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This study presents a Bayesian network (BN) for the holistic assessment of stress corrosion cracking
(SCC) risk. The model is designed to interrogate the optimal operating conditions of duplex stainless
steels (DSSs) in downhole environments, addressing the perceived overly conservative limits by
current industry standards, particularly those from ISO 15156 — Part 3. A knowledge-based dataset on
DSS performance was compiled from diverse sources. Machine learning and deep learning
techniques facilitated data pre-processing and identification of feature interactions, supporting the BN
structure’s development. Extensive cross-validation demonstrated that the BN model accurately
predicted the occurrence of both pitting corrosion and SCC with over 90% accuracy. Using the BN
model, inference analyses were undertaken to examine SCC risks for DSSs under diverse sour
conditions. The results indicate that DSSs could withstand more aggressive conditions than those
currently permitted by ISO 15156 — Part 3, suggesting potential for broader and more effective use in

oilfield applications.

In the petroleum industry, engineered tools and structures integral to
production systems operate under some of the most severe industrial
environments'. This distinction is further exemplified through the working
conditions in technically challenging fields, such as high-pressure and high-
temperature (HPHT) reservoirs, deep and ultra-deep fields, and remote
Arctic locations. In these settings, pressure and temperature conditions
reach upwards of 160 MPa and 300 °C, respectively, at depths exceeding
10,000 m*.

The presence of corrosive agents, predominantly chloride (Cl"),
carbon dioxide (CO,) and hydrogen sulphide (H,S), further escalates
the technical difficulties of recovering crude oil and natural gas™’.
Moreover, the severity of downhole conditions can be aggravated
by the presence of elemental sulphur (S°), which is likely to occur if
H,S concentration exceeds a 5-10% threshold within the gas phase®”".
In the same vein, deep reservoirs may contain traces of organic acids
(mainly acetic acid) and a variety of other contaminants, including
liquid metals™*’. Furthermore, the use of completion fluids (typically
rich in Cl") and highly acidic stimulation chemicals (e.g., hydrochloric
and hydrofluoric acids), in conjunction with enhanced recovery

methods, can considerably affect the corrosivity of the environment
throughout the life cycle of production wells'"".

Given the aggressive characteristics of downhole environments,
addressing degradation mechanisms associated with environmentally
assisted cracking (EAC) becomes imperative, chiefly stress corrosion
cracking (SCC)*’. Fundamentally, SCC is an anodic form of EAC, derived
from the synergy between mechanical stresses (residual or applied) and a
reactive environment'>"’. SCC constitutes a prevalent threat to the integrity
of hydrocarbon production equipment, as it can markedly accelerate the
mechanical failure of exposed components'. Therefore, exhaustive proto-
cols of material selection, extending from well testing to the completion
stage, are critical to mitigating the risks posed by SCC'>".

Selection criteria for metallic alloys focus primarily on robust structural
integrity, superior corrosion resistance, affordability, and mechanical
properties that satisfy operating conditions'”""*. Thus, commonly employed
materials such as carbon and high-strength low-alloy steels, while adequate
as casing materials, generally do not meet the requirements for other
downhole applications due to their limited corrosion resistance'*'"". Instead,
corrosion-resistant alloys (CRAs) are preferred for tubing, liners, and
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critically exposed components (e.g., tubing hangers, wellhead flow crosses
and control valves), given their superior resistance to aggressive forms of
corrosion such as pitting""”. For the most severe environments, CRAs
employed include super austenitic stainless steels, nickel-based and nickel-
cobalt alloys, as well as titanium alloys™. However, the most commonly used
CRAs are 13-22 wt% chromium (Cr) alloys, such as martensitic stainless
steels and, in more demanding environments, duplex stainless steels
(DSSS)Z(]’Zl.

Due to their high resistance to localised corrosion and SCC, DSS alloys
are used in sectors other than oil and gas, such as chemical processing, power
production, and desalination™. In terms of chemical composition, duplex
grades contain from 19 to 30 wt% Cr, and additions of nickel (Ni),
molybdenum (Mo), nitrogen (N) and tungsten (W), with an optimally
balanced austenite/ferrite phase ratio, approaching 50:50°**". Thereby, DSS
integrates the ferrite phase’s high strength with the austenite’s ductility and
toughness™. Moreover, the high strength and hardness also endow DSSs
with remarkable resistance to erosion, cavitation, and corrosion fatigue’*".
The chemical composition of DSS promotes the formation of a passive Cr-
rich oxy-hydroxide layer. Consequently, DSS alloys maintain relatively low
corrosion rates when exposed to both CO, and H,S within oilfield settings at
temperatures not exceeding 100 °C”. Regarding the mechanical resistance,
the yield strength (oys) of DSS alloys ranges from 450 MPa when solution-
annealed to approximately 1100 MPa through cold working, rendering
them suitable for both shallow and deep well applications™”. Notably, the
DSS family is regarded as a cost-effective alternative compared to coated
carbon steels, high-resistance stainless steels and, in certain instances, Ni-
based alloys™.

Notwithstanding these attributes, industry standards currently provide
an incomplete representation of DSS alloys’ performance in oil and gas
environments. Particularly, the standard governing the material selection of
CRAs in H,S-containing services, ISO 15156—Part 3 (ISO 15156—3)*,
imposes strict limits concerning critical corrosion factors. These include
partial pressures of H,S (pH,S) and CO, (pCO5), solution pH, temperature,
and Cl~ concentration®. For DSSs, the standard prescribes an operational
threshold for downhole tubular components based primarily on pH,S,
ranging from 0.3 to 3.0 psi (~ 0.02-0.2 bar). However, such operational
boundaries are often perceived as overly conservative, and diverge from
numerous studies indicating that DSS alloys can withstand higher H,S
levels™ ™.

A prominent example is the seminal review by Cassagne et al.”>, which
emphasised that the SCC susceptibility of DSSs extends beyond pH,S levels,
involving temperature, Cl~ concentration and pH as critical determinants.
While this study is observational in nature, comparing data from the field
and experimental work, it suggests that DSS alloys may resist approximately
2.0 bar pH,S. This tolerance depends on maintaining Cl~ concentrations
below 10,000 ppm, a minimum pH of 4.5, at temperatures ranging from 80
to 100 °C.

While extensive literature has documented the SCC resistance of
DSSs™***, a comprehensive assessment of failure risks under service
conditions remains elusive. Moreover, the disparity between empirical
evidence and standardised limits highlights, in principle, the necessity of
more integrative frameworks to inform material selection and application in
production systems™”. Addressing this need, the present study introduces a
novel data-driven model, based on Bayesian networks (BNs), to determine
the SCCrisk for DSS alloys in downhole environments. Fundamentally, BNs
enable the representation of conditional dependencies among variables via a
directed graphical structure. This study therefore employs BN modelling to
encode the direct dependencies of critical determinants driving SCC, such as
corrosive agents, temperature, and stress state.

Despite consolidating base practices and lessons learned, industry
guidelines and international standards such as ISO 15156-3 do not address
the multifactorial nature of SCC and EAC more broadly’*”. The inherent
complexity of EAC phenomena contributes to this shortfall. EAC processes
are characterised by high variability and dimensionality, compounded by
uncertainties related to boundary conditions and material-environment

interactions™. As a result, SCC modelling remains challenging, as it requires
coupling chemical, electrochemical, and mechanical effects within a singular
model”.

Multiphysics approaches have been used in the hierarchical modelling
of material degradation phenomena, including SCC*. These first-principle
methodologies, while often applied in isolation, have been instrumental in
modelling electronic structures, atomic-scale interactions, and stress-
induced damage. For example, atomistic modelling, grounded in density
functional theory (DFT) and solid-state physics, is extensively utilised to
calculate electronic structures and predict atomic-level reaction pathways*.
The DFT application offers profound insights into the micro-mechanisms
driving SCC, including localised corrosion and hydrogen embrittlement
(HE)*. Molecular dynamics simulations complement these efforts by
modelling the dynamic behaviour of atoms, including bond breaking and
formation, as well as the effect of stress fields around the crack tip**.
Thermodynamic models have contributed to predicting the structure and
composition of passive films, while assessing the aggressiveness of corrosive
species in HPHT conditions**. These models focus on estimating both
corrosion and repassivation potentials, which are crucial for evaluating the
onset of localised corrosion that precedes SCC initiation.

The finite element method (FEM) has been widely employed to
determine localised corrosion rates and structural damage such as cracks
and fractures. FEM achieves this by coupling electrochemical and mass
transport models with continuum-scale structural mechanics analyses™.
In addition, phase-field models bridge the gap between atomistic and
continuum models”. These mesoscale modelling techniques enable the
simulation of phase transformations with evolving geometries. Such cap-
ability has facilitated a detailed examination of cracking initiated from
corrosion pits™**,

Despite the advances offered by current physic-based models, a unified
framework coupling the relevant temporal and spatial scales involved in
SCC has yet to be realised””. Furthermore, first-principles models fre-
quently rely on classical theories, empirical correlations, or idealised
assumptions grounded in measurable parameters and controlled boundary
conditions™. These characteristics can ultimately restrict their predictive
capacity in real-world environments.

Alternatively, data-centric modelling offers significant support in
analysing SCC failures. A key advantage lies in utilising real data, which
inherently captures the stochastic nature of corrosion-induced failures®.
Recent studies in corrosion engineering prominently feature the integration
of techniques in machine learning (ML) and artificial intelligence (AI)*"*.
These data-driven approaches have led to significant progress in visual
detection and classification of different corrosion patterns’**, as well as the
detailed analysis of chemical and electrochemical reactions™, solid-state
processes™*', and microbiologically induced degradation®.

In the oil and gas sector, BN modelling has allowed for holistic analyses
of relevant degradation phenomena, including uniform material loss,
localised corrosion, erosion, and under-deposit microbial corrosion” .
The proposed BN models yielded insightful information regarding the
interactions between qualitative and quantitative factors affecting corrosion.
These encompass hydrodynamic conditions (e.g., liquid hold up, partial
pressures, velocity), temperature, medium pH, soil conditions, pipe char-
acteristics (e.g., surface condition, types of coating, cathodic protection), and
the presence of organic decay products.

BN modelling has been purposefully tailored to investigate EAC
mechanisms. For instance, Sridhar et al.” proposed a BN model addressing
localised corrosion risk (i.e., pitting and crevice) for Ni-Fe-Cr-Mo-N alloys
in seawater. It estimates localised corrosion probabilities by integrating key
input variables, including Cl~ and sulphate (SO,>~) concentrations, tem-
perature conditions, crevice tightness, and alloy chemistry. This BN appli-
cation also incorporates established repassivation models”, and a unifying
parameter conceptually similar to pitting resistance equivalent (PRE)®,
which quantifies alloying effects on corrosion resistance.

Focusing on a different failure mode, Taylor et al.” employed a BN
model to assess corrosion fatigue initiation in high-strength Al alloys (e.g.,
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AA 7075, AA 2070). Inputs for this model included cathodic current density
and intermetallic particle size, sourced from microstructural analysis and
corrosion literature. Target nodes within the network are associated with
pitting kinetics rates and pit-to-crack transition, which were parametrised
using theoretical models from Harlow and Wei” and the Kondo criterion’",
respectively.

