys based on
tensile toughness (herein denoted asUT); a fundamental property generally
regarded as the amount of energy (or damage) that amaterial canwithstand
before fracturing42. By leveraging the relationship of UT with alloy com-
position and mechanical properties, we investigate SCC resistance as a
function of both, the variations in chemical constituentswithin a given alloy
and the applied stress conditions. Ultimately, we employ interpretable
artificial intelligence (AI) on theXGBoost regressionmodel toquantitatively
determine the impact of alloying features and their interactions. Principally,
Shapley additive explanations (SHAP) are exploited to elucidate the con-
tributions of alloying constituents toward SCC resistance.

In the following section, we present an overview pertinent to the pre-
sent investigation, detailing critical insights into the publications by
Copson34 and Staehle et al35.

Relevant Background
Several investigations have focused onmodifying the chemical composition
of alloys tomitigate SCC43–47. Within this field of study, the influential work
by Harry Copson34 in 1959 established the beneficial effect of Ni on
increasing SCC resistance. Copson’s methodology involved documenting
the failure times of wire samples composed of Fe-Cr-Ni alloys with Ni
concentrations ranging from8 to 77 wt%.These sampleswere subjected to a
30-day test in a boiling 42%MgCl2 solution under constant tensile loading.
The outcomes of this study have been captured in textbooks as the so-called
Copson’s diagram (Fig. 1a), which is used to indicate the onset of immunity
to SCC at 45 wt% Ni.

However, Copson’s work has been the subject of debate. Upon
reviewing the findings from Copson’s research34 by 1959, it was deduced
that alloy 600was themost suitable for industrial applications (chiefly in the
power generation sector), as its Ni content surpasses 72 wt%. Nevertheless,
the persistent occurrenceof SCC in this type of alloy led to a series of debates

Fig. 1 | Influence of Ni content on SCC resistance.
a Original Copson Diagram34. Herein, the colour
shows the stress conditions for each specimen. Red
depicts samples stressed below 90% σYS , while blue
represents those stressed at 90% σYS or above. The
samples in this study range from 8 to 77 wt% Ni,
18–20 wt% Cr, with minor inclusions of Si, Mn, Mo,
C, N. bModified Copson Diagram incorporating
data from Staehle et al.35 The colour differentiation
indicates groups of alloys based on chemical com-
positions. Group I comprises Fe-Cr-Ni ternary
alloys.Group II represents samples with alloy bases
of Fe-15Ni-20Cr, Fe-50Ni-5Cr, Fe-76Ni-15Cr, and
Fe-45Ni-30Cr, combined with minor additions of
elements possessing atomic diameters nearly
equivalent toNi.Group III involves sampleswith an
alloy base of Fe-15Ni-20Cr, and additions of Be, Al,
and C. Group IV comprises specimens with 10–15
Cr + 10–20Ni+ 0.1–1.25 Be + 0.1–1.25 Al. Group
V indicates commercial SS and Ni-base alloys.
Adapted from36.
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aimed at validating Copson’s claims. In this regard, the publications by
Staehle and Féron48,49 thoroughly examine the historical context and the
impact of Copson’s research comprehensively.

Several studies have presented conflicting evidence regarding the
influence of Ni on SCC resistance19–21,50,51. A chief example is the investi-
gation by Staehle et al.35, in which the SCC susceptibility of a broad range of
Fe-Cr-Ni alloys was examined under experimental conditions analogous to
those in Copson’s work. The results of this study demonstrated that alloys
with a Ni content exceeding 50 wt% experienced SCC in boiling MgCl2.
Interestingly, it was found that minor additions of Al and beryllium (Be)
increased SCC resistance, even in samples containing 5 wt% Ni. Figure 1b
shows the results from Staehle et al.35 using the relationship between Ni
content and time-to-failure, thereby facilitating a comparative analysis with
the results from Copson’s study.

In their seminal investigations, Copson34 and Staehle et al.35, adopted a
descriptive approach that focused on the correlation between alloying ele-
ments and SCC resistance, as measured by time-to-failure under constant
loading conditions. Nonetheless, pertinent aspects of material mechanics,
such as strength and ductility, were incompetently addressed. The exclusive
focus on chemical composition constrained the exploration of the inter-
relationships among factors contributing to SCC (i.e., environment, stress,
and material).

Recognising such limitations, Rojas et al.36 recently employed advanced
ML techniques to re-analyse the data from Copson34 and Staehle et al.35,
thereby offering a holistic examination of the metallurgical factors influ-
encing SCC resistance. A key aspect of this study was the application of
t-distributed stochastic neighbour embedding (t-SNE) for feature extraction
and clustering. Despite the complexity of the high-dimensional dataset,
comprising 37 features and 269 data items (refer to Table 1), the t-SNE
algorithm facilitated data segmentation into coherent clusters. Remarkably,
the alloying systems within each cluster exhibited significant similarities in
failure times, chemical composition, and mechanical properties, namely
yield strength (σYS), strain at failure (εf ), ultimate tensile strength (σUTS), as
well as UT.

After statistical evaluations within each cluster, Rojas et al.36 corrobo-
rated the positive contribution ofNi to SCC resistance, albeit it was found to
be inconsistent above 45 wt% Ni. This was observed in alloys with Ni
content between 20 and 45 wt%, which surpassed 20 days in SCC testing in
boiling MgCl2. Conversely, alloys exceeding 45 wt% Ni failed consistently
around the 10-day mark. Furthermore, minor alloying additions such as Si
and Mn were detrimental to SCC resistance. In this case, alloys containing

between 15 and 40 wt%Ni, andup to 20 wt%Cr, diminishedmarkedly their
failure times due to the presence of both Si and Mn. Apart from this, the
discrepancies between Copson’s and Staehle et al.’s studies were attributed
primarily to variations in stress conditions. Whereas Staehle et al. main-
tained a consistent approach by loading the samples at 90% of their yield
point, Copson used two fixed loads (i.e., 227.5 and 310.3MPa), resulting in
the irregular testing of numerous specimens. As depicted in Fig. 1a, several
alloys in Copson’s study were stressed below 90% σYS.

Rojas et al.36 also indicated thatUT is an important feature in examining
SCC resistance. Fundamentally,UT relates to the area under the stress-strain
curve of a specific alloy, encompassing its main mechanical properties (i.e.,
σYS, εf , and σUTS),whichare largely dependent on the chemical composition
and processing history. Thus, the authors suggested thatUTwas vital in the
pattern recognition analysis and the subsequent characterisation of SCC
failure rates, as UT was the most distinctive feature in differentiating each
cluster within the data.

In corrosion engineering, UT is one of the metrics that enables quan-
tifying the susceptibility to SCC in relevant environments. Researchers
routinely determine SCC resistance by comparing stress-strain curves,
which are often obtained from slow strain rate testings (SSRTs) in both, an
inert control environment and specific test solutions52. In this regard, SCC
results in a notable decrease in mechanical properties compared to the
control case. Thus, SCC susceptibility is quantified using well-established
formulae of the form53

SSRT Ratio ¼ Property in the environment of interest
Property in the inert control environment

ð1Þ

Hence, an SSRT ratio approximating 1.0 indicates a low susceptibility to
SCC under the conditions of interest. In contrast, SSRT ratios significantly
below 1.0 suggest poor resistance to SCC. Nevertheless, there is no agree-
ment on a threshold to define an acceptance criterion.

Aside fromUT, othermetrics derived fromSSRTs are customarily used
to evaluate SCC. These include the changes in time-to-failure, maximum
load achieved before failure, or elongation at fracture. Alternatively, SCC
analyses can be complemented by post-test information, such as the
reduction in area, the plastic strain leading to failure, and the segment of the
fracture surface indicative of SCC53. Although SSRT-derived data offer
insights into SCC resistance, they may not provide a comprehensive
understanding of themultiple factors involved in SCC. In fact, the reliability
of SRRT information is subjected to interpretations given its dynamic

Table 1 | Compiled information from Copson34 and Staehle et al.35

Feature Description Min. Max. Std. Feature Description Min. Max. Std.

