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A generative diffusion-based AI-model
to scrutinise the microstructural
degradation of isothermally aged
Cu-SAC305 interfaces
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Generative artificial intelligence (genAI) has disrupted multiple disciplines, as it has the potential to
drastically change the way content is created. In this study, microstructural grey-value images of
thermally aged interfacial Cu–SAC305 microstructures are virtually generated for seen, unseen and
even unknown sample conditions utilising a denoised diffusion probabilistic model (DDPM). The
DDPM is conditioned based on the different ageing time and impurity levels. Themulti-scale structural
similarity index is calculated to assess the quality of generated images. Kirkendall pore areas and IMC-
thicknesses are extracted from labelled real and generated images as physical descriptors, to
quantitatively characterise the microstructure. Both follow the expected physical trends of parabolic
growth, confirming theunderlyingdiffusionprocess and validating thepertinencyof themodel. Hence,
this study demonstrates the feasibility of genAI to significantly enhance systematic imaging
investigations of microstructural degradation with concurrently reducing experimental effort.

Generative artificial intelligence (genAI) has disrupted multiple disciplines,
from daily life to education1–3, medicine4–6, scientific research7 and even
art8,9, as it has the potential to drastically change the way we approach
content creation. In contrast to predictive algorithms, generative ones are
able to create data, e.g. human-sounding text10 and photo-realistic images11.
GenAI describes algorithms such as large language models12–17, generative
adversarial networks (GANs)18–20 or denoised diffusion probabilisticmodels
(DDPMs)20–24, which have emerged as revolutionary approaches allowing
the generation of realistic and diverse data, including text, audio, code,
images, simulations and videos. In this context, GANs and DDPMs have
shown high potential for AI-based image generation19,20,23. However, GAN-
based models exhibit challenges related to training complexity, mode col-
lapse, application domain limitation and restrictions in image generation
diversity. Moreover, GANs demand rather large datasets for their
training18,20,23,24. More recently developedDDPMs are able to surpass GANs
in image synthesis. DDPMs have shown their potential in various domains,
including natural language processing, computer vision, robust machine
learning, interdisciplinary applications inmedical image reconstruction and
computational chemistry24–29. Moreover, DDPMs are altering the approach
for visualisation and analysis of microstructures of materials, generating

high-quality, diverse images that have the potential to enhance our
understanding of material properties and behaviours, leading to advance-
ments in material design and application20,23,28. Conditional DDPMs (C-
DDPMs) extend the architecture of standard DDPMs by incorporating
additional conditioning information, suchas class labels, text descriptionsor
other modalities, which enables more controlled and relevant image
generation20,23,30. Yet, as true for all generative models, validation of the
virtually generated image data is indispensable. AI hallucination needs to be
identified and eliminated31–33. In materials science, physical descriptors like
microstructural features can be used for the validation of generative
models20,34. Therefore, a comparison of such features in real and generated
images in the context of the underlying physical trends is suitable to assess
genAI outputs20.

The ever-growing need for the integration of more components on a
single chip and improved functionality, while reducing overall device size in
microelectronic packaging, strongly impacts interconnects in the context of
structural integrity and their electrical and thermal conductivity35,36.
Recently, machine learning in combination with sophisticated imaging
methods has showcased possibilities for the statistical evaluation of defects
in modern interconnect technologies37–41. The electric interconnection of
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individual electronic building blocks is achieved via metallisations. Copper
(Cu) is commonly utilised for the metallisation in microelectronic devices
due to its high thermal and electrical conductivity42–47. There are various
ways to fabricate the Cumetallisation on the backside of a chip. One way is
to grow the metallisation via physical vapour deposition (PVD), which
yields a metallisation with high-purity48. Another established fabrication
route is growing electro-chemically deposited (ECD-) Cu on a PVD-Cu
seed-layer48. The ECD route involves the deposition of Cu in a liquid elec-
trolyte from an organic complex onto the cathode, i.e. the chip, by applying
voltage to the electrodes35,44. Therein, the growth rate of the metallisation is
largely dependent on the current density during deposition35,49. In addition
to theCu-complexes, the electrolyte contains a varietyof additives to control
the growth of the metallisation35. These electrolyte additives may be
incorporated into the metallisation as impurities and ultimately affect the
functionality of the device. The extent to which that occurs is dependent,
among other things, on the current density during deposition, i.e. the speed
of ECD-Cumetallisation growth35,49. One space-saving type of interconnect
is a ball grid array, wherein solder balls37 ensure both electrical and thermal
connection between the chip and printed circuit board (PCB). The inter-
connect is usually composed of a low-melting metal alloy, since the joining
of the microelectronic building blocks should be thermally as non-invasive
as possible42,50,51. Some of the most popular solder alloys to replace Lead-
based solders in microelectronics are from the family of Tin- (Sn-) based
ternary eutectics with Silver (Ag) and Cu42,52–55. Within this family of alloys,
the Sn–3.0 wt.%Ag–0.5 wt.%Cu (SAC305) alloyhas proven to beone viable
choice in terms of its processability56–59 and mechanical integrity42,59–61. The
microstructure of such a SAC305 solder alloy consists of the intermetallic
compounds (IMCs) Cu6Sn5 and Ag3Sn, which are embedded in a β-Sn
matrix42,52–55. During reflow, layers of IMCs form between the Cu metalli-
sation and the SAC305 solder ball due to liquid–solid interdiffusion, namely
Cu3Sn on the Cu-rich side and Cu6Sn5 on the Sn-rich side35,44,45,62–64. These
IMC-layers continue to grow due to solid-state Cu–Sn interdiffusion when
the device is thermally aged44–46,62,65. During ageing, impurities that are
potentially incorporated into the ECD-Cumetallisation also take part in the
interdiffusion. These impurities throw the Cu–Sn interdiffusion out of
balance, and lead to the formation of Kirkendall pores within the Cu3Sn-
layer35,44,49,66. Studies about the influence of Cu-impurities on the Kirkendall
pore formation have been performed to some extent previously35,45,49,66–69.
However, systematic and comprehensive imaging of the effects of various
impurity contents on the interfacial Cu–SAC305 microstructure over
multiple ageing timesteps demands substantial experimental effort. Because
experimental microstructural imaging of such complex sample datasets is
time-consuming and labour-intensive, incomplete or incomparable data-
sets may result. With the advancement of genAI algorithms in recent
years30,70,71, and their ability to generate image data, unlike non-generative
algorithms, e.g. ML-based image classification algorithms37,38,72–74, oppor-
tunities to fill the data gap are opening up.

Therefore, our study intends to highlight the implementation of genAI
to facilitate efficient and systematic in-depth investigations of isothermally
aged interfacial Cu–SAC305microstructures. The genAI algorithm is based
on a conditional- (C-) DDPM, which is conditioned by the ageing time and
ECD-Cu metallisation growth rates, which correlate with the Cu-impurity
contents. As a high-purity reference, a PVD-Cumetallisation is also studied.
Moreover, the diffusion parameters of the C-DDPM are tuned to generate
high-quality microstructural images of Cu–SAC305 interfaces for seen,
unseen, as well as unknown conditions. The developed C-DDPM is able to
generate microstructural images that are qualitatively indistinguishable
from real field emission scanning electron microscopy backscatter electron
(FESEM-BSE) micrographs, although trained on relatively few training
data. The image quality of generated images for seen and unseen conditions
is assessed by calculating the multi-scale structural similarity index (MS-
SSIM). TheMS-SSIM yields 0.79, indicating high similarity to real FESEM-
BSEmicrographs in termsof brightness, contrast, aswell as texture75. TheC-
DDPM’s ability to generate physically accurate microstructural images for
given sample conditions is assessed by the evaluationof physical descriptors,

i.e. microstructural features like IMC-layer thicknesses and Kirkendall pore
areas. These microstructural features are extracted from labelled FESEM-
BSE micrographs as well as from labelled generated image data and sub-
sequently compared. A quantitative comparison of the evaluated micro-
structural features reveals that the virtually generated data generally lies
within the standard deviations of the real data. Furthermore, we show that
the evaluated physical quantities, such as the parabolic growth rates of the
IMC layers and Kirkendall pore areas, are dependent on the Cu-impurity
content. The reduction of Kirkendall pore formation enthalpy with
increasing impurity content is estimated from both real and generated
image data. We confirm that, based on the evaluated physical descriptors,
the C-DDPM is also able to generate microstructural images for given
unknown sample conditions, i.e. conditions where no experimental data is
available. The depicted features follow the expected trends from the
underlying physical interdiffusion mechanisms. Hence, this study demon-
strates the potential of a C-DDPM to significantly reduce experimental
efforts for microstructural visualisations and studies of degradation
mechanisms by implementing genAI.