A BN model has recently been developed to predict hydrogen stress
cracking (HSC)”. This model facilitates probabilistic assessment of HSC-
related damage, which includes uniform corrosion, pitting, grooving, sul-
phide stress cracking, and HE. Discrete and continuous nodes are incor-
porated into the BN model, representing a wide range of variables, such as
metallurgical characteristics (e.g., oy, microstructure), environmental
chemistry (e.g., H,S, pH, Cl"), mechanical loadings (e.g., strain rate, stress
intensity) and operational conditions (e.g., cathodic protection, galvanic
effects). Critical factors in the model include electrochemical potentials and
the concentration of mobile hydrogen. However, conditional probabilities
in the BN model are derived primarily from expert knowledge.

BN present a compelling pathway for assessing SCC risks, especially in
data-scarce environments prevalent in multiple real-world industrial
applications, including oil and gas systems. In this regard, the imple-
mentation of data-centric techniques in SCC studies is still underdeveloped,
as existing efforts are hindered by insufficient data and the lack of well-
defined implementation strategies™ . In fact, a significant proportion of
BN applications in corrosion engineering largely depend on expert
knowledge for the specification of model parameters and network
architectures™. This reliance can nonetheless introduce subjectivity and
cognitive biases, such as anchoring, availability bias, and overconfidence’”.
Nevertheless, Sridhar et al.'*® emphasise the ability of BNs to combine
diverse information sources, both empirical and expert-derived, thereby
enabling probabilistic reasoning of complex systems and associated
uncertainties.

Therefore, this work leverages the flexibility of BNs to synthesise a wide
array of data within a computationally tractable framework. To construct
our BN model, we compiled several data sources (i.e., industry standards,
technical guidelines, and scientific papers), all pertinent to SCC testing of
DSS alloys under sour conditions. Advanced preprocessing techniques, such
as multiple data imputation and synthetic minority oversampling, were
applied to prepare the dataset for analysis. The BN structural design
benefited from other ML techniques, namely extreme gradient boosting
(XGBoost) and Shapley additive explanations (SHAP), which optimised its
predictive accuracy. The BN model from this research provides insights
regarding the interactions of the most critical factors leading to cracking,
and ultimately aims to interrogate the boundaries within which DSS alloys
can effectively resist SCC in downhole settings.

To ensure clarity for readers, it is essential to establish a fundamental
understanding of the factors influencing DSS vulnerability to SCC. Duplex
alloys are distinguished by their exceptional corrosion resistance; however,
their behaviour under SCC-inducing conditions remains a subject of
extensive research. Of particular interest is the role of localised corrosion
processes, either pitting or intergranular corrosion, in promoting the
initiation of SCC*".

Although the underlying mechanisms of SCC are not thoroughly
understood, it is hypothesised that initial crack incubates originate from
pitting events'>. These nucleate after the disruption of the passive film
and tend to grow preferentially along slip planes or grain boundaries’.
Therefore, the formation of pits is considered a precursor to SCC, as
these localised surface attacks act as stress concentrators, potentially
leading to cracking®®. However, it is critical to recognise that not all
corrosion pits transition into cracks. Instead, the pit-to-crack transition
is a multi-component process, governed by more than mechanical
stresses, metallurgical characteristics, and environmental dynamics; the
morphological aspects of the pit itself (i.e., size, shape, and aspect ratio)
also play a significant role®. Particularly, pits with shaper geometries
lead to higher strain concentrations, which in turn increase the like-
lihood of evolving into cracks***.

In examining the localised corrosion behaviour of DSS, various
investigations indicate that pitting susceptibility is significantly influenced
by CI~ content and temperature®*”’. For example, experimental work in
1.0 M sodium chloride (NaCl) solutions has shown that standard DSS
samples, containing 22 wt% Cr, typically undergo pitting above critical
temperatures exceeding 60 °C”. Nonetheless, critical pitting temperatures
(CPTs) can extend to 150 °C, at Cl~ concentrations as low as 100 ppm*.
Interestingly, standard DSSs can exhibit pitting corrosion even at moderate
temperatures around 30 °C. This occurs when they are exposed to high Cl™
levels (>159,00 ppm) in solutions with different ionic compounds, such as
NaCl, calcium chloride (CaCl,) or magnesium chloride (MgCl,)”. Notably,
the increase in Cr content enhances pitting resistance; for instance, DSS
alloys with 25-28 wt% Cr (also referred to as super DSSs) exhibit an average
CPT of around 90 °C**"".

A standard parameter for quantifying localised corrosion resistance
and SCC susceptibility of CRAs is the PRE, given by

PRE = %Cr + 3.3(%Mo + 0.5% W) + 16%N (1)

This metric empirically correlates higher levels of Cr, Mo, W and N
with enhanced resistance to localised corrosion in chloride-rich
environments™”". Accordingly, lower PRE values indicate a greater sus-
ceptibility to pitting corrosion”. Since localised attacks are a precondition in
SCC, PRE is then used to establish the operational limits of DSSs for oil and
gas applications. As downhole tubular, ISO 15156-3 standard™ dictates that
conventional DSSs, with PRE values between 30 and 40, are eligible for
environments where pH,S does not exceed 0.3 psi (~0.02 bar). This applies
irrespective of temperature, Cl~ concentration, and pH. Comparatively,
super duplex grades, having PRE values from 40 to 45, can operate up to
3.0 psi (~0.2 bar) pH,S and a maximum Cl~ concentration of 120,000 ppm.

However, the publications by Craig” and Garfias-Mesias™ highlight
that PRE is insufficient for evaluating the corrosion resistance of DSS in oil
and gas settings. Both authors argue that, whereas PRE accurately correlates
with the CPT for single-phase austenitic stainless steels in oxidising con-
ditions, its predictive value fails for DSSs due to their dual-phase structure,
or when considering anoxic environments. An example of this is the study
conducted by Kane and Abayarathna®. This investigation demonstrated
that CPT for standard DSSs (PRE = 34) is limited to about 115 °C under
sour conditions. Such observation contrasts sharply with the 200°C
achieved by Ni-based alloys N08825 (PRE = 31) and N06255 (PRE =45),
which have comparable or lower PRE values. In addition, Craig” and
Garfias-Mesias™ pointed out that PRE’s formulation neglects the combined
effects that contribute to SCC, which involve mechanical stresses, corrosive
species, and particularly, the influence of specific chemical constituents.
Among these are impurities such as phosphorus (P), sulphur (S), as well as
additions of manganese (Mn) and Nij; all of which can drastically alter the
performance of DSS.

At downhole conditions, extensive research has demonstrated that
DSS is prone to pitting, and subsequent cracking, in the presence of H,S at
temperatures between 60 and 180°C™”. These investigations have
explored a wide range of experimental conditions, including pH,S levels
spanning from 0.1 to 1.0 bar, CI” concentrations up to 120,000 ppm, and pH
values between 3.0 and 4.5, while DSS specimens have been subjected to
constant loads equivalent to 90% oy. Notably, the evidence from these
investigations elucidates the synergistic influence of H,S and CI™ in accel-
erating SCC. However, uncertainties persist regarding the conditions under
which SCC is most likely to occur. This is further illustrated in Fig. 1a, b,
which correlate pH,S and Cl™ concentration across a variety of tests on
standard and super DSSs, respectively. Table 1 complements these figures by
detailing the properties of the tested DSS specimens.

As seen in Fig. la, b, the data exhibit trends that associate increased
cracking susceptibility with rising levels of H,S and Cl', although they do
not provide clear-cut criteria for determining SCC boundaries. More
importantly, Fig. 1 shows that both, standard and super DSSs, may resist
SCC in conditions far exceeding those outlined in ISO 15156-3"". The data in
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Fig. 1| SCC test outcomes for DSS alloys as a function of H,S partial pressure and
Cl” concentrations. a Standard DSS: Positive SCC instances are marked by red

circles, while negative instances are blue circles. b Super DSS: Red diamonds indicate
SCC occurrence, and blue diamonds signify no SCC. The dashed lines in both plots
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represent the safe operating limits for pH,S (i.e., 0.02 and 0.2 bar) for DSS alloys
according to ISO 15156-3 standard™. The data points encompass a wide range of
experimental parameters, including temperatures (25-200 °C), pH (2.7-5.4), CO,
partial pressure (pCO, < 92 bar), and tensile stresses (30-160% oy).

Table 1 | Summary of DSS alloys employed in SCC studies presented in Fig. 1

UNS No.* Cr Ni Mo N Mn Cu w PRE® Reference
Standard DSS

S31803 20.2-23.6 4.8-6.0 2.4-3.4 0.0-0.2 0.0-2.9 0.0-0.2 0.0-0.6 32.5-35.2 32,97,99,135,180,181
S$32205 20.1-23.2 4.8-7.4 25-3.4 0.0-0.2 0.0-2.3 0.0-0.2 0.0-0.0 28.4-35.8 98,134,135,141,142,181-185
S$32404 20.0-21.0 6.0-8.0 25 0.0-0.2 - 1.5 - 28.2-31.6 135,182

Super DSS

S$32550 24.6-25.5 5.5-6.5 2.5-3.5 0.2 0.0-0.8 0.0-1.7 - 36.4-39.6 99,135,142

S31260 24.8 6.8 3.0 0.2 1.2 0.1 - 37.8 182

S32750 24.6-25.4 5.3-7.8 3.0-3.5 0.2 0.0-0.9 0-0.1 - 37.3-41.2 101,141,142,181,184
S32760 24.7-25.8 6.6-7.1 3.0-3.8 0.0-0.3 0.5-0.9 0.5-0.8 0.3-0.7 37.8-42.7 32,99,101,180,181
S39274 25.0 6.8 3.2 0.1 0.9 0.5 0.3 38.2 135

S39277 25.2-25.5 6.9-7.4 3.8 0.3 0.5-0.6 1.6-1.9 0.8-0.9 43.3-44.0 101,180

@ The numbers of the unified numbering system (UNS) are listed in reference (ASTM (2012)).
° PRE is estimated according to Eq. (1).

Fig. 1 cover a broad range of experimental conditions, extending beyond
H,S and Cl™ concentrations. These include a temperature range from 25 to
200 °C, pH values between 2.7 and 5.4, pCO, up to 92 bar, and tensile
stresses from 30 to 160% of DSS’s nominal gy. Based on these data, it has
been observed that DSSs exhibit less propensity for cracking under high H,S
levels, and low Cl™ concentrations, or when pH values are not strongly
acidic; albeit the impact of mechanical stresses has yet to be quantified.
For example, the study published by Francis and Byrne” involved
C-ring tests with a brine containing 46,000 ppm Cl ™ at 80 °C (pH = 4.3). The
tests varied pH,S from 0.125 to 0.375 bar within a CO,/H,S mixture, while
stress levels were equivalent to the nominal oy of the DSS samples. Here,
pitting and fine cracks were detected in standard DSS specimens starting
from 0.25 bar pH,S, whereas super DSS samples showed no signs of SCC,
even at 0.375 pH,S. Comparatively, Holmes et al.™ observed principally
pitting attacks in various SCC tests at constant load, without consistent
development of SCC. These tests employed only DSSs with 22 wt% Cr,
which were subjected to tensile stresses at 90% oy, while exposed to 0.35 bar

PH,S and immersed in a highly concentrated solution with 100,000 ppm
Cl” (pH=4.5).