σYS Yield Strength [MPa] 20.1 1563.0 307.55 S Sulfur [wt%] 0.0 0.1 0.01

σUTS Ult. Tensile Strength [MPa] 128.9 1813.3 278.55 Al Aluminum [wt%] 0.0 1.5 0.3

εf Elongation [%] 0.1 49.0 11.66 Au Gold [wt%] 0.0 1.5 0.09

σapp Tensile Load [MPa] 18.1 530.6 160.25 P Phosphorus [wt%] 0.0 0.3 0.02

Ni Nickel [wt%] 0.0 80.0 17.53 Co Cobalt [wt%] 0.0 1.5 0.09

Cr Chromium [wt%] 0.0 40.0 5.8 Cu Copper [wt%] 0.0 1.8 0.15

C Carbon [wt%] 0.0 0.7 0.05 Ir Iridium [wt%] 0.0 1.5 0.09

N Nitrogen [wt%] 0.0 0.4 0.04 Pd Palladium [wt%] 0.0 1.5 0.09

O Oxygen [wt%] 0.0 0.0 0.01 Pt Platinum [wt%] 0.0 1.5 0.09

H Hydrogen [wt%] 0.0 0.0 0.0 Re Rhenium [wt%] 0.0 1.5 0.09

Si Silicon [wt%] 0.0 2.0 0.33 Ru Ruthenium [wt%] 0.0 1.5 0.09

Mn Manganese [wt%] 0.0 14.7 1.16 V Vanadium [wt%] 0.0 1.5 0.09

Cb Niobium [wt%] 0.0 0.6 0.07 W Tungsten [wt%] 0.0 1.5 0.09

Mo Molybdenum [wt%] 0.0 3.1 0.54 Zn Zinc [wt%] 0.0 1.5 0.09

Ti Titanium [wt%] 0.0 1.5 0.14 B Boron [wt%] 0.0 0.0 0

Be Beryllium [wt%] 0.0 4.0 0.47 tf Time-to-failure [days] 0.1 40 14.59
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conditions, where the test variables (mainly strain rate) and evaluation
criteria are arbitrarily established and based on experience11. Furthermore,
inconsistencies can arise in comparative analyses using SSRTs due to issues
in achieving repeatability and reproducibility. In this respect, Beavers and
Koch54 have documented several SCC studies where SRRTs yielded false
positives and negatives, showing discrepancies compared to other SCC test
methods (e.g., constant load and strain tests) and field observations.

Another frequently employed metric for evaluating the corrosion
resistance of CRAs is the pitting resistance equivalent (PRE), given by55,56

PRE ¼ %Cr þ 3:3 %Moþ 0:5%Wð Þ þ 16%N ð2Þ

The PRE is used to measure the susceptibility to localised corrosion, which
can further lead to SCC. However, PRE is a simplified empirical fitting of
experimental data with critical limitations. Taylor et al.14 highlighted that
PRE does not consider the synergistic effects among alloying elements and
the influence of various factors, such as microstructure, processing or stress
conditions, and environmental variables. Moreover, the PRE model proves
inadequate in evaluating CRAs with novel compositions, particularly when
these encompass elements besidesCr,Mo,N, andW.Therefore, the authors
emphasised the need to develop robust models and metrics grounded in
scientific principles and data-driven methodologies. Such models seek to
establish how variations in alloying element ratios, alongwithmetallurgical,
technological, andmechanical properties, influence localised corrosion and
SCC susceptibilities. To address this need, the current study presents a data-
driven approach that utilises the XGBoost algorithm to elucidate the impact
of alloying elements and their interactions on SCC resistance, with UT

playing a pivotal role in its realisation.

Results
Data Processing
To evaluate susceptibility to SCC, we harness the ratio ofUT to the time-to-
failure observed during SCC testings in boiling MgCl2. This ratio, hereafter
denoted as α, serves as the target variable for the XGBoost regressionmodel.
The basis of this approach lies in the properties ofUT, which quantifies the
energy absorbed per unit volume until rupture occurs57. More importantly,
UT integrates the mechanical properties (i.e., σYS, εf , and σUTS) into a single
measure, which in turn is fundamentally influenced by the chemical com-
position. Thus, we conceptualised α as the volumetric rate of energy
absorption (in units of kJ m–3 s–1), providing a holistic metric that reflects
how efficiently alloy systems absorb energy relative to their durability under
SCC-inducing conditions.

The time-to-failure data used to calculate α were acquired from SCC
tests under constant tensile stresses (see Table 1), specifically adjusted to
each sample’s elastic limit. These loadings could therefore be either above or
below the respective yield points. Additionally,UT values were estimated by
the Ramberg-Osgood model (see Methods section), using the mechanical

propertiesmeasured at relevant testing conditions, as reported by Copson34

and Staehle et al.35 Accordingly, α approximates the energy absorption rate
of a metallic alloy under sustained tensile stresses, whether above or below
the yield point, which gradually leads to failure in a chloride-rich
environment.

By using α, the XGBoost regression model is strategically tailored to
employ predictors such as the chemical compositions of the samples and a
stress stateparameter, specificallyσR which is the ratioof applied tensile load
to yield strength (see Methods section). Thereby, the matrix representation
of the XGBoost model adopts the following form

X ¼

x11 x12 � � � x1j σR1
x21 x22 � � � x2j σR2

..

. ..
. . .

. ..
. ..

.

xi1 xi2 � � � xij σRi

2
666664

3
777775; Y ¼

α1
α2

..

.

αi

2
66664

3
77775 ð3Þ

where X is the matrix of predictor variables used for training the XGBoost
regression model, xij represents the j-th chemical constituent for the i-th
sample, and σRi represents the stress state parameter for the i-th sample. Y is
the vector of target values for the XGBoost regression model, with αi being
the corresponding target value for the i-th sample.

Figure 2 illustrates thebehaviour of the energy absorption rateα, aswell
as its normalised form used for training the XGBoost regression model.
Figure 2a depicts the progression ofα values from themost to the least SCC-
resistant samples. Here, lower α values suggest gradual energy absorption,
which correlates with prolonged times in SCC testings with boiling MgCl2.
Conversely, higher α values indicate a rapid energy absorption, resulting in
accelerated failures due to SCC. As shown in Fig. 2a, the energy rate α
behaves exponentially, introducing a high level of non-linearity. This issue is
addressed by normalising α values through the Box-Cox model58. It is a
parametric power transformation technique that conveniently stabilises the
variance in the target variable, allowing theXGBoost algorithm to effectively
learn the non-linear relationships between α and the predictive features.
Figure 2b illustrates the Box-Cox transformed values of α, which exhibit a
more normally distributed and homoscedastic behaviour.Notably, the Box-
Cox transformation maintains the ordinal relationship between α and SCC
susceptibility, meaning that the highest transformed α values correspond to
the highest energy absorption rates in Fig. 2a and, therefore, the lowest
resistance to SCC.

Given the high dimensionality of the dataset, conventional outlier
detection was not feasible. Instead, we implemented a filtering strategy that
removed 49 specimens to maintain consistency in the training dataset and
prevent bias in the model’s performance. For model training, therefore,
specimens subjected to stress conditions exceeding 50% σYS were selected
from the compiled dataset. As observed byDenhard47, alloys under very low

Fig. 2 | Energy absorption rate (α) and Box-Cox
transformation. a Energy absorption rate α relative
to the time-to-failure in SCC testing in boiling
MgCl2. Here, α indicates the increase in SCC sus-
ceptibility, transitioning from the most to the least
resilient samples in SCC tests. Therefore, the high α
values suggest that the alloys absorb substantial
energy from both stress and the environment,
leading to accelerated failures by SCC.
b Distribution of the Box-Cox-transformed α. The
histogram demonstrates the effectiveness of the
Box-Cox transformation in normalising the dis-
tribution of the target variable. Positive values of the
transformed α correlate with the highest energy
absorption rates, indicating increased suscept-
ibility to SCC.
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tensile stress tend to sharply increase the failure time in SCC tests. Such
conditions may outweigh the impact of chemical composition, which in
turn bias the XGBoost training. Furthermore, hardened samples from
Copson’s study34, possessing a very lowductility (εf ≤ 5%), were excluded to
ensure that the XGBoost model is trained with data points whose SCC
failure behaviour is not unduly affected by hardening processes.