Results
Impact of balanced and imbalanced Cu–Sn interdiffusion on the
interfacial IMC microstructure during isothermal ageing
Electronic devices may be exposed to elevated temperatures during their
service. The microstructural changes in Sn-based solder ball interconnects
due to these elevated temperatures may have adverse effects on the per-
formance and functionality of the device. A 3D X-ray tomography recon-
struction of such an electronic device is shown in Fig. 1a, wherein a
3 × 3 solder ball grid array is visible, as well as the Cu metallisation of the
chip on top and of the PCB beneath. A FESEM-BSE cross-sectional over-
viewof an exemplary solder ball is depicted inFig. 1b. Since the growthof the
interfacial IMC-layers is caused by the interdiffusion of Sn and Cu, their
evolution is largelydependenton the ageing time and temperature69,76,77. The
growth of interfacial IMCs during isothermal ageing, schematically shown
in Fig. 1c, may also impact mechanical and electrical properties of the
interface. The schematic depicts the evolution of the interface assuming
balanced Cu and Sn interdiffusion. If the Cu–Sn interdiffusion is imbal-
anced, as is the case when impurities are incorporated in the Cu metalli-
sation, Kirkendall pore formation is expected. This case is schematically
shown in Fig. 1d. In general, pore formation is associated to an increase in
both the electrical aswell as the thermal resistance20,78. This relationshipmay
also be applicable for the observed nano-scale Kirkendall pores.

Realmicrographs of the conditions in Fig. 1c, d, namely FESEMenergy
dispersiveX-ray spectroscopy (EDX)mappingsofCu, SnandAg, are shown
in Fig. 1e and f. The respective exemplary EDX-mappings of the PVD-Cu
metallisation, i.e. without impurities over isothermal ageing as sketched in
Fig. 1c, are shown in Fig. 1e. Figure 1f shows an EDX-mapping of an ECD-
Cu metallisation, i.e. with impurities, corresponding to the schematic
depicted in Fig. 1d. The illustrated PVD-Cu samples with no impurities are
aged at 150 °C for 0, 100 and 1000 h, respectively. The sample with impure
ECD-Cu is aged for 1000 h at 150 °C. Further details about the sample
fabrication and ageing, as well as X-ray tomography imaging, FESEM
imaging and EDX mapping are given in ‘Methods’. The various phases of
interest at the interface, i.e. Cu, Cu3Sn, Cu6Sn5 and the bulk of the SAC305
solder ball, canbedistinguishedby their contrasts in theEDX-mappings due
to their decreasing Cu-contents and increasing Sn-contents, respectively. It
is also shown that Ag3Sn precipitates are embedded in the Sn matrix and
that some larger ones are situated at the Cu6Sn5–SAC305 interfaces.

Impact of impurity content on the interfacial microstructure
during isothermal ageing
Figure 2 illustrates the experimentally evaluated sample conditions in the
ageing time / Cu-impurity matrix. It shows representative snippets from
cross-sectional FESEM-micrographs utilising a BSE detector, aged from 0 h
up to 3000 h at 150 °C for PVD- and ECD-Cu, respectively. For the latter,
various impurity incorporation into the ECD-Cu metallisation is achieved
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by applying three different current densities, resulting in different growth
rates. Three current densities are studied, which are listed in Supplementary
Table 1. The FESEM-BSE-micrographs allow the distinction of the occur-
ring phases like Cu, Cu3Sn, Cu6Sn5 and the SAC305 bulk due to mass-
contrast. Cu is shown to be the darkest phase, followed by Cu3Sn and
Cu6Sn5. The SAC305 bulk exhibits the brightest grey value, whereas Kir-
kendall pores appear black. Each column in Fig. 2 represents one isothermal
ageing timestep at 150 °C and each row corresponds to oneCumetallisation
impurity content. PVD-Cu is assumed to contain the least amount of
impurities and is therefore considered as reference. The impurity contents of

the ECD-Cu metallisations are defined via their deposition parameters,
specifically, by the applied current densities during deposition. The metal-
lisations of the samples ECD1, ECD2 and ECD3 are deposited with
increasing current densities, see Supplementary Table 1. Increasing current
densities correlate with increasing incorporation of impurities into the Cu
metallisations35,49. The PVD- and ECD2-samples are aged for 0 (as-
reflowed), 50, 100, 300, 1000 and 3000 h at 150 °C, whereas the ECD1- and
ECD3-samples are aged for 0, 750 and 3000 h at 150 °C. The dataset in Fig. 2
indicates the growth of the interfacial IMC layers with increasing ageing
time at 150 °C. Moreover, the increase of Kirkendall pores in the Cu3Sn-

Fig. 1 | Sample overview, schematic IMC-layer growth and Kirkendall pore
formation during ageing, as well as exemplary EDX mappings. Investigated
sample geometry andmicrostructural evolution of the Cu–SAC305 interface during
isothermal ageing. a 3D X-ray tomography scan of an exemplary investigated
sample. The visualisation shows the solder balls and the Cu metallisations.
b Exemplary FESEM-BSE overview cross-section of a solder ball. c Schematic IMC-
layer growth with balanced interdiffusion of Cu and Sn. d Schematic pore formation
caused by imbalanced Cu–Sn interdiffusion due to impurities in the Cu metallisa-
tion. The arrows in (c, d) schematically sketch the diffusion rates of Cu (red) and Sn
(green). Cu, Cu3Sn, Cu6Sn5, SAC305 and pores are depicted in exceedingly brighter

shades of grey. eEDX-mappings of PVD-Cu–SAC305 interfaces for Cu, Sn andAg at
exemplary ageing times of 0, 100 and 1000 h at 150 °C, corresponding to the sche-
matic conditions in c with balanced Cu–Sn interdiffusion. f EDX-mappings of an
aged ECD-Cu–SAC305 interface after 1000 h at 150 °C for Cu, Sn and Ag, corre-
sponding to the schematic in dwith imbalanced Cu–Sn interdiffusion. The Cu signal
is shown in red, Sn in green and Ag in purple. Cu, Cu3Sn, Cu6Sn5 and the SAC305
bulk can be distinguished due to their decreasing Cu-content and their increasing
Sn-content, respectively. Kirkendall pores appear black in the Cu3Sn-layer. Ag3Sn-
precipitates are embedded into the Sn-matrix and at the Cu6Sn5–SAC305 interface.
Scalebar of 10 µm is valid for all images.
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layer with increasing deposition current densities of the Cu metallisation is
apparent. Thus, the Cu–SAC035 interfacial microstructure changes sig-
nificantly with increasing Cu-impurity content and ageing time, as quali-
tatively illustrated in the sample matrix in Fig. 2. Nevertheless, a complete
understanding of the underlying degradation cannot be directly retrieved,
since the matrix is incomplete. Specifically, for the PVD- and ECD2-Cu
metallisation, 14% of the ageing conditions are unknown. For the ECD1-
and ECD3-Cu metallisation, 57% of the ageing conditions are unknown.
Note, that the experimental fabrication of a full systematic sample set as well
as the subsequent FESEM imaging is highly labour-intensive and time-
consuming, as sketched in Supplementary Fig. 1a. Further, it should be
noted that the most time-consuming step is the ageing process, which takes
up to 3000 h in this study, an equivalent of 125 days. Accelerated ageing at
higher temperaturesmay not be feasible due to the low eutectic temperature
of SAC305, see also ‘Methods’. Moreover, although FESEM-BSE imaging is
less time-consuming than EDX mapping, the careful sample preparation
that is crucial to gain deformation- and artefact-free cross-sections still takes
a substantial amount of time. Details about the sample preparation and
FESEM-BSE imaging are given in ‘Methods’.