For super DSS, Woolin and Malingas'”' found that more severe con-
ditions are required to observe SCC failures. Here, authors conducted
C-ring tests at a loading state equal to the nominal oy of the samples, in an
environment comprising 20,200 ppm Cl~ and 2.0 bar pH,S (pH = 3.5) at
85 °C. Interestingly, Seigmund et al.” noted that standard and super DSS
alloys can resist SCC while exposed to a range of 0.5-1.0 bar pH,S, and high
Cl™ levels of around 45,000 ppm within a pH interval of 4.2-5.0. These
experiments were undertaken under varied temperature conditions (i.e.,
from 28.5 to 180 °C) and maintaining a constant uniaxial loading for all DSS
specimens (i.e., 90% o). Despite the aggressive experimental settings, DSS
tensile probes underwent only moderate pitting corrosion, with penetration
depths in the order of 20-50 pm, although no cracking was observed.

The preceding discussion has emphasised the prevailing uncertainty in
identifying the conditions that lead to SCC of DSS alloys in downhole
settings. Addressing this problem necessitates a sophisticated approach due
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to the complex interplay among numerous contributing factors. To this end,
we present a BN model that visualises the relationships among variables
affecting SCC in DSS alloys. Drawing on literature data, this model leverages
BN inference to manage SCC uncertainty and interrogate the viability of
DSSs for oil and gas applications in a probabilistic manner.

Results and discussion

Data preparation

This research involved compiling a dataset of 2535 instances from localised
corrosion and SCC experiments on DSS. The dataset incorporates diverse
information sources, including standards, technical guidelines, and scien-
tific and conference papers. The supplementary materials accompanying
this study provide a detailed list of these sources.

The generated dataset includes the specifications of DSS specimens,
detailing their mechanical properties, such as o, ultimate tensile strength
(oyrs)> and elongation (g;), as well as their chemical composition and PRE.
The DSS dataset also contains experimental parameters relevant to SCC
occurrence, including temperature, pH,S and pCO,, Cl™ concentration,
medium pH, as well as applied stresses (0,,,). Test outcomes in the dataset
are categorical variables: Pitting Corrosion and SCC. Each outcome is
binary, indicating either the presence (YES) or absence (NO) of the event.
The stress ratio (ay), defined as the ratio of g,,,, to oy, was also determined
to assess whether the macroscopic stress state of DSS samples was elastic
(0g < 1) or plastic (6 > 1). Thus, o was calculated as follows:

Oapp
Oys

op =

@

Table 2 | Descriptive statistics and missing data percentages
for continuous variables in the DSS dataset

Features Minimum  Maximum Mean Std. Missing
deviation  data [%]

ayg [MPa] 386.11 1199.69 654.45 219.51 8.09

ayrs [MPa] 600.00 1503.06 797.12 204.97 9.62

& [%] 9.00 45.00 24.04 7.42 10.24

Cr [wt%] 17.21 26.40 23.25 1.50 0.0

Ni [%] 1.44 8.00 5.93 0.90 0.0

Minor 1.52 10.97 4.47 1.28 0.0

Additions

[%]°

PRE [a.u.]’ 25.59 48.04 36.31 3.69 0.0

pH 1.50 8.00 3.81 1.37 29.76

pCO, [bar] 0.00 92.88 7.52 18.09 9.13

PpH,S [bar] 0.00 9.91 0.50 0.99 1.49

CI” [ppm] 100 1,463,492.0 56,100.80 97,009.82 13.42

Temperature  16.20 288.00 83.29 49.15 3.87

[°Cl

Oapp [MPE]® 0.00 1225.92 478.97 340.19 28.61

og [-1° 0.00 1.55 0.62 0.425 28.61

@ Minor additions in DSS samples include C, Mo, N, W, Mn, P, S, Si, Cu.
° PRE is estimated according to Eq. (1).
“04pp @nd 0 have the same proportion of missing data, as oz is given by Eq. (2).

However, the heterogeneity of source materials compromises data uni-
formity by introducing missing data points, particularly related to experi-
mental features and results. These inconsistencies are largely attributed to
variations in experimental protocols, including differences in sample handling
and testing methods; for example, experiments at constant deflection (e.g., C-
ring, U-bend, and 4-point bend tests) and constant load (e.g., proof rings), as
well as slow strain rate tests. Consequently, many studies reported only the
incidence of SCC, with control variables limited to environmental settings
(e.g., pHLS, pCO,, temperature, and Cl~ content). Conversely, measurements
of pH, equivalent stresses, or the incidence of pitting corrosion were either
inconsistently documented or not feasible. For a concise overview, Table 2
summarises the continuous attributes of the DSS dataset, while Table 3
describes the categorical variables regarding pitting corrosion and SCC.

As reported in Table 3, the pitting corrosion column in the dataset
exhibits approximately 47.1% missing data points. Since pitting is a pre-
requisite for SCC, any instances where pitting corrosion was not observed
are exclusively associated with cases where SCC did not occur. Therefore,
positive cases of SCC invariably imply positive instances of pitting corro-
sion. Moreover, Table 3 reveals a significant class imbalance in the pitting
corrosion column, where positive instances of pitting corrosion exceed the
negative ones by a ratio of approximately 8.73 to 1. This is of particular
concern, as data-driven models can be heavily biased towards the majority
class, resulting then in poor performance on the minority class'”.

Missing data and class imbalance can compromise the performance
and generalisability of predictive models derived from the DSS dataset. To
mitigate these data quality issues, data preprocessing methodologies were
employed. Specifically, missing values were imputed using generative
adversarial networks (GANSs). Subsequently, the observed class imbalance
was managed through the application of the synthetic minority over-
sampling technique (SMOTE). The following sections will elaborate upon
the strategies adopted for preparing the DSS dataset.

Multiple data imputation

In this work, generative adversarial imputation nets (GAIN)'” were
employed to resolve the missing values in our dataset. The GAIN method
implemented builds upon the source code provided by Yoon et al.'*, which
has been adapted to be compatible with the Python library PyTorch'”. This
adaptation also integrates Bayesian hyperparameter optimisation (BHO)
via the Python library Optuna'®, enabling fine-tuning of the GAIN settings
to achieve optimal performance. The corresponding techniques, GAIN and
BHO, are further described in the “Methods” section.

The primary justification for employing data imputation in this work
is, in principle, to ensure the completeness and robustness of the dataset. In
data-centric models, missing data points can significantly impact their
accuracy and reliability, leading to biased estimates and incorrect inferences
about the relationships between variables'”’. The supplementary material of
this investigation offers detailed insights on the hyper-parameterisation
process, as well as a comprehensive analysis of the data imputations.

Before the imputation process, the dataset underwent feature nor-
malisation. This rescaling method was specifically utilised for the GAIN
imputation process. Here, we employed Min-Max scaling'®, which trans-
forms the minimum value (x,;,) of each feature to 0 and the maximum
value (x,,,,) to 1. Hence, scaled features (x,,,;) are determined as follows

X — X,
_ min
Xscaled = (3)
max — *min

Table 3 | Descriptive statistics and missing data percentages for categorical variables in the DSS dataset

Features Description Imbalance Ratio® Missing Data [%]
Pitting Corrosion YES = Pitting occurred; NO = Pitting did not occur 8.73 471
SCC YES = SCC occurred; NO = SCC did not occur 1.21 0.0

@ The imbalance ratio of categorical variables refers to the coefficient of positive to negative cases.
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Min-Max normalisation preserves the original distribution of the data
and the inter-relationships between feature values'”. In the GAIN algo-
rithm, feature normalisation is crucial for stabilising the adversarial training
process. Here, a generator network imputes missing values, while a dis-
criminator component evaluates the imputation quality relative to the
authentic observations'’. Fundamentally, feature normalisation ensures
that each feature exerts a proportional influence on the adversarial loss
function, which guides the adversarial dynamics between the discriminator
and the generator'”.

Figure 2 illustrates the data imputation results using GAIN. Here, the
histograms compare the frequency distributions between imputed (red
bars) and observed (blue bars) values for features with missing data.
Through an adversarial training process, the GAIN algorithm effectively
approximates the conditional distribution of the missing instances given the
observed data''™'"”. This results in the generation of statistically plausible
data points that maintain the dataset’s structural and distributional integrity.
Figure 2 exemplifies this outcome, where the close alignment between the
imputed and real data distributions showcases GAIN’s accuracy in
mimicking the actual underlying data distribution of the DSS dataset.

The GAIN imputation accuracy was also quantitatively assessed.
Figure 3 shows the behaviour of the root mean squared error (RMSE)
throughout the training iterations. For clarity, this metric quantifies the
average error between imputed values and actual data. In this respect, the
GAIN algorithm was adapted to compute RMSE for both training and
testing subsets, allowing the model’s performance to be monitored
throughout the training process until stabilisation. In this study, 20% of the
data was withheld as a test set, and during each iteration, 10% of this subset
was deliberately obscured to simulate the presence of missing data. Thus, the
RMSE values obtained for the training and test sets were 0.11 +0.05 and
0.19 + 0.02, respectively, indicating relatively low error rates.

Dataset balancing

Following the multiple imputation procedure, a significant adjustment in
the class distribution of the pitting corrosion variable was observed. The
initial imbalance, where positive instances outnumbered negative cases by
approximately 8.74:1 (see Table 3), was reduced to 1.98:1 post-imputation.
However, this remaining disparity necessitated further corrective measures.
Thus, data augmentation was applied using SMOTE for nominal and
continuous variables (SMOTE-NC)'”. This method oversamples the
minority class (i.e., pitting negative cases), achieving a more equitable dis-
tribution of classes that ensures unbiased predictive modelling.

Figure 4 illustrates the results obtained using SMOTE-NC, comparing
the distribution of cases for pitting corrosion and SCC before and after
applying synthetic oversampling. Specifically, the number of negative pit-
ting corrosion cases increased to 80% of the positive cases. This was
the optimal threshold detected that preserves the balance of SCC cases.
Figure 4a, b demonstrate a substantial increase in the number of negative
instances of pitting corrosion from 850 to 1348, while the count of positive
instances remained steady at 1685.

Similarly, Fig. 4c, d show the impact of the dataset balancing on SCC
instances. Here, the number of negative SCC cases rose from 1384 to 1653,
and positive cases adjusted from 1151 to 1377. This demonstrates that, while
effectively oversampling the pitting corrosion minority class, SMOTE-NC
did not negatively skew the balance of SCC cases. By implementing these
adjustments, the final imbalance ratios for pitting corrosion and SCC were
around 1.25:1 and 1.20:1, respectively.