Feature selection
Feature selectionwas initially required to address the high dimensionality of
the dataset since, in many ML applications, not all measured features sig-
nificantly contribute to the underlying phenomena59. Thus, we employ the
mutual information (MI) method to score the most relevant features in
relation toα.Grounded in information theory,MIquantifies theuncertainty
reduction of one variable given a known value of another60. In the context of
supervised learning, the MI approach measures the dependency between
each input variable and the target variable, regardless of their linear and
nonlinear dependencies61. Hence, features with higher MI scores were
selected to train the XGBoost model, as they are more informative
regarding α.

Figure 3apresents theMI scores for regressionmodelling, estimatedvia
the Python library sci-kitlearn62. Complementing this, Fig. 3b depicts the
correlation matrix, offering insights into the relationships between features
and the target variable. Figure 3a shows that some elements—namely Au,
Co, Ir, Pd, Pt, Re, Ru, V, W, and Zn—have a minimal influence on α.
Correspondingly, these elements exhibit weak correlations with other fea-
tures in the dataset, as demonstrated in Fig. 3b. Therefore, these alloying
elements were excluded from the XGBoost model training. Furthermore,
Fig. 3b highlights significantmulticollinearity among features. For example,
an increment in either Fe, Ni, or Cr is indicative of a decrease in the others.
Additionally, minor additions of C, N, O, H, Mn, and Si are positively
correlated.

For clarity, multicollinearity is often a concern in regression ana-
lyses, as variations of one predictor variable are interconnected with
changes in other predictor variables. Particularly, multicollinearity
makes it difficult to isolate and evaluate individual effects of explanatory
variables on the target variable63. This characteristic in the data under-
pins our selection of the XGBoost algorithm, as its regularisation and
penalisation mechanisms mitigate multicollinearity effects. None-
theless, optimal hyperparameter tuning is required to materialise the
XGBoost’s advantages64,65. The following section details the model
optimisation process using nested cross-validation (CV) and Bayesian
hyper-parameter optimisation (BHO), as well as the overall perfor-
mance of the XGBoost regression model.

Evaluation of Model Performance
In this study, the framework provided by the Python librariesOptuna66 and
Ray67 facilitated the implementation and monitoring of the nested CV
protocol. An integral part of this process was employing the Box-Cox
transformed values of α. This strategy not only normalises, but also ensures
uniformity across differentmagnitudesofα. Thus, our predictions and error
metrics are hereafter reported regarding the Box-Cox transformation.

Figure 4 summarises the performance evaluation of the XGBoost
regression model during both, nested CV with BHO and the final training
process. Figure 4a illustrates the BHO performance during the nested CV
process, which evaluated 3000 hyperparameter sets. Here, high values of
root-me represent pruned trials that the BHO method deemed unpromis-
ing. The optimal XGBoost configuration achieved a minimum root mean
square error (RMSE) of 1.418 ± 0.12. Table 2 summarises the hyperpara-
meter intervals for the XGBoost model and the optimised values obtained
through nested CV with BHO.

Figure 4b and c present the final phase results of the XGBoost model’s
training and validation. Figure 4b compares the predicted and actual α
values across CV folds (i.e., validation subsets). In this figure, the proximity
of the points to the diagonal line indicates, in principle, that the model
effectively avoids overfitting and can generalise well to unseen data68. In

terms of the mean absolute error (MAE), the XGBoost model’s predictions
of α differ from actual observations in a range from 0.75 to 0.94.

Figure 4c further illustrates the XGBoost model’s performance,
showing a goodfit between the predicted and actualα values using the entire
dataset. The maximum error made by the XGBoost regression model was
1.408, which is within the RMSE range observed during the nested CV
process. Themodel’s prediction error was quantified using keymetrics such
as RMSE and MAE, which yielded values of 0.663 and 0.449, respectively.
The low MAE demonstrates that, on average, the predictions made by our
XGBoost regressionmodel align closely with the actual αvalues. Apart from
that, the coefficient of determination (R2) was 0.949, indicating the pro-
portion of the variance in the target variable α that is predictable from input
variables. In other words, the XGBoost regression model accounts for
approximately 95% of the variability in the entire dataset.

Feature contribution analysis
Having an XGBoost regressionmodel with adequate precision to predict α,
we interpret the individual contributions of each input feature to themodel’s
output throughpermutation importance (PI) andSHAP. Figure 5 compares
the results of these ML interpretation methods. In this case, PI provides a
global overview of the feature importance in the XGBoost regressionmodel.
Comparatively, SHAP allows for a more granular understanding of feature
effects at the level of individual predictions.

Figure 5a depicts the PI scores calculated using the Python package
ELI569. The features are ranked in descending order of importance, allowing
for the identification of key attributes that significantly impact the model’s
performance. The PI approach centres on the premise that perturbing the
values of a critical feature leads to a significant decrease in model accuracy.
Thus, the PI scores indicate that Ni, with a weight of 0.263 ± 0.005, stands
out as the most influential predictor in the XGBoost regression model. It is
followedby σR, aswell asCr andFe,with aweighted impactof 0.155 ± 0.019,
0.103 ± 0.15, and 0.098 ± 0.006, respectively. These results suggest that the
XGBoost model’s predictions of α depend primarily on the concentrations
of major alloying elements, coupled with the applied tensile loading.
However, their combined influence results in a global impact ranging from
0.5733 to 0.661,meaning that themodel’s outputs are considerably sensitive
to minor additions, as their collective effect can vary from 0.311 to 0.349.

Figure 5b depicts the SHAP summary plot obtained via the TreeSHAP
explainer implemented in the Python package SHAP70. The features in Fig.
5b are arranged in descending order of importance based on the mean
absolute value of their Shapley values across all samples. Each point
represents a sample in the dataset, and its position on the horizontal axis
indicates the feature’s impact on the XGBoost model’s predictions. Positive
(rightward) shifts in SHAP values indicate an increase in the prediction of α
values, suggesting a higher susceptibility to SCC. Conversely, negative
(leftward) shifts indicate a decrease in the prediction of α values, implying
reduced vulnerability to SCC. The colour gradient shows the feature’s
magnitude, ranging from red for high values to blue for low values. For
clarity, the specific ranges of feature values were previously reported in
Table 1.

At an individual level, the SHAP values reveal feature contributions
that align closely with the global results from PI. As shown in Fig. 5b, Ni
remains the most influential factor in the XGBoost model’s predictions.
Here, high Ni concentrations result in leftward shifts of SHAP values,
indicating a decrease in the values ofα, and thus enhanced resistance to SCC
in boiling MgCl2. Furthermore, Cr was identified as the second most
important feature. Its position can be attributed, in principle, to its influence
on improving localised corrosion resistance in chloride-rich
environments71. This aligns with the established understanding that loca-
lised corrosion events often precede SCC11. Interestingly, Fig. 5b reveals that
high Cr concentrations (approaching a maximum 40wt%) seem to render
more vulnerable alloys to SCC in boilingMgCl2, as indicated by the positive
shift in the associated SHAP values. However, the distribution of negative
SHAP values for Cr appears more heterogeneous than that of Ni, implying
that its effect on α depends on the interaction with other alloying elements.
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As seen in Fig. 5b, the significant impact of stress conditions is evident
in the positive shift of SHAP values with the highest σR (i.e., σR ≥ 1). This
observation indicates that plastically stressed samples experience a sub-
stantial increase in the predicted values of α, leading to accelerated SCC
failures. Apart from this, samples containing additions of Be, Al, and Cu
frequently resulted in a leftward shift in SHAP values, pointing out to an

increase in SCC resistance. In contrast, the highest concentrations of other
minor alloying elements (i.e., C, N, Si, H, Mo, Mn, and O) and impurities
(i.e., P and S) consistently yielded positive SHAP values, suggesting a det-
rimental effect on SCC resistance.