C-DDPM implementation, training and conditioning of the genAI
Figure 3 illustrates the C-DDPM, which is developed and trained to reduce
experimental effort and time in terms of tedious sample production, sample
preparation and FESEM imaging. During the generation of images, con-
ditioning information is incorporated, so that the C-DDPM generates
microstructural images for specific sample conditions. Sample conditions,
which are included in the training data of the C-DDPM are hereafter
referred to as ‘seen conditions’, see ‘Methods’. Hence, for seen conditions,
the C-DDPM generates microstructural images by imitating the training
data, in the ageing time/impurity matrix. The next objective is to virtually

generate microstructural images for ‘unseen conditions’, i.e. sample con-
ditions which are experimentally available but deliberately excluded from
the training data. Two specific conditions from Fig. 2, namely PVD-300 h
and ECD1-750 h, are selected as unseen conditions. This approach allows
the validation of the model accuracy for sample conditions that the model
was not trained on.

Once the model is validated with respect to the generation of seen and
unseen conditions, the ultimate goal is to virtually generate microstructural
images for ‘unknown conditions’, for which experimental image data is not
available, i.e. the pink panels in the sample matrix in Fig. 2. A schematic
illustrating the flowchart comprising the experimental process and the
approach implementing genAI is illustrated in Supplementary Fig. 1a, b.
The schematic illustrates that by employing genAI, experimental fabrication
and imaging efforts can be significantly reduced.

Figure 3a indicates the schematic of the C-DDPM, which consists
of twoMarkov chains initiating stochastic processes in two directions, a
forward and a reverse process. The forward chain destructs the FESEM
image by progressively adding noise to the input. The reverse chain
performs the denoising process, starting with pure random noise.
Progressively, noise is removed to generate new image data that
resembles the original image, considering specific conditioning infor-
mation. Hence, the diffusion–denoising approach aims to learn the
underlying data distribution, allowing the C-DDPM to denoise images
from pure random noise and thereby generating new FESEM-BSE-style
images which consider the given sample conditions. Exemplary images
from diffusion q xtjxt�1

� �� �
and denoising pθ xt�1jxt; f

� �� �
are illu-

strated in Fig. 3a. The black arrows in Fig. 3a show how the diffusion
process begins with a real FESEM-BSE data, x0, and gradually intro-
duces Gaussian noise across a time series x1; x2; � � � ; xT , wherein each
step depends only on the preceding one. The denoising process is

Fig. 2 | Interfacial Cu–SAC305 microstructure dependent on ageing time at
150 °C and impurity content in the Cu metallisations. Sample matrix for the
Cu–SAC305 interfaces with PVD- and ECD-Cu, over isothermal ageing time at
150 °C. The ECD-Cu metallisations are grown with three different rates. For each
investigated impurity content and ageing timestep, one exemplary raw FESEM-BSE
micrograph is shown. Scalebar of 5 µm is valid for all images. Pink panels represent

unknown conditions. From top to bottom: increasing impurity content in the Cu
metallisation. PVD-Cu corresponds to a reference with a minimal amount of
impurities. ECD1, ECD2 and ECD3 correspond to electroplated Cu metallisations,
deposited with increasing current densities. From left to right: increasing isothermal
ageing time at 150 °C. The PVD- and ECD2-samples are aged for 0, 50, 100, 300,
1000 and 3000 h. The ECD1- and ECD3-samples are aged for 0, 750 and 3000 h.
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represented by brown arrows in Fig. 3a. In order to denoise image data,
the C-DDPM learns transition kernels, parameterised by the convolu-
tional neural network U-Net architecture, and returns the noisy image
samples to the data distribution.

Moreover, the model conditioning, indicated in red and exemplarily
shown in Fig. 3a, is incorporated in the denoising procedure. TheC-DDPM

is conditioned based onCu-impurity contents and isothermal ageing times,
which is exemplarily indicated in Fig. 3a by the red circle. Further details are
provided in ‘Methods’. Finally, after training and conditioning, the
C-DDPM will be able to generate microstructural images of unknown
sample conditions, as exemplarily shown in Fig. 3b for ECD3. Here, the
generated images of unknown conditions are highlighted in green. For each
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sample condition, regardless of seen, unseen or unknown, three images are
generated utilising the C-DDPM. The full ageing time/Cu-impurity matrix
of exemplary generated microstructural images is shown in Supplementary
Fig. 2. Hence, after training and conditioning, the C-DDPM ultimately
generates microstructural images for unknown sample conditions to fill up
the sample matrix from Fig. 2.

Testing and validating the C-DDPM for experimentally available
seen and unseen conditions
The trained C-DDPM from Fig. 3 is utilised to generate microstructural
images of Cu–SAC305 interfaces for each experimentally available seen and
unseen condition. Three images are generated for each condition in order to
gainmore statistical insight into the image generationby theC-DDPMfrom
random noise. Subsequently, the model is validated based on how well the
generated microstructural features quantitatively obey the underlying
physical mechanisms, which are expressed in the real FESEM-BSE micro-
graphs. From these generated images,microstructural features are extracted
for the physics-based model validation. The corresponding workflow is
sketched in Fig. 4a. The first and second rows in Fig. 4b, c show the real
FESEM-BSE micrographs and generated images for a selection of seen
conditions and the two unseen conditions, respectively. Qualitatively, the
generated images imitate the real FESEM-BSEmicrographs well in terms of
resolution, contrast and realism of microstructural features. This is true for
seen, as well as unseen, conditions. The MS-SSIM is calculated for a
quantitative determination, whether the generated images look like real
FESEM-BSE micrographs, in terms of brightness, contrast and texture, see
‘Methods’. The calculated MS-SSIM yields 0.79, indicating high resem-
blance to the real FESEM-BSE micrographs75.

Further, quantitative analysis of the deviation between the generated
and realmicrostructure is essential for anobjective validation20,34.Hence, the
model is validatedutilising aphysics-based approach incorporatingphysical
descriptors, in order to ensure that the microstructural features depicted in
the generated images comply with the underlying physical mechanisms20.
Specifically, IMC-layer growths and Kirkendall pore area increase are
quantified for generated images and compared to those of real FESEM-BSE
micrographs for each sample condition, as sketched in Fig. 4a. For the
quantification, the features of interest are labelled in both real FESEM-BSE
micrographs and C-DDPM images after their generation utilising ilastik79,
as described in ‘Methods’. Exemplary labelled image data is shown in Fig. 4d
for the corresponding microstructural images in Fig. 4b, c. In the labelled
images, the phases of interest are segmented, i.e. Cu, Cu3Sn, Cu6Sn5,
SAC305bulk,Kirkendall pores andAg3Sn-precipitates adjacent to the IMC-
layers. From these phase labels, quantitative microstructural information
canbe extracted. Inparticular, themeanCu3Sn- andCu6Sn5-thicknesses are
calculated for each image, as well as the Kirkendall pore areas. Details about
IMC-thickness and pore area calculations are given in ‘Methods’. A com-
plete dataset matrix for all experimentally available conditions, seen and
unseen, of real and generated images is shown in Supplementary Fig. 3, and
a completematrix of the corresponding labels is provided in Supplementary
Fig. 4. The degreeswhich thesemicrostructural features obey the underlying
physicalmechanisms are utilised as accuracymetrics. Thus, it is determined
howwell the C-DDPM is able to learn the underlying physical mechanisms
which drive these microstructural changes. In Fig. 4e, the deviations
betweenmicrostructural featuresdepicted ingenerated images and their real