XGBoost modelling and SHAP analysis

After preparing the dataset through imputation and balancing, an XGBoost
classification model was trained to predict SCC in DSS. However, our pri-
mary objective extended beyond simple prediction, aiming to elucidate
feature interactions contributing to SCC susceptibility. Decision-tree
ensembles, such as XGBoost, are inherently adept for this end, as their
hierarchical structure models how combinations of variables influence the
final prediction'*'"”. Thus, feature contributions within the XGBoost

classifier were subsequently investigated using SHAP values'. These
quantify feature importance and pairwise synergies, providing data-driven
insights that guide variable selection and potential connections for the
BN model.

Firstly, the XGBoost model performance was optimised utilising
BHO'”, which required the coupled framework provided by the Python
libraries XGBoost'™® and Optuna'®. This optimisation process targeted
maximising the area under the receiver operating characteristic curve
(AUC-ROC), which increases the model’s ability to discern between the
classes'”. To extensively explore the parameter space and ascertain the
optimal model settings, a total of 3000 trials were executed during the BHO
procedure. Full particulars concerning the hyperparameter ranges and final
settings are presented within the supplementary material accompanying
this manuscript.

During the BHO process, the predictive performance of the XGBoost
classifier was assessed using a stratified cross-validation (CV) scheme'”,
structured into five distinct folds. This validation strategy partitions the
dataset while preserving the original class proportionality (i.e., the ratio of
SCC-positive to SCC-negative instances), preventing potential biases
introduced by class imbalance'”. For each fold, 80% of the data formed the
training set for the BHO-derived model configuration, with the remaining
20% used as the unseen test set. Figure 5 presents the CV results across the
five folds, corresponding to the best hyperparameter configuration found
through BHO.

Figure 5a displays the aggregated confusion matrix, summarising the
performance across the CV test folds. The optimised XGBoost model cor-
rectly classified 1682 SCC-positive instances (i.e., true positives, TP) and
1248 SCC-negative instances (i.e., true negatives, TN). Misclassifications
were significantly lower, comprising 144 false positives (FP) and 112 false
negatives (FN). All these counts formed the basis for deriving key perfor-
mance indicators, as outlined in the “Methods” section.

Overall, the XGBoost model achieved an accuracy of 91.97%, indi-
cating high agreement between predicted and actual classes. The XGBoost
classifier demonstrated strong performance with a true positive rate (TPR),
or recall, of 93.76% and a precision of 92.11%. The F1-score was 92.93%,
indicating an optimal model’s effectiveness in predicting the SCC-positive
class. The true negative rate (TNR), also termed specificity, was 89.66% and
indicates the model’s capacity to correctly classify SCC-negative instances.
The XGBoost model exhibited a false positive rate (FPR) of 10.34% and a
false negative rate (FNR) of 6.24%. Further assessment is provided by the
ROC curves in Fig. 5b, which illustrate the trade-off between TPR and FPR
for each CV fold. Here, the AUC scores ranged from 0.899 to 0.991, yielding
a high mean AUC of 0.967 + 0.036. This metric indicates that the XGBoost
model consistently distinguishes between SCC-positive and SCC-negative
cases. The performance metrics of the XGBoost classification model are
outlined in Table 4.

Figure 6 details the results of SHAP-based feature importance and
interaction analyses. Model interpretation utilised the TreeSHAP explainer,
as implemented in the Python package SHAP''. Fig. 6a illustrates the SHAP
summary plot, displaying the distribution of SHAP values for each feature
across all data points. This visual representation ranks features by the
magnitude of their mean absolute SHAP values, indicating overall impor-
tance. The horizontal axis reflects the additive contribution of features
towards shifting the model’s output. Thus, rightward shifts suggest an
increased probability of SCC occurrence, while leftward shifts indicate a
decreased probability. The colour gradient shifts from blue to red, denoting
the impact of feature values, with blue representing a lower impact and red a
higher one. In the case of categorical variables, such as pitting corrosion,
SHAP values are coloured-coded in blue when pitting does not occur and
red when it does.

As seen in Fig. 6a, key predictors with high SHAP values, such as oy,
PH,S, and pitting corrosion, demonstrate significant influence on XGBoost
predictions towards increased SCC probability. In contrast, features such as
pCO,, temperature, Cl-, and pH exhibit varied effects on the classifier’s
predictions, suggesting a dual role in the model’s predictive dynamics, or

npj Materials Degradation | (2025)9:122


www.nature.com/npjmatdeg

https://doi.org/10.1038/s41529-025-00646-y

Article

600
600- 8007

& & &
£ 400- g £'600-

El = 400 El
g 3 £ 400

= oo = | >
0 I 200+ I -

[}
T
I LI ! i
0- = 0- — 0-
500 750 1000 750 1000 1250 1500
oys / MPa auyTs / MPa

600 0 400
300

> . > >

2400 €100 g

- E E
g g £ 200-
E 900- II = 507 § 100

. ||

1000+ 5004
600
800 400+
g 600 € 300- § 400
oy o o
() () [}
= 400- /= 200 =
200
200+ 100 I
__lll.l.l 1 ull .Flll.l. — A
O T T 0 O
107! 102 10° 100 200 300 :
Cl~ / ppm Temperature / °C
I Observed values
1500 I Tmputed values
E 1000+
=
o
O
500
O_
NO YES

Pitting Corrosion

Fig. 2 | Comparison of frequency distributions between observed data and
imputed data. The histograms for each variable presenting missing data are illu-
strated before and after applying the GAIN algorithm. The close alignment between

these distributions demonstrates GAIN’s effectiveness in replicating the underlying
data characteristics in the dataset.

dependency on other features. Figure 6a highlights the importance of DSS
alloy characteristics in the XGBoost model’s response, such as PRE, o, and
& The relevance of PRE can be attributed to the alloying elements (i.e., Cr,
Mo, N, W) determining its value, which collectively prevent pitting corrosion.

Regarding the mechanical properties, o'y and ¢, these are inherently asso-
ciated with toughness; a measure of the energy a material can absorb before
fracturing. In fact, toughness serves as a key metric in SCC studies to measure
how corrosive environments affect an alloy’s strength and ductility*>'>.
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Fig. 3 | RMSE behaviour across GAIN training —
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Figure 6b provides insights into pairwise feature contributions to model
output through SHAP interaction values, quantifying their joint effect beyond
individual contributions. Notable interactions include combinations of stress
levels (ie., o) and environmental variables (e.g., pH,S, CI” and pH). This
observation aligns with the understanding that susceptibility to SCC is heavily
affected by the interaction of mechanical loadings and environmental
chemistry. Figure 6b indicates recurring interactions among oy, pH,S, tem-
perature, PRE, as well as strength and ductility variables (i.e., oys and &). As
opposed to this, interactions with individual alloying additions (e.g., Ni, Cr,
Mo and Cu) are observed to be the least frequent. This pattern is consistent
with the feature importance rank in Fig. 6a, where chemical constituents
appeared less significant to the XGBoost model’s response.

Table 5 ranks the feature importance and interaction effects in the
XGBoost classification model. Based on SHAP analyses, the top 10 variables

exhibiting the most predominant interactions were selected for the BN
model. It is important to emphasise that our SHAP value analysis, derived
from training an XGBoost classifier, does not fully explain causality in SCC.
Nonetheless, the insights obtained inform the potential connections for
designing the BN structure. Thus, the XGBoost-SHAP framework in this
investigation allowed for a more detailed understanding of the critical
interdependencies among variables, which cannot be readily established
through expert knowledge or theoretical comprehension regarding SCC.

BN model

Figure 7 presents the BN model designed to predict SCC of DSSs, which has
been developed using the software BayesiaLab 11.3.1 (Bayesia S.A.S. Ltd.,
France). The network incorporates nodes that represent the most critical
attributes influencing SCC occurrence, as identified by our XGBoost-SHAP
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Fig. 5 | Performance evaluation of the XGBoost
classifier after CV. a Confusion matrix displaying
the aggregated results from the CV process, where
the colour bar indicates the number of instances
evaluated across test sets. The XGBoost classifier
correctly classified 1682 TP and 1248 TN, incurring
144 FP and 112 FN. b ROC curves for each CV fold.
The AUC scores range from 0.899 to 0.991. The
mean AUC score was 0.967, with a standard devia-
tion (shaded in grey) of + 0.036, indicating a high
model’s discriminative ability across diverse dataset
segments. The overall accuracy of the XGBoost
model was 91.97%.
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Table 4 | Performance metrics of the optimised XGBoost
classification model

Metric Value

Recall 93.76%
Precision 92.11%
F1-score 92.93%
Specificity 89.66%

FPR 10.34%

FNR 6.24%

AUC range 0.899-0.991
Mean AUC 0.967 +0.036
Accuracy 91.97%

framework. The selected nodes encompass environmental variables (e.g.,
PHLS, pCO,, Cl', temperature, pH), stress conditions (o), as well as specific
material characteristics (i.e, 0y, & and PRE) associated with both
mechanical resistance and chemical composition of DSSs. The BN design
allows for the systematic interrogation of pitting corrosion and SCC, given
the combined effect of sour conditions and tensile loading on DSSs.

What stands out in Fig. 7 is the directionality of the arcs pointing from
the SCC node to the predictor nodes. In this respect, our BN model adopts
an augmented naive Bayes (ANB) structure, where the reverse directionality
of connections emphasises a discriminative modelling approach'**'”.
Unlike typical BN designs that frequently represent causal pathways, our
model is structured to assess scenarios where SCC is assumed, shifting the
focus to how various environmental and material factors influence this
condition probabilistically. More importantly, ANB-based networks enable
the explicit modelling of inter-variable dependencies. These BN structures
often demonstrate enhanced classification performance by relaxing the
conditional independence assumption in traditional naive Bayes classifiers,
which is often untenable in complex real-world applications'*.

In Fig. 7, the colour-coded arcs differentiate dependency types
within the BN model. Blue arcs denote direct dependencies from the
SCC node (i.e., target node) to predictors, establishing primary path-
ways that quantify the direct influence of each predictor on SCCrisk. In
contrast, pink arcs indicate additional inter-variable dependencies,
highlighting the interactions that indirectly impact SCC risk. In this
regard, feature interactions from SHAP analyses primarily guided the
inclusion of inter-variable dependencies. Methodologically, network
construction commenced with a basic naive Bayes structure (generated
via BayesiaLab) comprising only direct connections from the SCC
target node to predictors. Afterwards, the BN structure was system-
atically augmented based on SHAP interactions, as reported in Table 5.
To assess their impact on the accuracy of the BN model, the inter-

variable dependencies were evaluated iteratively using a stratified five-
fold CV.

Figure 8 shows the CV results obtained for the final BN model, eval-
uated with an 80:20 training-test data split. This analysis quantifies the
model’s predictive performance for the pitting corrosion and SCC nodes,
which are inherently correlated events. As seen in Fig. 8a, the confusion
matrix demonstrates significant accuracy during the CV process for the
pitting corrosion node, which registered an overall accuracy of 90.21%.
Across all test sets, the model successfully classified 90.34% of positive
instances (i.e., recall) and 91.43% of negative instances (i.e., specificity).
Figure 8b illustrates the ROC curves for the pitting corrosion node, where
AUC scores across CV folds ranged from 0.936 to 0.960, with a mean AUC
value of 0.950 + 0.008.