Table 3 summarises the feature effects from the SHAP analysis on the
XGBoost regression model (see Fig. 5b). Here, the mean absolute SHAP

Fig. 3 | Mutual information and correlation ana-
lysis. aMI scores of features for predicting α. This
feature selection method indicates that Au, Co, Ir,
Pd, Pt, Re, Ru, V, W, and Zn exhibit minimal rele-
vance in the prediction of the target variable α.
b Correlation Matrix. The relationships among
features and target variable α are illustrated. The
dataset shows a high level of multicollinearity
among the chemical constituents. However, adding
Au, Co, Ir, Pd, Pt, Re, Ru, V, W, and Zn correlates
poorly with other variables, including α.
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values and contributions to α are outlined for each feature, indicating their
impact of on SCC resistance in boiling MgCl₂, as shown by the direction of
SHAP values.

The specific contribution of Ni was further examined through the
behaviour of SHAP values, as illustrated in Fig. 6. Interestingly, Ni content
was found tomodulate the impact of other input variables. This is observed
in Fig. 6a, where a distinct shift inmean absolute SHAP values occurs when
Ni content reaches 14.5 wt%. At this point, the mean SHAP score for Ni
markedly decreases from0.98 to 0.44, which is accompanied by a significant
drop in the average impact of some minor additions, particularly C, H, Si,
Mn,Mo, P, and S.While such alloying additions can be detrimental to SCC
resistance, their diminished SHAP values beyond 14.5 wt% Ni suggest that
their effects are relativelymitigatedwhenNi is present in higher amounts. In
contrast, themean absolute SHAPvalues forFe,Cr, andσR remain relatively
stable across varying Ni levels, indicating a persistent influence (whether
positive or negative) on predicting α and, therefore, on SCC resistance.

Figure 6b further elucidates the influence of Ni content on SCC
resistance, as reflected through SHAP value behaviour. Here, a downward
trend in SHAP values is observed as Ni content surpasses 14.5 wt%, indi-
cating increasingly negative contributions to α, and thus a corresponding
reduction in SCC susceptibility. In fact, most specimens with over 14.5 wt%
Ni exhibited SCC resistance exceeding seven days in boiling MgCl₂, sur-
passing themedian failure rate observed in the experiments ofCopson34 and
Staehle et al.35 In Fig. 6b, SHAP values reach a local minimum around 40 wt
% Ni, indicating optimal SCC resistance at this concentration. However, as
Ni content rises above 45 wt%, a notable increase in SHAP values is
observed, signalling a decrease in SCC resistance. This trend aligns with
experimental observations from Copson34 and Staehle et al.35, wherein

samples containing 20−45 wt% Ni demonstrated superior durability in
boiling MgCl₂ compared to those with greater Ni content. More impor-
tantly, these results highlight the XGBoost model’s ability to predict
increased SCC susceptibility at very high Ni concentrations.

Analysis of model output
To showcase the explanatory capabilities of the XGBoost regression model
and SHAP feature attributions, we examined the SCC resistance of four
specificCRAs. In this analysis,wepredictedα values of SS andNi-base alloys
using the XGBoost regression model. Subsequently, the most important
features contributing to the predictions of α were interrogated through
SHAP local explanations. Table 4 provides the chemical compositions of the
selected samples, their performance during SCC testings in boiling MgCl2,
and the predicted values of α. As previously noted, the energy rate α was
Box-Cox transformed to ensure data uniformity, allowing its use as a
standardised proxy for evaluating SCC susceptibility, with lower values
indicating reduced propensity for cracking.

Figures 7 and 8 present SHAP waterfall plots, which decompose local
feature effects for the selected alloys into positive and negative contributions
to α. The features are ranked by their absolute impact on the predictions.
These plots enable a comparative analysis of the 10most important features
for each selected specimen. Essentially, the SHAP waterfall plots depict the
input feature effects as cumulative steps, starting from an average prediction
(i.e., base value ϕ0 = – 2.703) and sequentially building up to the final value
of α through the influence of each feature.

Figure 7a and b compare two SS samples, alloys S30400 and S31000,
respectively. Here, our XGBoost model predicted a considerably lower
susceptibility to SCC for alloy S31000 (α = –3.421) compared to alloy

Fig. 4 | Evaluation of XGBoost model perfor-
mance. a Performance visualisation of nested CV
coupled with BHO after evaluating 3000 hyper-
parameter sets. Here, the red point highlights the
optimal XGBoost hyperparameter set, achieving a
minimum RMSE of 1.418 ± 0.12. b XGBoost model
performance across validation subsets during k-fold
CV, with a MAE range from 0.75 to 0.94. c Overall
performance of the XGBoost regression model,
demonstrating the close fit between actual and pre-
dicted values of α values. Key metrics highlight the
model’s predictive proficiency, with a high R2 value
of 0.949 and a low MAE value of 0.449, while an
RMSE value of 0.663 indicates larger prediction
deviations. The maximum error predicted was
1.408. All results and metrics are based on the Box-
Cox transformed values of α.
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S30400 (α = 1.897). This prediction aligns with the observed lifespans of
these alloys in SCC testings with boiling MgCl₂, where specimen S30400
failed after 0.416 days, while specimen S31000 endured for 9.49 days. As
illustrated in Fig. 7a, all interactions among chemical constituents in alloy

S30400 synergistically contributed to ahigher energy absorption rateα, even
under a relatively low tensile stress (σR = 0.68). Comparatively, the bulk
chemical composition of specimen S31000, particularly the high Ni and Cr
levels, conferred significant SCC resistance. Figure 7b shows that despite

Table 2 | XGBoost hyperparameters, search spaces explored, and optimised values after the nested CV with BHO

Hyperparameter a Function Search Space Optimised Value

eval_metric Evaluates model’s performance during training using RMSE - “rmse”

booster Specifies the use of gradient boosted trees as the base learner for the XGBoost model. - “gbtree”

objective Indicates that model being trained for a regression task using the squared error as loss function. - “reg:squarederror”

reg_lambda Controls the ridge regression strength on the model weights, preventing overfitting. 1e-8 to 10 114

reg_alpha Controls the lasso regression strength on the model weights, promoting sparsity and feature
selection.

1e-8 to 10 9.831

n_estimators Determines the number of boosting rounds (i.e., trees) used in the model. 100 to 10000 5376

max_depth Limits maximum depth of each tree, controlling model complexity and preventing overfitting. 3 to 20 12

max_leaves Limits the maximum number of leaves in each tree when grow policy is set to “lossguide”. 3 to 20 7

max_delta_step Restricts the maximum change in the weight estimation of each leaf during a tree update,
contributing to model robustness.

1 to 20 13

subsample Specifies the fraction of training samples used for growing each tree, introducing randomness
and reducing overfitting.

0.6 to 0.9 882

colsample_bytree Specifies the fraction of features randomly sampled for each tree, further reducing overfitting. 0.6 to 0.9 867

colsample_bynode Specifies the fraction of features randomly sampled for each split within a tree. 0.6 to 0.9 668

colsample_bylevel Specifies the fraction of features randomly sampled for each level in a tree. 0.6 to 0.9 727

min_child_weight Defines the minimum sum of instance weights needed in a child node, helping to control
overfitting.

1 to 10 1

learning_rate Determines step size at each iteration while moving towards the minimum of a loss function,
impacting the model’s convergence speed and accuracy.

1e-8 to 0.1 134

gamma Sets theminimum reduction in the loss function required tomake a further partition on a leaf node
of the tree, acting as a regularization parameter.

1e-8 to 1.0 1.84e-06

grow_policy Controls how new nodes are added to the tree, aiming to optimise the loss reduction with
each split.

“depthwise” or
“lossguide”

“lossguide”

num_parallel_tree Determines number of parallel trees constructedduring each iteration in boosted random forests. 2 to 10 4

Hyperparameter names are reported as specified in the Python library documentation XGBoost129.