mean values of the FESEM-BSE micrographs are calculated for each Cu-
impurity content and compared to the standard deviations in the real
micrographs. In particular, the analysis is done for the Kirkendall pore area
and the Cu6Sn5- and the Cu3Sn-thickness. The data is plotted separately for
seen and unseen conditions. The corresponding numerical values for the
deviations are given in SupplementaryTable 2.Details about the analysis are
given in ‘Methods’. Moreover, real mean values and standard deviations, as
well as mean values of generated images for Kirkendall pore areas, Cu6Sn5-
thicknesses and Cu3Sn-thicknesses are given in Supplementary Tables 3–5,
respectively. The analysis shows that the pore areas, Cu3Sn- and Cu6Sn5-
thicknesses in the generated images liewellwithin the standarddeviations of
the respective real micrographs for seen conditions. For unseen datapoints,
the pore areas and Cu6Sn5-thicknesses in generated images lie within the
standard deviations of the respective real conditions. While the Cu3Sn-
thickness is correctly generated for the unseen condition PVD-300 h, it is
slightly over-estimated for the unseen condition ECD1-750 h, which is
shown in Supplementary Table 5 and marked with an asterisk in Fig. 4e. It
should be noted that there is very little experimental data available for the
ECD1-Cu metallisation, and also for the ageing timestep at 750 h. In fact,
there are only two other ageing timesteps for the ECD1 sample and only one
other sample, ECD3, aged for 750 h. Still, although the developedC-DDPM
produces slight misestimates the quantitative magnitudes of individual
features, as shown in Fig. 4e and Supplementary Tables 2–5, the overall
trends for IMC-layer growth and Kirkendall pore formation follow the
expected underlying physical mechanisms. This can be qualitatively seen in
Fig. 4b–d, Supplementary Fig. 3 and Supplementary Fig. 4, as the IMC-layer
thicknesses increase with increasing ageing time and the Kirkendall pore
areas increase with increasing Cu-impurity content. In order to determine
potential differences in the smoothness of the Cu6Sn5 – SAC305 interfaces,
we calculate the line length from the labelled real and virtually generated
images for different conditions. The comparison demonstrates that the line
length deviates by only a maximum of 8%, indicating high similarity
between both. See also Supplementary Fig. 5 for further information.

Note thatwe also compared the performance ofC-DDPMto aC-GAN
model. Contrary to the training of the C-DDPM, no sample conditions are
excluded from the training of the C-GAN, since the applied C-GAN can
only generate images for seen conditions, see Supplementary Fig. 6, with
further details in Supplementary Note 1. It is apparent that the C-GAN
outputs lag in image quality and contrast, as well as in the realistic and
accurate depiction of microstructural features.

Virtual generation of microstructural images for unknown con-
ditions utilising genAI
The C-DDPM generates images for both seen and unseen conditions,
which are qualitatively indistinguishable from real FESEM-BSE micro-
graphs. Further, the generated microstructural features obey the
underlying physics for the evolution of IMC-thicknesses and Kirkendall
pore areas. Ultimately, as indicated in Fig. 5, we generate microstructural
images of unknown sample conditions in the investigated ageing time/
Cu-impurity matrix. Real FESEM-BSE micrographs from all experi-
mentally available conditions and their phase labels are shown and
marked with ‘SEM’. For the unknown conditions, images are generated
utilising the C-DDPM and marked with ‘genAI’, as are their respective
phase-labels. Again, the quality and contrast of the generated images for

Fig. 3 | Schematic structure, model conditioning and exemplary images from the
noising/denoising sequence of the developed C-DDPM. a Exemplary 512 × 512
pixels2 images from diffusion and denoising, wherein x0 represents the raw FESEM-
BSE micrograph. Model conditioning is performed utilising 16 sample conditions
from Fig. 2, partially shown for the experimentally available ageing timesteps of
ECD3, i.e. 0, 750 and 3000 h. The schematic structure of the denoising learning
U-Net is shown. The C-DDPM possesses a modified self-attention U-Net structure
with seven layers for denoising learning. The self-attention blocks are shown in
yellow, the down-sampling blocks of the encoder in red, the up-sampling blocks of
the decoder in purple and convolutional layers in blue. The detailed structures of the

up-sampling, self-attention and down-sampling blocks are illustrated in the purple,
yellow and red dashed boxes, respectively. Skip connections between encoder and
decoder are shown as grey arrows. Between each denoising sequence, this model is
applied to the image. In the self-attention and down-sampling blocks, GELU
describes Gaussian error linear unit activation functions. b Exemplary outputs from
the C-DDPM for ECD3. Microstructural images of known conditions from (a) are
generated, as well as missing sample conditions are generated for 50, 100, 300 and
1000 h, marked in green. The full ageing time/Cu-impurity matrix of generated
microstructural images is shown in Supplementary Fig. 2.
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unknown conditions are qualitatively indistinguishable from real
FESEM-BSE micrographs and the virtually generated images blend into
the matrix in Fig. 5 seamlessly. As before, the expected trends of IMC-
layer growth with progressing ageing time and Kirkendall pore forma-
tion with increasing impurity content are qualitatively maintained in the
images generated for unknown datapoints by the developed C-DDPM.

This result begs the question how well the virtually generated images
quantitatively obey the underlying physical mechanisms of IMC-layer
growth and Kirkendall pore area increase, i.e. how well the C-DDPM is
able to learn these underlying physical mechanisms20,34. This is analysed
in the following section utilising the phase-labels exemplarily shown in
Fig. 5 and Supplementary Fig. 4.
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Quantitative model validation by evaluating physical quantities
based on real and virtually generated microstructural images
The phase-labels of real FESEM-BSE micrographs, as well as those of
generated images for seen, unseen and unknown datapoints fromFig. 5 and
Supplementary Fig. 3 are further utilised for a quantitative assessment in the
context of physical reasonability of the C-DDPM outputs. The physics-
based validation workflow for unknown conditions is sketched in Fig. 6a.
The phases in the generated microstructural images are manually labelled
utilising ilastik79, see ‘Methods‘. The microstructural features are extracted
based on these labels and quantified. Thus, themicrostructural evolution in
real FESEM-BSE micrographs provides the underlying physical trend, and
the model validation is performed based on how well the microstructural
features depicted in generated images follow this trend20,34.

Figure 6b, c shows the results for IMC-layer growth, i.e. cumulative
Cu3Sn- and Cu6Sn5-growth, and Kirkendall pore area increase over ageing
time at 150 °C for each Cu-impurity content. The PVD-samples are plotted
in green, ECD1 in blue,ECD2 inpurple andECD3 inpink. Themeanvalues
of real FESEM-BSEmicrographs are plotted as squares. Since theunderlying
physical mechanisms of both IMC- and pore-growth are of diffusional
nature44,45,49,62,66,68,69,80,81, these real values are fitted utilising square-root
functions over ageing time, shown as dashed lines in Fig. 6b, c. The standard
deviationsof IMC-thicknesses andKirkendall pore areas in the real FESEM-
BSE micrographs are also fitted and illustrated as shaded areas around the
square-root fits in Fig. 6b, c. For each datapoint in the ageing time / Cu-
impurity matrix, three images are generated utilising the developed
C-DDPM. The IMC-layer thicknesses and Kirkendall pore areas in these
generated images are also plotted in Fig. 6b, c, wherein values for seen
datapoints are shown as circles and values for unseen and unknown data-
points as triangles. Details about the analysis and data fitting are given in
‘Methods’. The plots in Fig. 6b, c illustrate the square-root dependencies of
IMC-layer growthandKirkendall pore area increase, respectively, which are
expected fordiffusional processes. FromFig. 6b, it is evident that theof IMC-
layer growth rate increases slightly with increasing Cu-impurity content,
while Fig. 6c shows that the Kirkendall pore area increases significantly with
increasing Cu-impurity content. Crucially, it is shown that the generated
images and their microstructural features quantitatively follow the square-
root trends over time, regardless of whether they are generated for seen,
unseen or unknown conditions. This validates the ability of theC-DDPM to
learn the underlying physical mechanisms for IMC-layer growth and Kir-
kendall pore area increase from the real FESEM-BSE image data and to
generate microstructural images accordingly. Note that the cumulative
IMC-thicknesses, i.e. the sumofCu3Sn andCu6Sn5, are evaluated in Fig. 6b,
because the ECD3-samples exhibit an irregularity for the individual Cu3Sn-
andCu6Sn5-thicknesses after being aged for 3000 h, as is qualitatively shown
in Figs. 2 and 5 and quantitatively plotted in Supplementary Fig. 7. Therein,
considering only real FESEM-BSE micrographs, the Cu3Sn-thickness is
decreased at 3000 h, compared to 750 h. Conversely, the Cu6Sn5-thickness

increases disproportionately between these two timesteps. However, this
discrepancy is removed when the sums of Cu3Sn- and Cu6Sn5-thicknesses
are considered, which is shown in Fig. 6b, where square-root fitting is done
for the cumulative IMC-layer thicknesses.