An accuracy of 91.39% was obtained for SCC classification. As illu-
strated in Fig. 8¢, the BN model exhibited optimal performance during the
CV process. Through all test sets, the BN model yielded 90.21% and 92.74%
of recall and specificity, respectively. The ROC analysis for the SCC node
yielded AUC scores ranging from 0.931 to 0.958, with an average of
0.945 + 0.008, as observed in Fig. 8d. Collectively, these results demonstrate
that the BN model consistently maintained an optimal level of accuracy
across diverse testing conditions. Additional performance metrics for both
target nodes, pitting corrosion and SCC, are presented in Table 6.

Sensitivity analysis

A sensitivity analysis was conducted to elucidate the contributions and
probabilistic dependencies in the BN model. The results are visually sum-
marised in Fig. 9. The variables with the most significant impact on the
target node SCC are depicted in Fig. 9a. Here, the size of each node indicates
the direct contributions to the SCC node, as determined by BayesiaLab. For
clarity, the direct contributions represent the causal effect of a given variable
on the target node while holding other variables constant'”’. Thus, larger
nodes represent variables with greater direct influence on SCC.

In Fig. 9a, the red arcs highlight the most critical interdependencies
among variables, which are determined by Kullback-Leibler (KL) diver-
gence values'*. Specifically, KL divergence quantifies the information gain
by examining the mutual relationship between two variables, as opposed to
assuming they are independent. Therefore, higher KL divergence values
indicate a stronger relationship between variables. Figure 9b depicts the KL
matrix from the BN model, showcasing the strength of interdependencies
between variables. It is important to note that the KL matrix is asymmetric,
as KL divergence reflects the directional comparison between parent nodes
(listed along the vertical axis) and their child nodes (listed along the hor-
izontal axis)'”.

As seen in Fig. 9a, the outcomes of the BN model are predominantly
influenced by three main nodes, namely oy, pitting corrosion, and pH,S.
These findings are consistent with results from the feature importance
analysis using the XGBoost classifier (see Fig. 6a). Figure 9b indicates that
the most critical relationships in the BN model are associated with pitting

npj Materials Degradation | (2025)9:122


www.nature.com/npjmatdeg

https://doi.org/10.1038/s41529-025-00646-y

Article

High
@) ol el
Pitting Corrosion— *M—
pH_)S— -.-.-—-———*Q—.-.
pCOs ._._...*_
Cl ¢ = - -~
Temperature B .
3 pH- R et
g €/ B e 1)
Z PRE —o+o¢ 5
8 G
g.( Oy S — —*—-‘- >
. )
; Ni- oo .—-+ E
= oUTs s s
-~
g Cr+ o - A
= CH 4%
Si st
Fe— o ol
a o
Mn - i
Mo +--, .
CuA SCC = NO +_ SCC = YES
| LOw
-5.0 -2.5 0.0 2.5

SHAP values (impact on model output)

Fig. 6 | SHAP analysis of feature importance and interactions for SCC predic-
tions. a SHAP summary plot demonstrating the distribution of SHAP values for
each feature within the XGBoost classifier. Features are ranked by their impact
magnitude. Rightward shifts in the plot increase the probability of SCC occurrence,
while leftward shifts decrease it. The colour gradient from blue to red indicates

(b)

or - pH>S

or - pH

OR - 0ys

or-CIl™
Temperature - C1~
pH>S - pCO,

OR - PRE

pH>S - pH

Cl™ - pHyS

op - Temperature

Temperature - pH»S
Temperature - pH
IRr-pCO,

OR- €f

Feature Interactions

OR-0UTS
€r- pH

Cl™ -oys
PRE- €f
Cl™ - pH
pHLS - oygs

0.0 0.05 0.10 0.15 0.20 0.25 0.30

SHAP values (impact on model output)

impact levels, with blue representing low impact and red indicating high impact.

b Analysis of SHAP interaction values, showing the foremost pairwise feature
contributions to the XGBoost model output. Critical interactions comprise stress
levels (i.e., o), environmental conditions (e.g., pH,S, Cl” and pH), and DSS material
properties (e.g., oyg and &).

corrosion, where high KL values correspond to environmental factors, such
as pH,S, pH, Cl” and temperature. Regarding DSS properties, the PRE node
demonstrates a significant effect on the pitting corrosion node. In fact, the
PRE node holds a key position in the BN model, demonstrating strong
interdependencies with the mechanical properties (i.e., 0ys and &), which in
turn interact with stress levels at the o, node.

It is noteworthy that directed arcs between pH,S and Cl™ nodes are
strongly interconnected, indicating a synergy affecting the pitting corrosion
node. Comparatively, the direct interdependence between the temperature
and Cl™ nodes appears less significant in the BN model, despite their well-
known influence on pitting corrosion. This observation can be attributed to
SCC-promoting conditions where H,S is present, which alter the corrosion
behaviour of stainless steels, including DSSs. In this regard, several pub-
lished reviews argue that H,S disrupts passive films synergistically with Cl",
rendering pH,S the dominant variable triggering localised corrosion com-
pared to variations in temperature and Cl~ concentration alone***'.

Table 7 offers an overview of the BN model configuration, detailing
node discretisation, associated probabilities, mean values, and calculated
direct effects on the SCC node. Importantly, the probabilistic parameters
within the BN model incorporate uncertainty. For clarity, BayesiaLab per-
forms Monte Carlo simulations (typically employing 1000 samples) to
determine parameter uncertainty, which yields 95% confidence intervals for
model probabilities'*’. Meaning that, there is a 95% probability that the true
parameter value lies within the given range, conditional upon the model
and data.

Evaluation of pitting corrosion and SCC

The BN model demonstrated significant efficacy in predicting both pitting
corrosion and SCC. This dual capability enables a thorough evaluation of
SCC by discerning whether operating conditions are conducive to SCC or
merely localised corrosion. Understanding this differentiation is crucial, as
relying solely on pitting corrosion as a direct proxy for SCC initiation

overestimates the perceived failure risk. This, in turn, may result in unne-
cessarily conservative reliability assessments for materials such as DSSs"*'~'*".
A key parameter in the BN model is PRE, which can be used to examine the
risks of both corrosion phenomena. Specifically, the PRE node can be
adjusted to demonstrate that increased PRE values are associated with
decreased probabilities of pitting events, consequently reducing SCC risks.

Figure 10 exemplifies the BN model’s response using the PRE node,
showcasing its utility in the probabilistic evaluation of both localised cor-
rosion and SCC. For this analysis, specific conditions were arbitrarily
defined, encompassing a pH,S interval of 0.02-0.5 bar, Cl~ concentrations
between 30,000 and 120,000 ppm, temperatures spanning 60-115 °C, and
constant loads equivalent to 0.8-1.2 0. As shown in Fig. 10, these con-
strained variables are highlighted in green, indicating their limited prob-
abilistic range within the BN model. To avoid limiting the dataset’s range of
observations, other variables such as pH, pCO,, oy, and &, were not sub-
jected to specific constraints. Thereby, the BN model modulates their states
and projects the most probable outcomes. In Fig. 10, the PRE node is
marked with a red square, indicating 100% probability within the defined
range. This visual cue emphasises the PRE values under evaluation, chan-
ging from the 35-40 interval for standard DSSs (Fig. 10a) to PRE values
greater than 40 (Fig. 10b) for super DSSs.

Figure 10a indicates a 63.75% probability of pitting corrosion for DSSs
with PRE between 35 and 40. However, the SCC risk remains significantly
low, with a 68.39% probability of non-occurrence. This probabilistic
assessment is consistent with the observations reported by Tynell'**, who
conducted SCC tests on DSS samples of alloy $32205 (PRE = 35) under sour
conditions. In this study, DSS specimens were immersed in a solution with
approximately 30,300 ppm Cl~ and subjected to a constant load equivalent
to the nominal oy (ie, oz =1.0). While various DSS samples did not
undergo SCC, pitting corrosion was observed once pH,S exceeded 0.3 bar
and temperatures surpassed 70 °C. Similarly, Craig'” documented pitting
corrosion during SCC tests with alloy $32205 (PRE = 35), although no signs
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of SCC were detected. In contrast, experiments with alloy S32550 (PRE =~
39) exhibited no damage. In this work, the U-bend specimens were tested
using a solution containing 70,000 ppm Cl~ at 240 °F (= 115.5 °C), while
exposed to a CO,/H,S mixture with a pH,S of 5 psig (= 0.34 bar).

Figure 10b shows the probability of pitting corrosion and SCC for
super DSS grades whose PRE values exceed 40. Here, the risks associated

Table 5 | SHAP-based ranking of feature importance and
interaction effects for the XGBoost classifier

with pitting corrosion and SCC are notably low, with probabilities of 24.36%
and 16.62%, respectively. These outcomes are consistent with empirical
findings documented in the literature, demonstrating the exceptional
resistance of super DSSs to both localised corrosion and SCC™"**"**, The
experimental conditions in these investigations involve pH,S levels above
0.38 bar, Cl~ concentrations exceeding 100,000 ppm and temperatures over
100 °C, while stress conditions are equal or greater than 90% oys.

SCC risks for DSSs
To further investigate SCC risks for DSSs using the BN model, inference
analyses were conducted based on the operating limits for DSSs established

Rank  Feature z‘:::l Interactions ﬁ:;:':ction by Cassagne et al.”. The authors suggested operational thresholds for pH,S
value| VEIE based on field-relevant ranges of pH and Cl” concentration, which are
1 . 259 o=0H2S 028 summarised as follows:
> P - 120 " 027 Environments with pH = 3.5:
Itin: orrosion B = 5 — . .
< At * At 1000 ppm CI", conventional 22 wt% Cr DSSs resist up to 0.5 bar
& s L3 imdi i PH,S, whereas 25 wt% Cr DSSs withstand up to 0.7 bar.
4 pCO, 0.60 e 0.22 e At 10,000 ppm CI~, pH,S tolerance reduces to 0.3 bar for 22 wt% Cr
pp p
5 cl 0.59 Temperature-Cl- 0.21 DSSs, and 0.5 bar for 25 wt% Cr DSSs.
6 Temperature 047 oH,S5-pCO, 021 * At 100,000 ppm CI7, the pH,S limits further decrease to 0.2 bar for
= " 046 PRE 020 22 wt% Cr DSSs and 0.3 bar for 25 wt% Cr DSSs.
P - il - Environments with pH = 4.5:
8 € 0.43 pH>S-pH 0.19 At 1000 ppm Cl', both 22 wt% Cr and 25wt% Cr DSSs resist pH,S
9 PRE 0.35 Cl—pH,S 0.18 levels greater than 2.0 bar.
10 ovs 0.31 n-Temperature 0.18 * At10,000 ppm Cl ', 22 wt% Cr DSSs accommodate pH,S up to 2.0 bar,
1 Ni 0.28 TemperaturepH,S 018 while 25 wt% Cr DSSs withstand levels above 2.0 bar.
: 2 ' At 100,000 ppm Cl ", pH,S range is 0.3 — 0.4 bar for 22 wt% Cr DSSs,
12 Ours 0.21 Temperature-pH 017 and 0.8-1.0 bar for 25 wt% Cr DSSs.
13 Cr 0.17 0g—PCO2 0.17
14 c 0.16 Op—€; 0.16 For our inference analyses, we established the combinations of the
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Fig. 7 | BN model for predicting SCC of DSSs.
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Fig. 8 | Performance evaluation of the BN Model
using stratified CV. a Confusion matrix displaying
the aggregated results from test sets regarding the
pitting corrosion node. Here, the BN model pre-
dicted 1468 TP and 1173 cases TN, yielding 90.34%
recall and 91.43% specificity. b ROC curves for each
CV fold for the pitting corrosion node, where AUC
scores range from 0.936 to 0.960, and an average
AUC of 0.950 + 0.008. ¢ Confusion matrix display-
ing the aggregated results from test sets regarding
the SCCnode. The BN model predicted 1069 TP and
1598 TN, resulting in 90.21% recall and 92.74%
specificity. d ROC curves for each CV fold for the
SCC node, where AUC scores range from 0.931 to
0.958, and an average AUC of 0.945 + 0.008. The
overall accuracy for the pitting corrosion and SCC

nodes was 90.21% and 91.39%, respectively. © BB
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Table 6 | Performance metrics for pitting corrosion and SCC
nodes in the BN model