Fig. 5 | Feature Importance of XGBoost
regression model. a Global impact of attributes
based on PI scores. The error bars represent the
standard deviation of PI scores. Significant additions
of Ni, Fe, Cr, and σR collectively provide a weight to
the model’s output from 0.573 to 0.661. b Local
contributions via SHAP values. Here, data points are
spread horizontally, reflecting the feature effect on
the model’s predictions. A rightward shift suggests
higher α values and increased SCC susceptibility,
while a leftward shift implies lower α values and
reduced SCC vulnerability. The SHAP values are
expressed in the Box-Cox transformed scale of α.
The colour gradient going from blue (low) to red
(high) indicates the influence of the feature
magnitude.
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being stressed slightly below its yield point (σR = 0.83), the combined effect
of Ni and Cr justifies the S31000 sample’s resistance to SCC, accounting for
over a third of the α value (i.e., –1.27).

Figure 8a and 8b compare two Ni-base samples, alloys N06600 and
N08810, respectively. These specimens possess similar compositions and
were tested under identical tensile stress conditions (σR = 0.9) in boiling
MgCl₂. According to the XGBoost regression model, alloy N08810 has
superior SCC resistance (α = –5.11) compared to alloy N06600 (α = –
4.012). These results are consistent with the experimental observations,
where specimen N08810 endured 24.45 days in SCC testing, over twice as
long as N06600. In Fig. 8b, SHAP analysis reveals that the synergistic effect
ofNi, Cr, andCu is the primary contributor to the enhanced SCC resistance
of N08810. Specifically, the combined contribution of Ni, Cr, and Cu in
N08810 accounted for over half of the total negative α value (i.e., –2.69). In
stark contrast, specimen N06600 exhibited greater susceptibility to SCC
despite its elevated Ni content, as shown in Fig. 8a.

Discussion
Building upon the seminal investigations of Copson34 and Staehle et al.35,
this study introduces a data-drivenmethodology to assess the susceptibility
of Fe–Cr–Ni alloys to SCC. Unlike our previous publication36, the current
work moves beyond examining empirical observations (e.g., the beneficial
effect of Ni), and leverages the XGBoost-SHAP analytical framework to
quantify the impact of alloying elements and tensile stresses on SCC resis-
tance. Central to ourmethodologywas the use of the energy absorption rate
α as a unifying metric, which enabled the XGBoost algorithm to infer how
variations in alloy composition and loadings influence SCC failure rates in
boiling MgCl2.

Previous studies have explored using a single parameter to encapsulate
the relationship between alloy composition, stress, and SCC susceptibility,
although they have exhibited significant limitations. For instance, Parkins72

introduced the SCC index (SCI), which aimed to describe the effect of alloy
composition and mechanical response on cracking propagation. The SCI
was derived from linear regression analyses of time-to-failure data from
SCC testings (i.e., SSRT and constant strain) and electrochemical potentials.
However, this approachwas limited in accuracy (i.e., R²≈ 0.77) and failed to

fully explain the influence of multiple alloying additions. Specifically, SCI
models confirmed the positive impact of Cr and Ti on SCC resistance in a
range of environments (i.e., nitrate, hydroxide, and carbonate-bicarbonate
solutions), while the effects of other elements such as Mo, Cu, Ni, and Al
remained unclear.

Similarly, Hines and Jones73 investigated the effects of alloy composi-
tion on the SCCbehaviour of austenitic Cr−Ni steels in boilingMgCl₂using
polynomial regression analysis. This study employed samples with varying
Cr (8–26 wt%) andNi (6–12 wt%) content, alongwithminor additions ofC,
Mo, Ti, Cu,Mn, and Si. The time-to-failure from constant-load tests served
as the target variable in their regression models, while chemical composi-
tions of specimenswereused as predictors. The proposedpolynomialmodel
primarily elucidated the influence of minor additions, such as C and Mo.
However, the individual contributions of Ni and Cr could not be discerned
due to their mutual correlation, which is a common problem arising from
multicollinearity between predictors.

The relationship between alloy composition and SCC resistance has
also been associatedwith the stacking fault energy (SFE)74. The SFEhas been
analysed as a predictor of SCC in various environments, including boiling
MgCl₂75. Here, materials exhibiting high SFE often demonstrated enhanced
SCC resistance, whereas those with low SFE were more prone to cracking
due to localiseddeformationmechanisms, chiefly transgranular SCC. In this
context, linear regression models have been proposed to predict SFE values
based on alloying additions in austenitic SS, thereby elucidating the impact
of compositional variations on SCC susceptibility76,77. These models suc-
cessfully identified the positive influence of increased Ni content on SFE,
correlating it with improved SCC resistance. However, the regression
models were constrained to a few elements (i.e., Ni, Cr, Mn, Si) and did not
fully capture the observednon-linearity betweenalloying additions andSFE.

Comparatively, theXGBoost-SHAPframework employed in this study
effectively addresses the challengesof high-dimensional data andnon-linear
interactions inherent in multiple alloy systems. Notably, ourML regression
model effectively isolated the effects of compositional variations and tensile
stress, thus elucidating their bearing on SCC failure trends in boilingMgCl2.
For instance, the SHAPanalysis ofNi’s influence on SCC resistance (see Fig.
6) revealed a critical threshold at 14.5 wt% Ni. Below this level, Fe-Cr-Ni

Table 3 | Feature contribution on energy absorption rate α and SCC susceptibility in boiling MgCl₂, as interpreted through
SHAP values

Feature Mean | SHAP value | Contribution to α and SCC susceptibility in boiling MgCl2

Ni 0.72 Decreases α beyond 14.5 wt%, significantly increasing SCC resistance.

Cr 0.56 Generally improves SCC resistance at moderate levels (~17.5 wt%), but can be detrimental above 25 wt%. Effect on α is highly
dependent on interactions with other elements, particularly Ni.

σR 0.46 Negative contributions to α below 0.88, but a substantial increase in α; and hence SCC susceptibility above 0.94.

C 0.43 Detrimental to SCC resistance, with increasing α within the range of 0.04-0.7 wt%.

Fe 0.36 Contribution to α is interaction-dependent. Usually, Fe-base alloys with high Fe content (>70 wt%) and low Ni (<10 wt%) exhibited
rapid SCC failures.

N 0.34 Typically detrimental to SCC resistance, increasing α above 0.03 wt%.

Be 0.16 Significant decrease in α values. Beneficial to SCC resistance above 0.2 wt%, even at low Ni levels (e.g., 5 wt%).

Si 0.16 Detrimental to SCC resistance, with increasing α above 0.23 wt%.

H 0.14 Consistently increases α, detrimental to SCC resistance.

Mn 0.13 Detrimental to SCC resistance at high concentrations (>2.0 wt%).

Mo 0.10 Contribution to α is interaction-dependent with Ni and Cr. Detrimental above 0.3 wt% with low Ni and Cr levels.

P 0.06 Detrimental to SCC resistance, with increasing α above 0.01 wt%.

Al 0.04 Beneficial to SCC resistance above 0.15 wt%.

Cu 0.04 Beneficial to SCC resistance above 0.3 wt%.

S 0.03 Detrimental to SCC resistance, with increasing α above 0.1 wt%.

O 0.03 Consistently increases α, detrimental to SCC resistance.

Ti 0.01 Negligible contribution to α.

Cb 0.0005 Negligible contribution to α.
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specimens often failed within seven days, indicating a significant SCC vul-
nerability. This pattern appears to correlate with SCC susceptibility of SS
alloys in hot chloride solutions, where intergranular and transgranular
fractures initiated from localised attacks (i.e., pits) are commonly
reported78–80.Many of these SCC casesmay, in turn, be influenced byminor
additions (mainly C and Si), which can induce sensitisation, and thereby
triggering localised changes in the passive film81.

Furthermore, our XGBoost regressionmodel predicted increased SCC
susceptibility when Ni content exceeds 45 wt%. This finding is consistent

with other studies observing similar SCC failure patterns in high-Ni content
alloys. For instance, Coriou82 reported that alloys with over 70 wt% Ni (i.e.,
N06600) often undergo SCC in pure and chlorinated water at elevated
temperatures (i.e., ≥ 350 °C). However, alloys with 20–65 wt% Ni (e.g.,
N08800 and N06690) have demonstrated superior SCC resistance under
these conditions48,49. In boilingMgCl₂, alloys containing 30–34 wt%Ni have
also exhibited comparable or slightly better resistance than those with 70 wt
% Ni, predominantly failing through intergranular fracture19,83.