For the physics-based validation of the C-DDPM20,34, the parabolic
growth rates (k) are calculated for IMC layers and Kirkendall pore areas
depending on the investigated Cu-impurities for real and generated images.
For that, the cumulative IMC-thicknesses andpore areas areplottedover the
square root of ageing time (

ffiffiffi
h

p
), as shown in Fig. 6d, e, respectively. Again,

plotting Cu6Sn5- and Cu3Sn-thicknesses separately over
ffiffiffi
h

p
, leads to sig-

nificant outliers for theECD3sample, see SupplementaryFig. 7a, b. It should
be stressed that the generated images also consider this irregularity in
Cu6Sn5- andCu3Sn-growth, as also quantitatively plotted in Supplementary
Fig. 7a, b. The consideration of this irregularity further underlines the ability
of theC-DDPMto extract physical growthmechanisms from the real image
data. Plotting the cumulative (Cu6Sn5+Cu3Sn) thicknesses andKirkendall
pore areas shows linear trends over

ffiffiffi
h

p
for both real and generated data, see

Fig. 6d, e. Hence, these properties are fitted linearly and the k’s are derived
for each Cu-impurity content and for the real and generated images sepa-
rately. Details about the fitting are given in ‘Methods’. Figure 6d, e lists the
respective k’s for cumulative IMC- and pore-growth for real and generated
data, as well as the differences between them. As shown, the generated
images utilising the C-DDPM follow the underlying physical mechanisms
for IMC- and Kirkendall pore-growth very closely. The calculated k-values
lie close to those from the real FESEM-BSE micrographs. The largest error
for IMC-growth rates between real and generated images amounts to
−0.016μm=

ffiffiffi
h

p
forECD3,which corresponds to−9.4%, seeFig. 6d, and the

largest error for pore-growth is calculated as 0.007μm2=
ffiffiffi
h

p
, corresponding

to 9.5%, as shown in Fig. 6e. Moreover, Fig. 6b–e shows that IMC- and
Kirkendall pore-growth rates increase with increasing impurity content in
the Cu metallisation. This is reflected in both real and generated data.

From the increase in the Kirkendall pore-growth rate with increasing
Cu-impurity content, the changes in the Kirkendall pore formation
enthalpy are estimated by a simplified ansatz. The calculations are described
in ‘Methods’ and the results thereof are given in Table 1. Again, it is shown
that the trends in the generated images follow the real ones and that the
Kirkendall pore formation enthalpies decrease up to ~10% with increasing
Cu-impurity content, compared to the PVD-sample, in both real and
generated data. The estimated decrease in Kirkendall pore formation
enthalpy with increasing Cu-impurity content holds true for both real and
generated images. This, once again, highlights the C-DDPM’s ability to
generate microstructural images which consider the underlying physical
driving forces, which are expressed in the real FESEM-BSE micrographs.

Discussion
Systematic and comprehensive studies of material degradation and root
cause analyses are associated with labour-intensive and time-consuming

Fig. 4 | Model validation by generating images for seen and unseen conditions
with the developed C-DDPM. a Physics-based C-DDPM validation workflow.
Three microstructural images are generated for each experimentally available con-
dition. The MS-SSIM is calculated in order to quantify the similarity between gen-
erated images and real FESEM-BSE micrographs, in terms of brightness, contrast
and texture. Subsequently, the microstructural features, i.e. IMC-layers and Kir-
kendall pores, are qualitatively checked regarding their realism. In order to quantify
how well the IMC-layer thicknesses and Kirkendall pore areas obey the underlying
physical growth mechanisms, the microstructural features are manually labelled in
both generated images and real FESEM-BSE micrographs. From the phase labels,
microstructural features can be extracted and quantified. Based on the evolution of
the depicted microstructural features, physics-based model validation is performed,
for seen conditions and for unseen conditions. b Exemplary comparisons of real
FESEM-BSE micrographs, marked ‘SEM’, with virtually generated ones, marked
‘genAI’ for seen datapoints and c unseen datapoints. Scalebars of 5 µm are valid for
all images. The respective first rows show real FESEM-BSE micrographs for

b exemplary seen conditions with ECD1-0 h, PVD-100 h, ECD2-1000 h and ECD3-
3000 h and c the unseen conditions with PVD-300 h and ECD1-750 h. The second
rows show virtually generated images for the respective conditions from the first
row. d Phase labels for the micrographs shown in b and c. Cu is labelled in blue,
Cu3Sn in yellow, Cu6Sn5 in purple, the SAC305 bulk in magenta, pores in green and
Ag3Sn-precipitates near the interface in salmon. Scalebar of 5 µm is valid for all
labelled images. e Deviations of the phase labels for pore areas (green), Cu6Sn5-
thicknesses (purple) and Cu3Sn-thicknesses (yellow) in generated images from the
real mean values. Mean standard deviations of the respective features in real
micrographs are shown as solid lines, whereas the deviations of generated images
from the real mean values are shown as circles. For seen conditions, the mean
deviations of all images that are generated for each of the four Cu-impurity contents
are plotted, whereas for unseen conditions, the mean deviations of the three gen-
erated images for each of the two unseen conditions are plotted. The asterisk marks
the deviation of the Cu3Sn-layer thickness in the generated images for ECD1-750 h.
Numerical values of all deviations are given in Supplementary Tables 3–5.
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experimental work, especially when a variety of parameters are influential
on the microstructural evolution, as the number of samples is significantly
increased. Systematic sample fabrication and testing under controlled
conditions alone take a substantial amount of time. Moreover, many

microstructural imaging methods, such as cross-sectional FESEM imaging,
require careful sample preparation, which adds to the challenges facing
experimentalists53,82–84. In order to alleviate the heap of experimental work,
this study shows the effectiveness and efficiency of a data-driven approach,

Fig. 5 | Complete sample matrix of real FESEM-BSE micrographs, filled up with
virtually generated images of theCu – SAC305 interfacialmicrostructures for the
unknown conditions by the C-DDPM, as well as corresponding phase-labels.
Samplematrix for the Cu-impurity contents and ageing times from Fig. 2. Unknown
conditions are filled up utilising images generated by the C-DDPM and marked
‘genAI’. Exemplary raw images marked with ‘SEM’ indicate real FESEM-BSE

micrographs, whereas raw images marked with ‘genAI’ correspond to virtually
generated data. For all images, their respective phase labels are also shown. In the
phase labels, Cu is shown in blue, Cu3Sn in yellow, Cu6Sn5 in purple, SAC305 in
magenta, pores in green and Ag3Sn-precipitates adjacent to the interface in salmon.
Scalebars of 5 µm are valid for all images.
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employing a C-DDPM for the generation of qualitatively realistic and
quantitatively reasonable microstructural images of Cu–SAC305 interfaces
in microelectronic devices for unknown sample conditions in the ageing
time/Cu-impurity content matrix. A conditional data-driven genAI model
is developed and validated based on howwell the generatedmicrostructural

images quantitatively obey the underlying physical mechanisms that drive
the microstructural evolution. The results show that the developed
C-DDPM is able to learn how the microstructures evolve according to the
underlying physics and virtually generate microstructural images accord-
ingly. Moreover, it is shown that genAI has the potential to reduce
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experimental work for microstructural imaging significantly by training on
a relatively small dataset of one real micrograph for each condition. This is
schematically shown in Supplementary Fig. 1. However, the C-GAN, in
contrast to the C-DDPM, fails to generate high-quality, diversified and
realistic images, see Supplementary Fig. 6, because it relies on extensive
hyperparameter tuning and big datasets for effective training18,20,23,24.
Moreover, the C-GAN is only able to generate images for seen conditions23

and the quality of the generated images for those seen conditions is not
comparable to those of C-DDPM in terms of generated artefacts, contrast
and realism of the microstructural image, as shown in Supplementary
Figs. 3 and 6. Hence, the C-DDPM is proven to be a promising tool for the
generation of microstructural images of unknown conditions when only
relatively few real micrographs are available.