Metric Pitting corrosion SCC

Recall 90.34% 90.21%
Specificity 91.43% 92.74%
Precision 93.03% 89.53%
F1-score 91.66% 89.88%

FPR 8.60% 8.20%

FNR 9.70% 9.80%

AUC range 0.936-0.960 0.931-0.958
Mean AUC 0.950 + 0.008 0.945 +0.008
Accuracy 90.21% 91.39%

As observed in Table 8, DSS alloys with PRE < 34 exhibit a high risk of
pitting corrosion in environments with a pH of 3.5. The BN model con-
sistently predicted pitting corrosion probabilities exceeding 80% for this
DSS category. In addition, significant SCC probabilities, exceeding 54%,
were associated with specific conditions, such as 0.3bar pH,S and
100,000 ppm CI7, 0.5bar pH,S and 10,000 ppm Cl~, 0.7 bar pH,S and
1000 ppm Cl". At lower pH,S values (i.e., 0.2-0.3 bar), SCC risk was rela-
tively low even when the Cl™ concentration was 100,000 ppm, where the
associated probabilities of SCC no occurrence slightly surpassed 52%.

Comparatively, DSSs with PRE values between 35 and 40 demon-
strated improved resistance to SCC across all conditions detailed in Table 8.
In this respect, SCC is not expected within a probability range from 63.05%
to 76.29%. Nonetheless, pitting corrosion remained probable for these DSS
alloys, with probabilities oscillating between 58.18% and 71.16%. Notably,
super DSS with PRE values over 40 exhibited the lowest risk of localised
corrosion, with the absence of pitting reaching a probability as high as

72.05%. This superior performance consequently resulted in lower SCC
risks, with the probability of SCC not occurring ranging from 69.18%
to 84.21%.

At pH 4.5, the risk of pitting corrosion remains high for DSSs with
PRE < 34 across most sour conditions, as reported in Table 9. For these DSS
alloys, the BN model predicted pitting probabilities spanning from 74.26%
to 79.17%, although SCC risk is generally low, with no occurrence prob-
abilities around 56%. Nevertheless, SCC occurrence risk may climb towards
60% when pH,S levels vary from 0.8 to greater than 2.0 bar, and Cl~ con-
centrations exceed 10,000 ppm.

Table 9 shows that for DSSs possessing PRE values between 35 and 40,
pitting may manifest with probabilities between 52.16% and 86.22% when
PH.,S exceeds 0.4 bar. Below this pH,S threshold, the BN model indicates a
58.63% probability that pitting corrosion will not occur even upon exposure
to 100,000 ppm CI". Hence, the SCC risk for these DSS alloys is relatively
low across all conditions, where probabilities indicate that there is no
occurrence of SCC in the range from 55.28% to 69.98%. Consistent with the
results observed in Table 8, the resistance to pitting corrosion and SCC
markedly improves for DSSs with PRE > 40 across all evaluated conditions.
As shown in Table 9, pitting corrosion is not expected, with probabilities
ranging from 70.23% to 83.71%, while probabilities of SCC not occurring are
notably high, falling between 81.31% and 90.54%.

Tables 8 and 9 demonstrate that pH variations significantly affect H,S
influence on SCC. This was observed by Leyer et al."’, who quantified the
pH-H,S interaction, noting that a one-unit pH decrease can equate to a
tenfold increase in pH,S regarding environmental severity. As shown in
Table 9, a pH of 4.5 significantly diminishes the impact of H,S on SCC risk,
potentially preventing cracking even at pH,S levels beyond 2.0 bar.

However, DSSs with PRE <40 remain prone to localised corrosion
across most conditions analysed herein, while super DSS grades (PRE > 40)
effectively prevent both localised corrosion and SCC. In this regard,
empirical evidence from the literature supports the outcomes presented in
Tables 8 and 9. For example, Oredsson'*’ conducted various experiments
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Fig. 9 | Sensitivity analysis of the BN model.

a Direct effects on the SCC node. Here, node sizes
correspond to direct effect magnitude on SCC,
where larger nodes highlight the key influencing
factors, such as oy, pitting corrosion, and pH,S. Red
arcs indicate the strongest interdependencies,
determined from KL divergence b KL divergence
matrix showing the strength of interdependencies
between variables, with higher values indicating
stronger relationships. This asymmetric matrix
denotes the directional dependencies from parent
nodes (vertical axis) to child nodes (horizontal axis).
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with DSS samples of alloy $32205 (PRE =~ 34), which underwent pitting SCC boundaries for DSSs

corrosion, albeit cracking did not occur. These observations were made
under severe conditions, including a range of 0.1-5.0 bar pH,S, a pH interval
of 2.5-3.9, temperatures varying from 20 °C to over 200 °C, as well as Cl~
concentrations exceeding 30,000 ppm, and tensile stress levels approaching
the nominal 0.

In some SCC investigations, DSSs with PRE between 35 and 40 (e.g.,
§$32205, $31803, $32550 and $32750) have exhibited localised damage while
not manifesting cracking”’*'*!. The test parameters involved pH values
between 3 and 4.5, a range of 0.1-1.0 bar pH,S, temperatures from 60 to over
150 °C,and Cl™ concentrations ranging from 1000 to over 120,000 ppm, as
well as stress levels spanning from 60 to 90% o . Comparatively, super DSS
alloys (PRE >40) demonstrate consistent resistance to both pitting and
SCC. Investigations featuring alloys such as $32760, $32750 and $32520
reported no corrosion damage in environments comprising pH,S values
from 0.1 to 2.0 bar, Cl~ concentrations between 1000 and over 120,000 ppm,
and temperatures up to 110 °C. These conditions also included pH levels

from 2.8 to 6, while tensile loadings were equal to, or greater than 90%
99,137,142
ayg

Thus far, the pH,S values in our inference analyses have exceeded the H,S
limits in ISO 15156-3"" for DSSs. Despite this, our findings indicate that the
incidence of SCC is often unlikely. This exposes a marked disparity between
the conservative limits in industry standards and the actual performance of
DSSs. While pH,S is critical in restricting DSS applications, relying solely on
this parameter is insufficient to determine SCC risks comprehensively.

In an attempt to elucidate the conditions under which SCC of DSS is
prevented, we conducted a backwards analysis. This method infers the
posterior probabilities of relevant variables based on observed outcomes'”.
By assuming a 100% probability that SCC does not occur in the BN model,
we can identify the range of environmental conditions that lead to this
outcome. Similarly, a 100% probability of no pitting corrosion allows for
examining possible settings that prevent both corrosion phenomena, while
considering tensile loadings no greater than 90% oy (i.e., 03 <0.9).

Figure 11 illustrates the backward analysis using the BN model,
demonstrating that DSS grades can withstand up to 0.5 bar pH,S. This
concentration considerably exceeds the ISO 15156-3 limits of 0.02 bar for
conventional DSSs and 0.2 bar for super DSS grades, representing 25- and
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Table 7 | Overview of the BN model configuration

Node States Mean Value Probability® [%] Confidence Interval® [%)] Contribution to SCC node® [%]

SCC NO - 58.74 +0.42 -
YES 41.26 +0.42

Oys <0.507 0.642 (+ 0.40) 31.98 +0.46 28.19
<0.9 14.81 +0.35
>0.9 53.21 +0.47

Pitting corrosion NO - 43.80 +0.47 20.54
YES 56.20 +0.47

PH,S [bar] <0.02 0.537 (+1.02) 29.27 +0.46 14.36
<0.5 38.21 +0.46
<15 25.66 +0.43
>1.5 6.86 +0.29

CI” [ppm] <28,155 56,841.152 (+ 94606.50) 31.91 +0.47 8.82
<31,767 23.39 +0.49
<121, 097 29.70 +0.40
>121,097 14.90 +0.38

PRE <34.757 36.802 (+ 3.78) 31.73 +0.49 7.12
<40.603 44.02 +0.44
>40.603 24.25 +0.40

pH <27 3.802 (+1.28) 19.64 +0.40 6.01%
<42 42.12 +0.46
<54 25.48 +0.41
>54 12.48 +0.33

Temperature [°C] <58 82.545 (+ 49.52) 25.34 +0.45 4.59%
<89 29.35 +0.47
<115 27.58 +0.43
>115 17.72 +0.39

& [%] <18 23.181 (£ 8.21) 28.78 +0.47 3.88%
<26 41.91 +0.49
<33 16.70 +0.38
>33 12.61 +0.33

pCO, [bar] <0.546 7.823 (+ 18.57) 69.19 +0.42 3.47%
<24.662 17.22 +0.37
>24.662 13.59 +0.37

ayg [MPa] <510 657.257 (+ 209.90) 22.77 +0.43 3.01%
<720 20.13 +0.49
<995 47.42 +0.42
>995 9.69 +0.32

“Initial probabilities derived from BN model discretisation.

°The values denote the range of probability variation within 95% confidence intervals, which were determined through Monte Carlo simulations employing 1000 samples in Bayesialab.

“Direct effect contributions calculated by BayesiaLab.

2.5-fold increases, respectively. According to the BN model, other important
environmental parameters must be within specific ranges, such as
Cl™ 31,767 ppm, pCO, < 0.546 bar, temperature < 89 °C, and pH values
around 4.2. Regarding the mechanical properties, the BN model points
towards a probable range of 510 MPa< gy <995MPa, which covers
commonly employed DSSs, such as $32250 and $32750*.

Extensive experimental findings support the pH,S boundary derived in
this work. By way of illustration, Fig. 12 shows the results from a range of
selected SCC investigations, using the relationship between pH,S and Cl™
content. Analogous to Fig. 1, these parameters are key synergistic factors
driving SCC, which facilitates comparison with the probabilistic pH,S limit
of 0.5 bar estimated herein. Specifically, Fig. 12a highlights that few pitting

corrosion events are observed as pH,S approximates to 0.5 bar. However,
Fig. 12b shows that pitting corrosion and SCC occur predominantly at pH,S
levels exceeding 0.5 bar.