The SHAP value analysis (see Fig. 5b) also highlighted that high Cr
concentrations were detrimental to SCC resistance. This observation is
consistent with our previous findings from Copson34 and Staehle et al.35,
where samples exceeding 20 wt% Cr were susceptible to SCC in boiling
MgCl₂, particularly when not balanced with sufficient Ni36. Other investi-
gations on SS alloys have shown similar results, where a Cr content up to
15 wt%, combined with around 10 wt% Ni, reduced SCC susceptibility11,79.
However, an increase in Cr content within the range of 18–25 wt% proved
detrimental in boiling MgCl₂.

The XGBoost regression model also identified that stress conditions,
particularly those inducing plastic deformation, can exacerbate SCC failure
rates. However, it is important to note that certain alloy systems may not
necessarily experience accelerated cracking under high-stress conditions, on
account of the influence of specific minor additions. For example, Staehle
et al.35 observed that Fe-Cr-Ni alloys with Be additions did not fail after
30 days of exposure to boiling MgCl₂, even when subjected to constant
tensile loads far exceeding their yield point (i.e., σR ≥ 1.5). This observation is
supported by the SHAP analysis (see Fig. 5b), which showed a positive
impact of Be additions on SCC resistance. The addition of Be is well-known
to enhance the resistance of Ni-base alloys to SCC and CF at elevated
temperatures,withoptimal concentrations ranging from1.8 to 2.75 wt%25,84.

The XGBoost assesses other minor alloying elements in line with
experimental observations in existing literature (see Table 3). For example,
additions of Al and Cu have been proven to enhance SCC resistance. Spe-
cifically, adding Al up to 6 wt% promotes the formation of an aluminium
oxide (Al2O3)film in both Fe- andNi-base alloys, increasing their resistance
to oxidation and sulfidation at high temperatures (i.e., over 600 °C)25. In
chloride-rich environments, such as boiling MgCl2, Al additions above
0.1 wt% are reported to improve SCC resistance in a range of SS alloys85,
although Al was detrimental below 0.04 wt%50. Similarly, Cu addition
provides corrosion resistance in reducing acids and salts25.Moreover, recent
studies indicate that Cu enrichment (up to 5 wt%) decreases the severity of
pitting corrosion in Ni–13Cr–10Fe alloys exposed to chloride
environments86. This has been attributed, in principle, to a reduction in the
active dissolution rate within pits, and an increase in the local pit pH.

Conversely, the XGBoost regressionmodel identified C, N, Si, Mn,Mo,
P, and S as detrimental to SCC resistance in boiling MgCl2. In this regard,
numerouspublicationshaveextensively investigated their impactoncracking
development in chloride-rich environments. For example, Loginow and
Bates87 reported the detrimental effects of increasing the N and C content
(within the range of 0.001–0.1 wt%) in 18Cr–10Ni alloys when exposed to
boiling MgCl2

87. Similarly, N concentrations above 0.05 wt% have been
associated with SCC of various 16–20Cr+ 20Ni base alloys20,21,50,51. The
influence of Mn and Si appears to vary in boiling MgCl₂. Typically, the
presence ofMn in SSdoesnot effect SCCresistanceunless its concentration is
between 2–4wt%88,89. The addition of Si to Ni-base alloys is generally detri-
mental, although it has been observed to enhance the SCC resistance of SS,
providing that the Si content remains below 2.0 wt%25,43. In the case ofMo, it
enhances the resistance of SS topitting corrosion, although content exceeding
0.9 wt% has been shown to detrimentally affect the SCC resistance of
18Cr–10Ni alloys in boilingMgCl2

17,90
. The synergy between P and S in both

SS and Ni-base alloys is usually detrimental to cracking resistance11,87. In this
case, it has been experimentally observed that SS alloys can increase their
resistance to SCC in boiling MgCl2 when P content is below 0.003 wt%91.

Overall, the energy absorption rate α used for training our XGBoost
model permitted a holistic assessment of factors contributing to SCC
resistance. However, it is important to acknowledge that α is merely a

Fig. 6 | SHAP value analysis of Ni contribution to SCC resistance. a Shifting
feature impact with increasingNi. Themean absolute SHAP values forNi andminor
alloying elements (mainly C, H, Si, Mn, Mo, P, S) change markedly at 14.5 wt% Ni,
signalling a reduction in their impact on SCC susceptibility. b SHAP values as a
function of Ni content illustrate the non-linear relationship between Ni con-
centration and SCC resistance. AmaximumSCC resistance is observed around 40 wt
% Ni, whereas SCC susceptibility increases when Ni content exceeds 45 wt%. The
SHAP values represent the fluctuations of the Box-Cos transformed values ofα. Data
points are colour-coded to differentiate samples that failed within(red) and beyond
(blue) seven days in boiling MgCl₂, as reported by Copson34 and Staehle et al.35.
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theoretical construct designed to apply ML regression analysis. Therefore,
the physical meaning and applicability of α require further validation. This
could be achieved through experimental validation across diverse envir-
onmental conditions, or by developing a theoretical framework grounded in
damage mechanics88, aimed at linking α with underlying cracking
mechanisms (e.g., dislocation dynamics or crack propagation). One
potential path for theoretical work lies in energy-based descriptors such as
fracture fatigue entropy (FFE)89,92. It derives from irreversible thermo-
dynamics principles and represents the accumulated entropy generated
until fracture. Due to its material-specific nature and independence from
testing conditions (i.e., frequency, stress amplitude, geometry, or environ-
ment), FFE is being employed in predicting the fatigue life of components
under fluctuating damage conditions93,94. Another limitation of the present
study is the lack ofmicrostructural information in the dataset (e.g., grain size
and orientation, phase composition, precipitates), which is known to
influence SCC occurrence. Additionally, the XGBoost model may be
inadequate for evaluating alloys that exhibit singular effects in elastic
properties, such as abrupt decreases in bulk or shear modulus due to the
addition of specific alloying elements (e.g., Cr or Al). In this regard, no
significant microstructural details or singularities in material properties
were reported in the studies by Copson34 and Staehle et al.35

Despite the dataset’s limitations, the analytical framework combining
theXGBoost algorithmandSHAPanalysis yielded valuable insights into the
influence of alloying elements on SCC resistance in boiling MgCl₂. By
introducing the ratio between tensile toughness and time-to-failure, deno-
ted as α, we were able to quantify SCC resistance and reveal the cooperative
effects among alloy constituents. The synergy between the XGBoost algo-
rithm and SHAP holds significant practical potential for materials engi-
neering, allowing for exploring extensive compositional spaces with
minimal experimental effort. Consequently, it can enable informed
adjustments to concentration ratios in alloy systems, examining non-
intuitive compositional combinations, and predictive assessments of
material properties that enhance SCC resistance.

Methods
Dataset
We employ the dataset compiled by Rojas et al.36, which contains the
observations documentedbyCopson34 and Staehle et al.35 Table 1 provides a
comprehensive overview of the 269 samples in this dataset, detailing their
chemical composition, mechanical properties, tensile loading, and time-to-
failure in SCC testing conducted in boiling MgCl2.