In the following, we discuss the quality of the images generated by the
developed C-DDPM, the model validation utilising quantitative physics-
based microstructural feature analysis20,34, as well as the implications for
future scientificwork. In general, the underlyingphysicalmechanismsof the
microstructural evolution at Cu–SAC305 interfaces during ageing are
established45,46,62,68,69,80,85–87. Hence, validation of the genAImodel output can
be done by extracting physical descriptors from the microstructural images
and assessing how well the microstructural features in generated images
obey the underlying physical mechanisms. Other possibilities comprise
metrics like FID, which require large amounts of data88 and cannot consider
physical laws.

When examining Fig. 4b–c and Supplementary Figs. 2 and 3, it is
illustrated that the microstructural images generated by the developed
C-DDPM for seen conditions are qualitatively indistinguishable from the
real FESEM-BSE micrographs. In terms of image clarity, quality and con-
trast, the generated virtual images closely imitate the real ones. This is also
true for images that are generated for unseen and unknown conditions, as
shown in Figs. 4b and 5, as well as Supplementary Fig. 2. The high image
quality of the generated image data is also reflected by the calculated MS-
SSIM, yielding a value of 0.79. It should be noted that the developed genAI
algorithm is not limited to the virtual reconstruction of FESEM-BSE
micrographs, but canbe trainedonanykindof experimental imagedata that
depicts the microstructural features of interest, such as X-ray microscopy,
transmission electron microscopy, or any other imaging technique. Since

the underlying driving forces of the microstructural evolution at Cu –
SAC305 interfaces have been studied extensively and the physical
mechanisms are rather well understood35,36,43–47,49,62,65,68,69,80,81,85–87, the vali-
dation of theC-DDPM is performed by assessing howwell the features of its
generated images fit the physical expectations20,34. This is done by quanti-
tatively evaluating the IMC-thicknesses andKirkendall pore areas, aswell as
their growth rates for the real and generated data. Note that the quantitative
comparisons of real and generated images perform similarly well for seen
and unseen conditions, when sufficient data about the specific impurity
content and ageing time is available, as illustrated in Fig. 4 and Supple-
mentary Tables 3–5. Moreover, the extractedmicrostructural features from
the generated images for unknown datapoints fit well into the quantitative
trends that are expected from the underlying physical mechanisms for
diffusional growth44,45,49,62,66,68,69,76,77,80,81.

The growth of both Cu6Sn5- and Cu3Sn-layers is expected due to the
solid-state interdiffusionofCuandSnduring isothermal ageing, as shown in
previous experimental studies44,45,62,66,68,80,89. Therein, Cu3Sn grows at theCu-
rich side, whereas Cu6Sn5 is situated at the Sn-rich side44–46. However, the
experimental results in this study show that with increased Cu-impurity
content and ageing time, Cu3Sn-growth is somewhat hindered. This is
illustrated by the fact that the Cu3Sn-thickness decreases in the ECD3-
sample between 750 h and 3000 h, which is depicted in Fig. 2, Supple-
mentary Figs. 7 and 8. In return, the Cu6Sn5-thickness increases dis-
proportionately between those timesteps. Hence, it is assumed that the
Cu6Sn5-layer grows at the cost of theCu3Sn-layer if theCu-impurity content
and ageing time are elevated sufficiently. This may be caused by the
increasing proportion of Kirkendall pores forming simultaneously during
ageing due to the elevated Cu-impurity content49,66,69, illustrated in
Figs. 2 and 5, as well as Fig. 6c, e. Therein, the pore-fraction increases during
ageing, slowly reducing the connected area between the Cu metallisation
and the solder, which may disrupt Cu-diffusion and consequently, Cu6Sn5
continues to grow by consuming the Cu3Sn-layer. Hence, the diffusional
processes may continue overall, but with a limited supply of additional Cu
from the metallisation. This is supported by the steady parabolic
(Cu6Sn5+Cu3Sn)-growth shown in Fig. 6b. It is worth noting that the
images generated by the C-DDPM also consider this effect, which is
depicted in Fig. 5 and Supplementary Figs. 2 and 3. This, again, underlines
the ability of the C-DDPM to extract the underlying physical mechanisms
that affect the interfacialmicrostructure fromreal FESEM-BSEmicrographs
and generate microstructural images accordingly.

Hence, the C-DDPM generates microstructural images of specific
sample conditions, which are both qualitatively indistinguishable from real
FESEM-BSE micrographs and quantitatively follow the expected physical
trends, i.e. parabolic growth due to interdiffusion of Cu, Sn, impurities and
vacancies44,45,49,62,66,68,69,76,77,80,81. To further validate themodel’s ability to learn
the physical mechanisms affecting the microstructures, quantitative
microstructural information extracted fromboth real and generated images,
namely IMC-layer thicknesses and Kirkendall pore areas, is utilised for the
estimation of physical quantities. Firstly, from quantitatively fitting the
microstructural features depicted in both real and generated images, as
depicted in Fig. 6b–e, the parabolic growth rates of cumulative IMC-

Fig. 6 | Quantitative model precision analysis of IMC-layer growth and Kir-
kendall pore area increase for real and generated images, comprising seen,
unseen and unknown datapoints. a Physics-based validation workflow for -DDPM
generated microstructural images of unknown sample conditions. Three images are
generated for each unknown sample condition. Since theC-DDPMgenerates images
from random noise, the three generated images are not identical for each sample
condition, resulting in some degree of variation. The microstructural features are
manually labelled, extracted based on those labels, and quantified in terms of IMC-
layer thickness and Kirkendall pore area. These quantities are further utilised for the
C-DDPM validation. The physics-basedmodel validation is elaborated in b–e for all
sample conditions, i.e. seen, unseen and unknown. Therein, the microstructural
evolution at Cu–SAC305 interfaces during isothermal ageing at 150 °C is

quantitatively analysed. The IMC-layer growths and Kirkendall pore area increases,
dependent on the impurity content in the Cu metallisation, are plotted and the
parabolic growth rates are determined and compared for real and generated images.
PVD-Cu is plotted in green, ECD1-Cu in blue, ECD2-Cu in purple and ECD3-Cu in
pink. b, d Cumulative (Cu6Sn5+ Cu3Sn) layer growth. c, e Kirkendall pore area
increases. b, cMean values of the real images are shown as squares, square-rootfits of
thesemean values as dashed lines and standard deviations as shaded areas versus the
ageing time. The respective values of the three generated images for each sample
condition are shown as circles (seen conditions) and triangles (unseen and unknown
conditions). d, e Separate linear fitting of mean data from real and generated images
and determination of parabolic growth rates versus the square root of ageing time.