Table 10 reports the DSS samples and experimental conditions of the
literature data in Fig. 12. As summarised in Table 10, the data encompass a
wide range of DSS alloys, such as $32205, S31803, S32750 and S32760. Test
conditions replicated demanding downhole environments. These included
PH,S values up to 1.0 bar, CI” concentrations around 30,000 ppm, tem-
peratures from 21 to 100 °C, a pH interval of 2.5-5.4, and pCO, up to 70 bar.
Applied stresses were also significant, between 448 MPa and 1025 MPa
(corresponding to o = 0.9). These parameter ranges meet relatively well
with the posterior intervals predicted by our BN model, underscoring both
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Fig. 10 | Comparative analysis of BN model predictions for DSS and super DSS
grades. a Predicted probabilities for standard DSS with PRE values between 35 and
40. The BN model predicts a probability of pitting corrosion around 63.75%, while
the probability of SCC is 31.61%. b Predicted probabilities for super DSS with PRE
values above 40. The BN model shows significantly low probabilities of both pitting

corrosion and SCC, around 24.36% and 16.62%, respectively. Variables highlighted
in green cover specified conditions: 0.02-0.5 bar pH,S, 30,000-120,000 ppm CI,
temperatures 60-115 °C, and 0.8-1.2 ¢y. Variables highlighted in blue are unrest-
ricted. Red square on PRE node indicates a 100% probability according to the specific
range of DSS grades.

the repeatability of the evidence base and the conservatism embedded
within current ISO 15156-3"" limits for DSSs.

Final remarks

This investigation introduces a BN model that assesses the risk of SCC in
DSSs, particularly in the challenging conditions of downhole environments.
Extensive CV demonstrated that the BN model achieved an accuracy of over
90% in predicting both pitting corrosion and SCC probabilities.

Our BN model infers that DSSs can reliably withstand higher partial
pressures of hydrogen sulphide (pH,S) than those currently stipulated by
standard ISO 15156—Part 3 (ISO 15156-3)"". Specifically, our BN model
estimates low SCC risk for DSS alloys even when exposed to 0.5 bar pH,S in
the gas phase. Such threshold is significantly higher than ISO 15156-3 limits
(ie.,0.02 and 0.2 bar pH,S), representing a 25-fold and 2.5-fold increase for
conventional DSS and super DSS, respectively. This finding underscores the
insufficient characterisation of DSS grades in current standards and suggests
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Table 8 | Inference analysis of pitting corrosion and SCC at pH =3.5

PRE Cl [ppm] pH,S [bar] pH Temperature ? [°C] op? [-1] Pitting Corrosion® sccP
<34 1000 0.5 3.5 80 0.9 YES (86.78%) NO (54.60%)
<34 10,000 0.3 3.5 80 0.9 YES (88.51%) NO (57.85%)
<34 100,000 0.2 3.5 80 0.9 YES (80.81%) NO (52.49%)
35-40 1000 0.5 3.5 80 0.9 YES (67.03%) NO (74.76%)
35-40 10,000 0.3 3.5 80 0.9 YES (70.73%) NO (76.29%)
35-40 100,000 0.2 35 80 0.9 YES (58.18%) NO (72.28%)
>40 1000 0.5 3.5 80 0.9 NO (69.08%) NO (74.07%)
>40 10,000 0.3 35 80 0.9 NO (65.70%) NO (76.44%)
>40 100,000 0.2 3.5 80 0.9 NO (72.02%) NO (84.21%)
<34 1000 0.7 3.5 80 0.9 YES (87.64%) YES (55.17%)
<34 10,000 0.5 3.5 80 0.9 YES (91.25%) YES (58.65%)
<34 100,000 0.3 3.5 80 0.9 YES (80.95%) YES (54.12%)
35-40 1000 0.7 3.5 80 0.9 YES (67.66%) NO (65.53%)
35-40 10,000 0.5 3.5 80 0.9 YES (71.16%) NO (66.65%)
35-40 100,000 0.3 3.5 80 0.9 YES (58.33%) NO (63.05%)
>40 1000 0.7 3.5 80 0.9 NO (67.73%) NO (73.27 %)
>40 10,000 0.5 3.5 80 0.9 NO (62.26%) NO (69.18%)
>40 100,000 0.3 3.5 80 0.9 NO (72.05%) NO (82.01%)

“Average value.

“The results for pitting corrosion and SCC are presented along with their associated probabilities.

Table 9 | Inference analysis of pitting corrosion and SCC at pH=4.5
PRE Cl- [ppm] pH,S [bar] pH Temperature® [°C] or’ [-1 Pitting Corrosion® scct
<34 1000 >2° 45 80 0.9 YES (79.17%) NO (52.70%)
<34 10,000 2 45 80 0.9 YES (74.26%) NO (55.85%)
<34 100,000 0.3-0.4 4.5 80 0.9 YES (78.25%) NO (56.93%)
35-40 1000 >2° 4.5 80 0.9 YES (80.22%) NO (58.47%)
35-40 10,000 2 4.5 80 0.9 YES (58.63%) NO (63.48%)
35-40 100,000 0.3-0.4 4.5 80 0.9 NO (58.76%) NO (69.98%)
>40 1,000 >2° 45 80 0.9 NO (83.71%) NO (90.54%)
>40 10,000 2 4.5 80 0.9 NO (70.23%) NO (82.86%)
>40 100,000 0.3-0.4 4.5 80 0.9 NO (73.61%) NO (81.31%)
<34 10,000 >2° 4.5 80 0.9 YES (76.81%) YES (58.96%)
<34 100,000 0.8-1.0 4.5 80 0.9 YES (75.81%) YES (59.74%)
35-40 10,000 >2° 45 80 0.9 YES (86.09%) NO (55.28%)
35-40 100,000 0.8-1.0 4.5 80 0.9 YES (52.16%) NO (65.82%)
>40 10,000 >2° 45 80 0.9 NO (72.50%) NO (84.57%)
>40 100,000 0.8-1.0 4.5 80 0.9 NO (77.53%) NO (88.21%)

“Average value.
The results for pitting corrosion and SCC are presented along with their associated probabilities.

°For pH,S > 2.0 bar, our BN model estimates a mean value of ~ 3.35 bar based on the pH,S range in the associated dataset.

the potential for their more cost-effective utilisation in sour service
applications.

However, limitations persist in the context of causal inference. Our BN
model falls short of enhancing the understanding of the physicochemical
mechanisms driving SCC in the presence of H,S. Much information is
required to incorporate the effect of H,S on promoting anodic dissolution
through increased acidization and active corrosion acceleration leading to
pit growth. Similarly, comprehensive data is needed to elucidate how H,S
facilitates increased hydrogen absorption in metals, resulting in embrittle-
ment that ultimately promotes crack initiation and propagation.

Future work should therefore explore several avenues to enhance
mechanistic understanding. As exemplified by network designs proposed by
Sridhar”, a better mechanistic understanding of SCC can be achieved by
incorporating into the BN model microstructural details (e.g., phase balance,
precipitates, cold work), as well as more specific environmental and mechanical
factors (e.g., halide types, potentials, strain rates). In addition, transitioning our
BN model to a dynamic BN approach would enable modelling time-dependent
degradation processes, which is crucial for lifecycle assessments.

Data scarcity is a common limitation given the complex and costly
experimental methods needed in EAC research. Thus, developing holistic
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Fig. 11 | Backward analysis to identify safe operating conditions for DSSs. The BN
model infers that DSSs may resist up to 0.5 bar pH,S, in environments comprising
Cl™ < 31,767 ppm, pCO, < 0.546 bar, temperatures < 89 °C, and pH values around

4.2. The nodes SCC and pitting corrosion indicate a 100% probability that both
corrosion phenomena do not occur, while the o node indicates tensile loadings are
greater than 90% o .
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Fig. 12 | Comparison of the pH,S limit derived from BN backward analyses
against experimental evidence from the literature. a Pitting corrosion instances
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represent the safe operating limits for pH,S (i.e., 0.02 and 0.2 bar) for DSS alloys
according to ISO 15156-3 standard™. In contrast, the limit derived from the BN
model at 0.5 bar pH,S is highlighted in pink. The data points cover a wide range of
experimental conditions: pH,S up to 1.0 bar, Cl” concentrations near 30,000 ppm,
temperatures from 21 to 100 °C; a pH interval of 2.5-5.4, pCO, up to 70 bar, and
applied stresses closely to o = 0.9.

EAC frameworks requires sophisticated data handling methods. In this
study, the application of GANs for data imputation proved beneficial, and
their potential for generating synthetic data is being increasingly explored to
overcome dataset limitations in corrosion studies'**'*.

Methodologically, a key contribution of this work was the integration
of ML with explainable Al Specifically, XGBoost and SHAP analyses
facilitated the data-driven development of our BN model, overcoming
limitations of reliance solely on expert judgment. This data-centric

approach holds considerable promise for future BN modelling of complex
corrosion processes, applicable to diverse alloy systems and EAC phe-
nomena, where adequate data exist. Nevertheless, enhancing causal inter-
pretability and inferential validity may necessitate hybrid models. Thus,
combining empirical data analysis with expert-informed variables should
also be applied through relevant strategies, such as protocols in expert
elicitation, structure learning with expert constraints, or network merging
algorithms78,145,146.
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Table 10 | Summary of DSS samples and experimental settings in SCC studies presented Fig. 12

DSS Sample® PpH3S [bar] Cl” [ppm] Temperature [°C] pH® pCO; [bar] Uappb [MPa] Reference
S$32205 1.0 30,332.8 21.1-97.0 2.5-3.9 0.0-70.0 895.0 Tynell et al."*
S$32760 0.0-0.6 30,332.8 33.0-99.9 NR 30.4 1025.4 Mukai et al."’
S$32205 0.0-0.1 30,332.8 60.0 NR 0.0 500.0 Tsuge et al.”*®
S$32506 0.0-0.1 1086-9219 80.0 NR 0.0 542.6

S$32205 0.1-0.7 1000 80.0 3.0 0.0-0.5 613.6 Maldonado et al.”
S$32205 0.0-0.1 18,199.7 25.0-93.0 3.9-54 0.0-8.0 582.0-638.0 Kobayashi et al.™’
S$32750 0.0-0.1 18,199.7 25.0-93.0 3.9-54 0.0-8.0 586.0

S$32205 0.0-1.0 30,332.8 24.4-84.0 2.7 0.0-59.0 517.1 Barteri et al.”®
S32750 0.0-0.9 1032.8-30,332.8 25.4-84.0 2.7 0.0-59.0 551.6-965.3

S31803 1.0 30,332.8 79.7-99.1 NR 2.9-2.9 448.0 Tamaki et al.'®®
S$32205 0.0-0.1 30,332.8 80.0 NR 30.0 542.6 Ueda et al.'®®
S32760 0.0-0.2 1067.2-30,332.8 80.0 NR 0.0-30.0 594.3

S$32205 0.0-1.0 31265.0 24.0-100.0 3.0 0.0 NR Eriksson et al."®’
S31803 0.5-1.0 30,000 28.5-100.0 4.6-5.0 5.0 590.0 Siegmund et al.*
S$32760 0.5-1.0 30,000 28.5-100.0 4.6-5.0 5.0 610.0

2 DSS samples identified by UNS number (ASTM (2012)).
® Data unavailable is denoted as Not reported (NR).

Lastly, it is pertinent to note that the BN model effectively synthesises a
substantial body of literature data to manage uncertainties associated with
DSS. However, the SCC boundaries estimated in this work should not be
regarded as definitive limits. Rather, they indicate a range of conditions
under which SCC susceptibility may be further investigated. The primary
objective of this study lies in developing an integrative framework for SCC
risk assessment aimed at advancing risk-based corrosion management and
informing cost-effective material selection.