Additionally, other features, such as stress ratio (σR) and UT were
estimated for each sample in the data frame. Specifically, σR refers to the
ratio of applied load (σapp) to σYS and enables the evaluation of the stress
state of the samples, which can be elastically (σR < 1) or plastically (σR > 1)
stressed. Hence, σR is given by

σR ¼ σapp
σYS

ð4Þ

Regarding UT , we approximate this property by calculating the area
under the stress-strain curve defined by the Ramberg-Osgood equation of
the form57

UT ¼
Z εf

0

σ

E
þ σ

H

� � 1
nð Þ
dε ð5Þ

wherein σ is stress, E denotes Young’s modulus, ε is the strain, and εf
represents the strain at failure. The constants, H and n, represent the
strength coefficient and the strain hardening exponent, respectively. To
approximateH and n, the elastic zone is assumed to be negligible, such that
the yield point at a strain of 0.2% is within the plastic region of the stress-
strain curve. Thereby, the values of H and n can be determined using the
following expressions95

σYS ¼ Hð0:002Þn ð6Þ

n ¼
log σUTS

σYS

� �
log

εf
0:002

� � ð7Þ

Machine learning workflow
Figure 9 illustrates the three-stage workflow used in the current study. The
initial stage relies ondatapreparation, comprisingpreprocessing and feature
selection. These steps are critical for converting the dataset into a format
suitable for training the XGBoost regression model. In this context, pre-
processing involves configuring the input variables in relation to a desig-
nated target variable, which centres on UT . Here, the target variable was
normalised using theBox-Cox transformation. This is a statistical technique
that stabilises variance and makes data more normally distributed. It is
particularly useful when dealingwith non-linear, skewed, or heteroscedastic
datam, which is is defined as96

yðλÞ ¼
yλ�1
λ if λ≠ 0

in ðyÞ if λ ¼ 0

(
ð8Þ

where y is the original data, and λ is the power parameter. The optimal value
of λ is chosen to maximise the normality of the transformed data, typically
by using a maximum likelihood estimation method58.

Subsequently, feature selection is required to identify themost relevant
predictors of the target variable. Further details on both the preprocessing
and feature selection are outlined in the Results section. It is important to
clarify that the XGBoost algorithm was primarily considered due to its
capacity to handle substantial data dispersion, effectively model non-linear
relationships, and demonstrate reduced sensitivity to outliers relative to
linear or kernel-based models64,97.

In the second stage, we employ a nested CV process with five resam-
pling folds, which optimise the hyperparameters of the XGBoost regression

Table 4 | Characteristics of selected samples for SHAP comparative analyses. The energy rate αwas predicted by the XGBoost
regression model

UNS Ni [wt %] Cr [wt %] σR [-] tf [days] Energy rate α Source

S30400 a 10.14 18.07 0.68 0.416 1.897 Copson34

S31000 b 21.16 25.82 0.83 9.49 – 3.421 Copson34

N06600 c 76 15.00 0.9 10.17 – 4.012 .Staehle et al.35

N08810 d 31.47 20.98 0.9 25.45 – 5.11 .Staehle et al.35

aRemaining additions: 0.06 C, 0.5 Si, 0.92 Mn, 0.13 N, 0.002 H 0.02O, Bal. Fe.
bRemaining additions: 0.13 C, 0.45 Si, 1.82 Mn, Bal. Fe.
cRemaining additions: 0.1 P, Bal. Fe.
dRemaining additions: 0.87 Mn, 0.46 Cu, 0.007 S, Bal Fe.
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model. This time-intensive procedure ensures that themodel is finely tuned
for maximum predictive accuracy. More importantly, nested CV allows for
optimal utilisation of small datasets. It has been reported to be relatively free
of bias and yields reliable results even with datasets containing fewer than
600 samples, as is the case with our dataset98,99. It is noteworthy to specify
that Bayesian optimisation is applied during the nested CV process, which
efficiently explores the hyperparameter space, identifying the optimal
combination that maximises the model’s performance, while minimising
computational resources.

Thereafter, the overall model’s performance is rigorously examined
through a final training and validation phase. Importantly, the nested
CV and subsequent final evaluation employ three metrics to assess the
performance of the XGBoost model: RMSE, MAE, and R2, calculated as
follows

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

yðiÞ � ŷðiÞ
� �2r

ð9Þ

Fig. 7 | SHAP waterfall plots of SCC in SS alloys.
Comparative analysis of SCC susceptibility in SS
alloys S30400 (a) and S31000 (b). Here, SHAP
waterfall plots illustrate the contribution of each
feature to the predicted energy absorption rate α.
Each bar indicates the directional effect of a feature,
with positive (red) contributions increasing α, and
negative (blue) contributions decreasing α, starting
from the base value ϕ0 = – 2.703. a The combined
effect of alloying elements in S30400 results in a
positiveα value of 1.897, indicating a relatively high
susceptibility to SCC. b The high Ni and Cr content
in S31000 contribute to a low value of -3.421, indi-
cating enhanced SCC resistance.
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MAE ¼ 1
n

Xn
i¼1

yðiÞ � ŷðiÞ
�� �� ð10Þ

R2 ¼
Pn

i¼1 yðiÞ � ŷðiÞ
� �2

Pn
i¼1 yðiÞ � �y

� �2 ð11Þ

where, yðiÞ and ŷðiÞ are the actual and predicted values, respectively, of the
dependent variable for the i-th observation. The symbol n denotes the total
number of observations, while�y is themean value of the dependent variable
over all n observations.

The third stage focuses on the interpretative analysis of the XGBoost
regressionmodel, aiming to elucidate the contributions of each input feature
to the model’s predictions. This is achieved through explainable AI meth-
ods, specifically PI and SHAP. In this feature contribution analysis, we
quantitatively assess the synergies among alloying elements and their
bearing on SCC resistance. Lastly, we further analyse the model’s ability to
quantify SCCsusceptibility of selectedCRAs.Here, theXGBoost outputs are
interrogated through SHAP feature attributions, offering a comprehensive
assessment of how chemical constituents affect SCC resistance individually.
The overview of the ML workflow provides the necessary context for the
ensuing sections, which elaborate on the ML algorithms techniques
employed in the present work.

Fig. 8 | SHAP waterfall plots of SCC in Ni-base
alloys.Comparative analysis of SCC susceptibility in
Ni-base alloys N06600 (a) and N08810 (b). The bars
represent a feature contribution to the predicted
energy absorption rate α. Positive (red) contribu-
tions increase α, while negative (blue) contributions
decrease α, starting from the base value ϕ0 = – 2.703.
a In alloy N06600, Ni and Cr contribute the most
to the α value of – 4.012, with other elements and σR
having minimal impact. b In N08810, the syner-
gistic effect of Ni, Cr, and Cu results in a lower α
value of – 5.11, enhancing its SCC resistance com-
pared to N06600.
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Machine learning algorithms
Extreme gradient boosting. Developed by Chen and Guestrin37, the
XGBoost algorithm serves as a scalable and highly precise computa-
tional technique, which is applicable for classification and regression
tasks in numerous domains100. Fundamentally, XGBoost employs an
ensemble learning strategy based on the gradient boosting (GB) fra-
mework, which was initially proposed by Friedman101. Therefore, the
XGBoost algorithm generates a sequence of weak learners (i.e., clas-
sification or regression trees) designed to constitute the final predictive
model97.

In contrast to algorithms that construct regression trees in parallel (e.g.,
Random Forest102), the sequential approach of XGBoost follows an additive
training strategy97. First, it trains a single tree to generate an initial predic-
tion. Subsequently, the model is refined by introducing additional trees
based on the residuals obtained64. Thus, the output of the XGBoostmodel is
the aggregation (either averaged or voted) of outputs from a series of trees,
which may be expressed as

ŷi ¼
XK
k¼1

f k xi
� �

; f k 2 F ð12Þ

whereK corresponds to the total number of trees, k represents the k-th
tree, xi is the feature vector corresponding to sample i, ŷi corresponds
to the predicted score from this tree, while F is the space of
regression trees.

Notably, the objective function in the XGBoost algorithm consists of
two parts: 1) the loss function that measures the difference between the
predicted values and the true values; and 2) the regularisation term, which
controls the complexity of the model to prevent overfitting37. Thereby,
XGBoost is aimed at minimising the objective function (obj) expressed as

obj ¼
Xn
i¼1

L yi; ŷi
� �þXK

k¼1

Ω f k
� � ð13Þ

where n is the number of samples, yi is the actual value of the i-th target; ŷi is
the predicted value of the i-th target. Hence, the L yi; ŷi

� �
is the training loss

function that quantifies the discrepancies between predictions and data
points, whileΩ f k

� �
is the regularisation term that can be defined as

Ω f k
� � ¼ γT þ 1

2
λ
XT
j¼1

ω2
j ð14Þ

here, T is the number of leaves, and ωj is the score of the j-th leaf. The
coefficient γ stands for the minimum loss reduction required to split a new
leaf, while λ is a regularisation coefficient.