Table 1 | Estimated pore formation enthalpy QK for the
investigated Cu-impurity contents for real and generated
data, respectively, aswell as their decreasecompared toQPVD

Estimated Kirkendall pore formation enthalpy

sample real
data kJ

mol

� � generated
data kJ

mol

� � QK/QPVD

(real) ½��
QK/QPVD

(generated) ½��
PVD −106.83 −105.00 1.00 1.00

ECD1 −109.35 −113.07 1.02 1.07

ECD2 −117.78 −116.79 1.10 1.11

ECD3 −116.24 −119.30 1.09 1.13
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thicknesses and Kirkendall pore areas are extracted, which are presented in
Fig. 6d–e, respectively. The increases in IMC-thickness and Kirkendall pore
area and their accelerated growth rateswith increasingCu-impurity content
are consistent with previous findings35,49,65,66,68,69. Secondly, the decrease of
Kirkendall pore formation enthalpy (QK) with increasing Cu-impurity
content in the metallisation is estimated, as described in ‘Methods’. This
estimated decrease inQK, listed in Table 1, reflects the increasingKirkendall
pore area with increasing Cu-impurity content49,66,69. It should be noted that
here, only diffusional processes, extracted from the analysed image data, are
considered for the estimation of QK and that there may be additional
contributing factors involved. Nonetheless, the trend of decreasing QK with
increasing Cu-impurity content for both real and generated images reiter-
ates the viability of the images generated by the C-DDPM.

In summary, this study highlights the application of genAI for the
image generation of unknown microstructural conditions in materials
science, which may impact future approaches for microstructural ima-
ging. The developed C-DDPM exhibits negligible hallucinations, and the
ability of the model to extract significant cause variables from a relatively
scarce number of seen conditions in its training data is validated. This has
the potential to reduce experimental work significantly, as schematically
shown in Supplementary Fig. 1. For future microstructural imaging
analyses, a well-trained genAI model may limit the necessity for actual
experimental work to the validation of the most promising or critical
sample conditions. Similar interactions of AI and laboratory work are
currently developing in the fields of biochemistry, e.g. the prediction of
protein structures90–92, and exploratory materials science, e.g. the pre-
diction of high entropy alloy compositions93–95. Hence, the findings from
this study have great potential to advance failure analysis and material
development since the developed method enables the holistic micro-
structural imaging of critical conditions with high efficiency in context to
microstructural evolution and material degradation, also when only few
experimental sample conditions are available.

Methods
Materials and sample production
The investigated samples were prepared on 300mm Si wafers using
industrial manufacturing processes. The ECD-Cu metallisations are
depositedat room temperature froma liquid electrolyte, utilising the current
densities listed in Supplementary Table 1. The investigated PVD-Cu
metallisations are grown at room temperature using physical vapour
deposition. Both ECD-Cu and PVD-Cu type samples have a final Cu
thickness of 10 µm.

The investigated solder balls are made from the Sn–3.0 wt.%
Ag–0.5 wt.% Cu (SAC305) solder alloy, which is reflowed at a peak tem-
perature of 240 °C and with a mean heating rate of 44 °C/min in inert N2

atmosphere, followed by rapid air cooling to 90 °Cwith amean cooling rate
of 107 °C/min and ambient air cooling to room temperature. Subsequently,
thePVD-andECD2-samples are aged for 0, 50, 100, 300, 1000 and3000 h at
150 °C in ambient atmosphere, whereas the ECD1- and ECD3-samples are
aged for 0, 750 and3000 h at the same conditions.Note that the ageing test is
carefully chosen with respect to the eutectic temperature of SAC305, which
is only 217 °C96. Therefore, a drastic increase of the ageing temperature to
further speed up the microstructural change would risk changes in the
ageing mechanisms.

3D X-ray tomography
The exemplary 3D X-ray tomography, shown in Fig. 1a, is done with a GE
Phoenix Nanotom M (research edition) with a cone-beam, 110 kV accel-
eration voltage, 120 µA X-ray tube current and without filter. By utilising a
cone-beam, the achievable spatial resolution is dependent on the lateral
sample size (~5 × 5mm2). This results in a voxel size of
2.35 × 2.35 × 2.35 µm3.Due to the variousX-ray attenuation by the different
materials in the device, solder balls, Cumetallisations, as well as flux bubbles
within the solder balls, are distinguishable due to their various grey values.
The visualisation in Fig. 1a is done with Avizo.

Sample preparation and FESEM imaging
A 3DMicromac microPREP PRO femtosecond laser with a laser power of
300mW is used to pre-prepare the cross-sections for FESEM. The final
cross-sections for FESEM-BSE imaging are prepared with a Hitachi
IM4000+ ionmilling system.The accelerating voltage for ion slicing is set to
6 kV and the swing angle to 30°. The BSE micrographs are acquired with a
Zeiss 450 Gemini FESEM utilising an acceleration voltage of 5 kV, sample
currents of 3 nA and a 1000 X-magnification. The EDX-mappings are done
on the same Zeiss systemutilising anOxfordUltim Extreme EDX-detector.

C-DDPMmodel and image generation
For the virtual generation of microstructural images for specific sample
conditions, we utilise a conditional denoised diffusion probabilistic model
(C-DDPM), see Fig. 3. Solely FESEM-BSE micrographs are utilised to train
theC-DDPM.The experimentally available dataset in this study includes 18
actual FESEM‑BSE micrographs from ageing times 0 h, 50 h, 100 h, 300 h,
750 h, 1000 h, and 3000 h and Cu impurity contents of 0, 30, 60, and 120.
These are the 18 different experimentally available sample conditions illu-
strated inFig. 2. For the virtual generation of themicrostructural image data,
we distinguish between three types of conditions: seen, unseen and
unknown. We utilise 1080 microstructural images for the training of the
C-DDPM. The FESEM-BSE micrographs, one image for each seen condi-
tion, are cropped utilising a sliding-window approach. The window size is
set to 450 × 450 pixels2 with a horizontal overlap of 400 pixels. The resulting
image snippets showafieldof viewof 16.75 × 16.75 µm2 andare then resized
to 512 × 512 pixels2 for the training of the C-DDPM and C-GAN. Data
augmentation is performed by using a vertical flip, since the microstructure
images are variant to rotation, and they are normalised to the intensity of
[−1, 1].We calculate the silhouette value utilising scikit-learn 1.2.1 to gain a
qualitymeasure about clustering in the trainingdata, to ensuredatadiversity
despite the image overlap of the FESEM-BSE snippets. The silhouette value
can assume values from−1 to+1. For our training data, the silhouette value
is calculated as 0.29, indicatinghighdatadiversity97. For the evaluationof the
model prediction ability, two unseen conditions are set aside during model
training. We consider a 10:90 validation data split. The C-DDPMmodel is
trained for 400 epochs with a batch size of 2 on a single HP ProLiant A40
GPUGen10 server in Python 3.11 using the Pytorch 2.1 library, which is the
dataset passes through an algorithm 400 times. The time step of noise
production is set to 1000, and the start and end points of the variance
scheduler β are 0.0001 and 0.02, respectively. The learning rate of Adam
optimiser is set to 0.0003.We generate with the trained model three images
for each datapoint. after the denoising process.

The model is briefly introduced here, according to22–24. The diffusion
process gradually adds Gaussian noise to a clean image x0 over T time steps
using a predefined variance schedule βt . The diffusion equation is given as:

qðxt jxt�1 ¼ N ðxt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtIÞ; ð1Þ

where βt controls the noise level at each timestep t, I is the identity matrix,
and T is total step number. Using the re-parameterisation trick, xt can be
sampled directly at any timestep:

xt ¼
ffiffiffi
�α

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵ ð2Þ

here �αt ¼ Πt
s¼1ð1� βsÞ is the cumulative product of noise scaling factors,

and ϵ � N ð0; IÞ is standard Gaussian noise. The diffusion process is fixed
and does not involve learnable parameters.

The denoising procedure aims to recover the original image x0 from
noisy images xT ; xT�1; � � � ; x1. It is parameterised by a convolutional
neural network architecturewith attentiongates (U-Net)74, andmodelled as:

Pθ xt�1jxt; f
� �¼N ðμθðxt ; t; f Þ; σ2t IÞ ð3Þ

where f denotes the conditioning information and μθðxt ; t; f Þ is the mean
parameterisation, which is predicted by aU-Net. A variance term σ2t is fixed
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to a certain schedule. The mean prediction is typically parameterised as:

μθ xt ; t; f
� � ¼ 1ffiffiffiffi

αt
p ðxt �

βtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p ϵθ xt ; t; f
� �Þ ð4Þ

Where ϵθðxt ; t; f Þ predicts the noise added to x0.
The training objective is to minimise the difference between the true

noise (ϵ) and the predicted noise ϵθðxt ; t; f Þ at each timestep t based on
condition f using a simplified loss function:

Lθ ¼ Ex0 ;t;f ;ϵ
½jjϵ� ϵθðxt ¼

ffiffiffiffi
�αt

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵ; t; f Þjj2� ð5Þ

This loss function trains the model to predict noise accurately at each
timestep while respecting conditional f . The expectationE ensures that the
model generalises across different timesteps, noise levels, and conditions.

The encoding and decoding paths of the implemented attentionU-Net
model are asymmetric and mirrored, with six layers each. The encoding
path consists of six blocks of max-pooling, four convolutional layers, group
normalisation, and a Gaussian Error Linear Unit (GELU) activation func-
tion, see Fig. 3. Ahead of max-pooling in the first layer, there are two
convolutional layers.Thebottleneck consists of six convolutional layers.The
self-attention mechanism with four heads is applied from the third to the
sixth down-sampling layers to address long-range and multi-level depen-
dencies across image regions. The decoding path is similar to the encoder,
with six blocks of bi-linear up-sampling and four convolutional layers fol-
lowed by group normalisation andGELU activation functions, and the final
layer is a 1 × 1 convolution. The decoding path concatenates data with skip
connections to prevent spatial information loss and alleviate the vanishing
gradient problem. There are self-attention layers similar to the encoding
path after up-sampling of the sixth to third layers. During denoising, the
model is conditioned on the timestep using the sinusoidal positional
embedding, added to each down-sampling and up-sampling layer. Tomake
it class-conditional, similar to the timestep at each down- and up-sampling
layer, the embeddingvectors corresponding toCu-impurity and ageing time
are linearly embedded into separate tensors of the same size as the corre-
sponding layer’s spatial dimension and concatenated with related feature
maps.TheAdamoptimizer andmean squarederror (MSE) loss function are
used for training, while the exponential moving average technique (EMA)
calculates the exponentially weighted average of the current and updated
model parameters at each optimisation step to stabilise the optimisation
process. For the training and validation of the C-DDPM, the dataset shown
in Fig. 2 is utilised.

The U-Net is implemented as the backbone of the C-DDPMdue to its
hierarchical feature extraction, its skip connections, and its empirical per-
formance. It processes images through layers, capturing features at multiple
scales, and preserves spatial information. U-Nets are well-suited for hand-
ling noise in the denoisingprocess and canbemodified to include additional
features like attention mechanisms74. These traits make U-Nets valuable
components in generating high-quality images. This allows the virtual
reconstruction of original images by gradually removing noise.

Validation of generated images by the C-DDPM in seen and
unseen datapoints, as well as assessment of reasonability for
generated images in unknown datapoints
The developed C-DDPM generates microstructural images for specific
sample conditions from random noise, within the second Markov chain.
Since the denoising begins with random noise, and a stochastic approach is
utilised due to the Markov chain, those images will not be identical.
Therefore, in order to gain more statistical insight into the model outputs,
three images are generated for each condition. For the extraction of the
microstructural features, like IMC-layer thicknesses and Kirkendall pore
areas, the FESEM-BSE micrographs, as well as the generated micro-
structural images, are labelled using ilastik 7.1.079. We apply the embedded
feature suggestion tool for pre-segmentation and subsequently manually
refine the labels to maximise the label accuracy. For each of these labelled

images, the mean Cu6Sn5- and Cu3Sn-thicknesses are calculated by
counting the number of pixels of the respective phase, dividing by the image
width andmultiplyingwith the pixel size. The pore area is also calculated by
counting the associated pixels and multiplying with the pixel size. Subse-
quently, an average is taken from the three images that are generated for
each sample condition. The deviations of the respective features in the
generated images from the real FESEM-BSE micrographs are evaluated
separately for each datapoint, for both seen and unseen data. The deviations
are calculated by dividing the differences between the mean values in real
and generated images by the mean of the respective real values. For the
evaluation of structural similarity between real and generated images, the
MS-SSIM is calculated utilising TensorFlow 2.6.0. The calculated value of
0.79 indicates high similarity between the images in terms of brightness,
contrast and texture. In order to further scrutinise the microstructural
morphologies in generated images, the Cu6Sn5–SAC305 interface curva-
tures are exemplarily calculated for PVD-Cu metallisation after isothermal
ageing for 0, 100, 300, 1000 and 3000 h and compared to real interface
curvatures of the respective conditions, see Supplementary Fig. 5. Specifi-
cally, the line-lengths of the interfaces are calculated, as they directly cor-
relate with the interface curvatures. As shown, the C-DDPM is also able to
realistically depict this property, as themaximumdeviation amounts to 8%.

For the physics-based model validation, the manually labelled phases
are quantified for each Cu-impurity content and plotted over isothermal
ageing time. Python 3.8.13 and Numpy 1.22.3 are used for calculating and
plotting the evolution of themicrostructural features over time. Square-root
fitting on real data is done with SciPy 1.7.3 and plotted, along with the
standard deviation in the real images. The values for generated images are
also added to the plots to visualise their deviations from the real data with
Matplotlib 3.5.1. For the generated images, seen conditions are plotted as
circles, unseen and unknown conditions as triangles. Note that ‘unknown’
conditions are sample conditions, which are experimentally not available.

Calculation of parabolic growth rates
The calculations of the parabolic growth rates of both IMC layers and
Kirkendall pores are based on the labelled images and their aforementioned
quantification. Again, Python 3.8.13 and Numpy 1.22.3 are used for cal-
culating and plotting the evolution of themicrostructural features and SciPy
1.7.3 for data-fitting, only this time, linear fitting is applied over

ffiffiffi
h

p
. From

the slopes of these linear fits, the respective parabolic growth rates are
determined.

Estimation of Kirkendall pore formation enthalpies
The estimation of Kirkendall pore formation enthalpy is based on the pore
area increase observed over ageing time and increasing Cu-impurity con-
tent. Numerical values for the calculations are roughly estimated from the
experimental data in this study and from literature. Hence, the results and
discussion in this context are only done comparatively for the investigated
Cu-impurity contents andnumerical values should not be taken at their face
values but only the trends should be considered.

The increase in Kirkendall pore area with increasing Cu-impurity
content is shown in Fig. 6b, d. In order to estimate the decrease of the pore
formation enthalpy, the vacancy diffusion coefficients (Dv) are assessed
from the pore-area increase over ageing time. For simplicity,Dv is calculated
as

Dv=
m2

s

� �
¼ pore-area

t
ð6Þ

wherein the mean Dv value of the various ageing timesteps is evaluated for
each sample. Subsequently, the Kirkendall pore formation enthalpies (QK/
[kJ/mol]) are estimated:

QK=
kJ
mol

� �
¼ �R � T � ln Dv

D0

	 

=1000 ð7Þ
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where R/[kJ/mol] denotes the ideal gas constant and T/[K] the ageing
temperature. Due to lacking literature onD0 for vacancy diffusion inCu3Sn,
the intrinsic diffusion coefficient of Cu3Sn (DCu3Sn = 5.48 × 10−9 m2/s98,99) is
inserted instead. The results of this estimation are shown in Table 1. It
should be stressed that D0 and Dv are only roughly estimated in their
numerical values, nonetheless, both values are determined in the same way
for all samples. Hence, the ratio of QK of each ECD deposition current
density and the PVD-deposited Cu-sample (QPVD) is calculated for both
real and generated data, respectively.

Data availability
Data is provided within themanuscript or supplementary information files.
Further data if necessary is available from the corresponding author upon
request.

Code availability
All code that supports the findings of this study is available from the cor-
responding author upon reasonable request.
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