During the boostingprocess, the predicted output is updated of the t-th
iteration as follows

ŷ tð Þ
i ¼ ŷ t�1ð Þ

i þ f t xi
� � ð15Þ

hence, the objective function takes the form

obj tð Þ ¼
Xn
i¼1

L yi; ŷ
t�1ð Þ
i þ f t xi

� �� �
þ Ω f t

� �
ð16Þ

Particularly, XGBoost uses the second-order Taylor expansion of the loss
function, which allows for faster optimisation and improved
performance103. The second-order Taylor expansion of the objective
function can be written as

obj tð Þ ¼
Xn
i¼1

L yi; ŷ
t�1ð Þ
i

� �
þ gi f t xi

� �þ 1
2
hi f

2
t xi
� �� 	

þΩ f t
� �

ð17Þ

where gi and hi are the first and second-order derivatives of the loss
function, respectively.

gi ¼
∂L yi; ŷ

t�1
i

� �
∂ŷt�1

i

ð18Þ

hi ¼
∂2L yi; ŷ

t�1
i

� �
∂ŷt�1

i

ð19Þ

By combining the Taylor second-order expansion with the objective
function and regularisation term, the approximated objective function
becomes

obj tð Þ ffi
XT
j¼1

X
i2Ij

gi

0
@

1
Aωj þ

1
2

X
i2Ij

hi þ λ

0
@

1
Aω2

j

2
4

3
5þ γT ð20Þ

where Ij ¼ i j q xi
� � ¼ j


 �
is the set of indices of data points assigned to the

j-th leaf.
The XGBoost algorithm efficiently learns the tree structure and leaf

weights by minimising the approximated objective function. The final
equations for the optimal weightω�

j of leaf j, and the corresponding optimal
value of the objective function obj� are

ω�
j ¼ �

P
i2Ij giP

i2Ij hi þ λ
ð21Þ

Fig. 9 | Three-stage workflow implemented for
this study.
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obj� ¼ � 1
2

XT
j¼1

P
i2Ij gi

� �2

P
i2Ij hi þ λ

þ γT ð22Þ

Bayesian hyperparameter optimisation. Hyperparameter optimisa-
tion is critical for ML applications, as many algorithms rely on hyper-
parameters; these are settings that determine operational characteristics
during training104,105. For XGBoost and comparative ML algorithms, the
hyperparameters play a critical role in shaping the model’s performance
and generalisation capabilities106. Nonetheless, identifying the most sui-
table hyperparameters is a challenging and labour-intensive task. It often
necessitates navigating complex search spaces, which comprise numer-
ous combinations of continuous, discrete, and conditional
hyperparameters107. To address this issue, BHO is extensively employed,
as it builds a probabilistic surrogate model to predict the outcome of an
objective function based onpast evaluations108. Thus, the surrogatemodel
facilitates understanding the relationship between hyperparameters and
model performance109. In other words, BHO learns which regions in the
parameter space areworth exploring andwhich are not bymaking full use
of previous evaluation information110.

In the current study, we implement BHO using the tree-structured
Parzen estimator (TPE) approach, obviating the need for predefined initial
values or training sets111,112. Initially, the TPE algorithm stochastically
explores the hyperparameter space. The collected samples are then divided
into two distinct categories. The first one includes the parameter samples
that have been evaluated as themost effective based on a cost function,while
the secondconsists of the remaining samples. Subsequently,TPEmodels the
likelihood functions for these two categories: lðxÞ for the best-performing
samples and gðxÞ for the rest113. The fundamental premise is to identify a
parameter set that exhibits a higher probability of belonging to the first
category. Thus, the expected improvement (EI) per iteration is calculated to
guide the selection of new samples, which is given by114

EI ¼ lðxÞ
gðxÞ ð23Þ

Compared to traditional techniques, such as grid search and random
search, BHO using TPE is advantageous due to its efficiency in exploring
the parameter space, reducing computational complexity through skip-
ping low-performing parameter samples110,115. Moreover, BHO effectively
finds optimal hyperparameters, especially for high-dimensional
problems115,116.

Nested K-fold cross-validation. Nested CV is a robust validation
technique in supervised ML. This CV protocol performs outstandingly
when hyperparameter tuning is integral to model building117,118. Speci-
fically, nested CV is based on the dual-layered partitioning of the dataset
into multiple training and test subsets, thereby facilitating both hyper-
parameter tuning and model evaluation in a manner that minimises the
risk of overfitting119,120.

The nested CV protocol comprises two nested loops: 1) the inner loop
for hyperparameter optimisation, and 2) the outer model-evaluation
loop119,121. The inner loop identifies the optimal hyperparameter values for
the ML models. Subsequently, the model with the optimised hyperpara-
meters is evaluated in the outer loop using a separate data partition, which
was not involved in the hyperparameter tuning process. While computa-
tionally expensive, nested CV ensures that the evaluation metrics are not
overly optimistic, providing a more realistic assessment of the model’s
generalisability to unseen data121.

This study uses a nested CV process with five rounds of sequential
hyperparameter tuning, combined with k-fold CV. As illustrated in Fig. 10,
the dataset is randomly split into training and test subsets with a ratio of
80:20 (i.e., 80% of the data for training and 20% for testing). Each training
subset within the outer loop is nested to a five-fold CV in the inner loop
(with a validation partition equal to 10% of the outer training set), whereby
potential hyperparameters for the XGBoost regression model are deter-
mined. The search for optimal hyperparameters is optimised via BHO
throughout the five-fold inner CV. Subsequently, the XGBoost model
performance is evaluated across all test folds in the outer loop. Upon the
conclusion of the five rounds, the hyperparameter set achieving the highest
accuracy is then selected.

Fig. 10 | Nested k-fold CV procedure. This method adjusts the XGBoost model’s
hyperparameters using BHO, evaluates themodel across all test folds, and selects the
best hyperparameters after five rounds. Here, data is cycled through outer and inner
loops to optimise the XGBoost model’s settings, improving its prediction accuracy.

In the outer loop, data is partitioned into training and test subsets at a ratio of 80:20.
Subsequently, within the inner loop, the outer training subset is further partitioned
into training and validation sets with a ratio of 90:10.
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Permutation importance. In supervised ML studies, the PI method
quantifies the impact of individual variables on the target outcome122. In
this respect, Breiman102 and Fisher et al.123 proposed a specific approach
for PI analysis that divides the dataset into training and test subsets.
Subsequently, a single model is trained using the training data. The test
data for each input feature is then randomly permuted, and the model’s
predictions are evaluated. If the performance decreases considerably, it
indicates that the feature in question is critical for the model
performance124. Our work employs PI analysis to assess the specific
weights associated with each input feature in the XGBoost model.

Shapley additive explanations. Shapley additive explanations employ a
game-theoretic framework to elucidate the outcomes of an arbitrary ML
model125. Essentially, the SHAP approach is based on the Shapley value
theory, a construct from game theory that fairly distributes the gain of a
cooperative game among its players126. In the context of ML, the features
of a given data instance act as players in a coalition, and Shapley values tell
us how to fairly distribute the payout (i.e., the prediction) among the
features127. In the context of SHAP, the model prediction is expressed as:

f ðxÞ ¼ g z0ð Þ ¼ ϕ0 þ
XM
i¼1

ϕiz
0
i ð24Þ

Here, f ðxÞ represents the original model output, while g z0ð Þ is the SHAP
explanationmodel. The term ϕ0 is a base value when all inputs are missing,
whileϕi corresponds to the SHAPvalue for the i-th feature, whichquantifies
the feature contribution to the difference between the actual prediction and
base value. The term z0i 2 0; 1f g represents a binary variable, indicating the
presence (1) or absence (0) of the i-th feature. Thus, SHAP decomposes the
prediction into a linear combination of binary variables. M is the total
number of features. Herein, we employ the SHAPmethod implemented for
tree-based ensemble models, typically referred to as TreeSHAP128.

Data Availability
Data will be made available on reasonable request.
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