Methods

Workflow for BN model development

The development of the BN model in this study was structured into a three-
stage workflow, as illustrated in Fig. 13. The initial stage focused on com-
piling data from 28 selected publications related to SCC studies of DSSs in
sour environments, and thus consolidating a knowledge-based dataset, as
detailed previously in Table 2.

In the second stage, the generated dataset underwent preprocessing,
which included missing data imputation via GAIN and minority class
oversampling using SMOTE-NC. The analysis proceeded with the training
of an XGBoost classification model. Here, BHO was employed to fine-tune
model settings so as to maximise predictive accuracy. Subsequently, SHAP
analyses were undertaken to identify the main features, and their interac-
tions, that largely contribute to SCC predictions. The insights gained from
these analyses were instrumental in guiding the BN model design, specifi-
cally in selecting nodes and configuring directed arcs.

The third stage centred on constructing the BN model, leveraging the
results from the XGBoost modelling. This phase encompassed establishing
node connections, determining appropriate discretisation, and assessing the
model’s performance through stratified CV. Fundamentally, stratified K-
fold CV is a variant of k-fold CV. While k-fold CV randomly partitions the
dataset into k equal-sized folds for model training and validation, stratified
k-fold CV ensures that each fold maintains an equivalent proportion of class
samples as the original dataset'”. It is pertinent here to mention that both
the XGBoost and BN models underwent CV using a stratified k-fold scheme
of five folds. Meaning that, each CV cycle employs 80% of the data for
training the models, and 20% for testing them.

During the CV process, we evaluated a range of performance
metrics'®, which are listed as follows:

 Confusion matrix. It constitutes a 2 x 2 matrix that summarises the

performance of a classification model of the form:

o

EN 1IN @)
here, TP and TN denote correctly classified positive and negative
instances, respectively; FP and FN denote negative instances mis-
classified as positive and positive instances misclassified as negative,
respectively.

From the confusion matrix, the classification models’ accuracy is then
estimated by.

A B TP+ TN )
Ay = Tp Y TN+ FP + FN

* Recall, or TPR, evaluates the model’s capacity to correctly identify all

relevant positive instances. It is computed as:

TP
Recall = ———— 6
= TP L PN ©

Precision assesses how many of the instances labelled as positive by the
model are actually positive, which is calculated by

TP

S~ 7
TP + FP @

Precision =

Fl-score. It is the harmonic mean of precision and recall, designed to
provide a single measure that balances both false positives and false
negatives. Unlike the arithmetic mean, the harmonic mean penalises
extreme values. F1-score is especially relevant in scenarios with class
imbalance.

Precisi 5% Precision x Recall ®)
recision = _—
Precision + Recall
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Fig. 13 | Schematic overview of the three-stage
workflow in this study.
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* Specificity, or TNR, indicates the model’s ability to correctly identify
negative cases, serving as a counterpart to recall for the negative class.

TN
Specificity = N £ P )

* Receiver operating characteristic curve (ROC) is a graphical repre-
sentation of the trade-off between the TPR and the FPR of a binary
classifier, where TPR and FPR are determined by

P
TPR = —— 10
TP + EN (10)
Fp
FPR = ——— 11
FP+ TN (1)

 The area under the curve (AUC) quantifies the overall performance of
the classifier by measuring the entire area beneath ROC. It provides a
scalar value ranging from 0 to 1, indicating the model’s aggregate ability
to distinguish between positive and negative classes, a perfect classifier
achieves an AUC of 1, whereas random guessing yields 0.5'.

Additionally, a sensitivity analysis of the BN model was conducted to
examine the primary attributes influencing SCC. Inference analyses were
performed to explore SCC risks for DSSs within a range of sour conditions,
comparing the results against existing literature. Ultimately, diagnostic
reasoning (also termed backward analyses) was performed to infer the likely
safe operating conditions for DSSs. This involved setting the desired out-
come state (e.g., absence of SCC) and calculating the posterior probability
distributions of the input variables consistent with that state.

Generative adversarial imputation nets

In real-life applications, datasets frequently exhibit inconsistencies, notably
in the form of missing values across their attributes'*’. To handle this issue,
one prevalent strategy is imputation, through which missing instances are
estimated based on observed values within the dataset'”. In this respect,
deep learning (DL) methods have increasingly been employed to estimate
missing values, such as denoising autoencoders, and GANs'™"*". Dis-
tinctively, these techniques tend to outperform statistical techniques (e.g.,
logistic regression, decision trees, and predictive mean matching), as they
operate without assumptions about underlying data distribution'”'. More-
over, DL-based methods use a robust model to estimate missing data across
multiple features, thereby effectively capturing the latent structure of
complex high-dimensional data’**'*.

In this work, GAIN algorithm'” is employed to resolve the missing
values in our dataset. This data imputation approach has been effectively
applied in various domains, such as materials science, civil engineering and
medical research'***'**, Fundamentally, the GAIN method employs two
main components: the generator and the discriminator'’. The generator
imputes the missing values based on the observed data, producing a com-
plete data vector that resembles the real data distribution. Subsequently, the
discriminator, equipped with additional hints about the missingness pat-
tern, examines and distinguishes between observed and imputed values in
the complete data vector. This adversarial process iteratively trains the
generator to deceive the discriminator optimally, replicating the data’s

actual distribution'*.

Synthetic minority over-sampling

SMOTE is a widely accepted method for addressing class imbalance in
classification datasets'”’. This random oversampling method generates
synthetic examples within the minority class to achieve a more balanced
class distribution, thereby enhancing the predictive performance of ML
models. Specifically, SMOTE selects a minority class instance and then
identifies its k-nearest neighbours within the feature space. Subsequently, a
synthetic instance is created by interpolating the selected instance, and one
or more of the nearest neighbours'". Thus, the synthetic sample, s, is gen-
erated by

(12)

s=ux;+ux(x —x;)

where, x; is a randomly chosen minority class instance, x;; is one the k-
nearest neighbours of x;, and u is a random number between 0 and 1.

In this work, we employ a variant of the original SMOTE algorithm,
which is designed to handle datasets that contain both nominal (i.e., cate-
gorical) and continuous features. Referred to as SMOTE-NC'", this tech-
nique modifies the Euclidean distance calculation, required to estimate the
k-nearest neighbours, by incorporating the median of the standard devia-
tions of all continuous features from the minority class. This inclusion acts
as a penalisation factor when categorical features differ between a sample
and its potential k-nearest neighbours, effectively accounting for the dis-
parity in categorical feature values. For the synthesis of new samples,
SMOTE-NC employs the standard SMOTE interpolation for continuous
features. Meanwhile, for categorical features, SMOTE-NC assigns the value
that appears most frequently among the k-nearest neighbours, ensuring that
the synthetic samples respect the distribution of the categorical data within
the data frame.
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Extreme gradient boosting

The XGBoost algorithm has widely gained recognition as a scalable and
highly efficient ML method for classification and regression tasks in a variety
of scientific fields'**. Developed by Chen and Guestrin''*, XGBoost stands as
an optimised version of the Gradient Boosting (GB) framework proposed by
Friedman'”. This approach sequentially produces and updates base clas-
sifiers (weak learners) to build a robust ensemble classifier (strong learners),
thereby systematically reducing errors and enhancing prediction accuracy.
Meaning that, XGBoost algorithm aims to minimise prediction errors by
gradually adding more learners (decision trees), while basing each update on
the previous model’s prediction results'®. Thus, the resulting model exhibits
the minimum bias and variance during the training process'*. Funda-
mentally, the predicted output of the XGBoost model, denoted as y;, is the
sum of all scores predicted by K trees, expressed as

K

V= ka(xf)afk eF

k=1

(13)

where K denotes the total number of trees, k represents the k-th tree, x; is the
feature vector corresponding to sample i, while F is the space of regression
trees. To learn the set of functions, the algorithm minimises the following
regularised objective function (obj)

n K
obj = ZL(yi7j/i) + ZQ(fk) (14)
i=1 k=1

Here, n is the number of samples, y, is the actual value of the i-th target,
while y, is the predicted value of the i-th target. The term L (y;, ;) represents
the training loss function, which quantifies the discrepancies between pre-
dictions and data points. Lastly, Q(f,) is the regularization term that
controls the complexity of the model to prevent overfitting'*, and is defined
as

1 T
Q(fy) :yT+i)tzlw]? (15)
=

where, T represents the number of leaves, and wj is the score of the j-th leaf.
The coefficient y denotes the minimum loss reduction required to split a

new leaf, and A is a regularization coefficient.

Bayesian hyperparameter optimisation

The effective implementation of ML models is a multifaceted and
demanding process that extends beyond selecting an adequate algorithm; it
also involves hyperparameter optimisation to fine-tune the model’s con-
figuration. This process is essential for ensemble models, such as XGBoost
and DL algorithms, where hyperparameters set the training conditions and
significantly impact model performance and adaptability'*"'®.

However, the diverse types of hyperparameters, which include con-
tinuous, discrete, and conditional values, make traditional optimisation
strategies (e.g., grid and random search) less effective due to their inability to
fully navigate the configuration space'*'*. To overcome these problems,
BHO offers a sophisticated solution. This approach constructs a probabil-
istic surrogate model of an objective function, leveraging information from
previous evaluations to make informed decisions about which hyperpara-
meters to explore next'®'®. Thus, the surrogate model facilitates under-
standing the relationship between hyperparameters and model
performance'”.

Moreover, BHO has proven to effectively determine optimal hyper-
parameters, especially for high-dimensional problems'*>'**. In this study, we
employ the tree-structured Parzen estimator (TPE) approach for imple-
menting BHO; thus, eliminating the need for predefined initial values or
training datasets'”. The TPE algorithm initiates by randomly exploring the

parameter space. Subsequently, it classifies the sampled parameters based on
their performance according to a predetermined cost function. The TPE
algorithm classifies the hyperparameters that yield the most effective out-
comes into one group, and allocates the rest to a second group. This clas-
sification allows for modelling the likelihood of parameter effectiveness'”.
The main objective is then to identify a set of hyperparameters that prob-
abilistically belong to the first category. Thus, the expected improvement
(EI) per iteration is ref. 171

_®

= g(x)

(16)

where I(x) and g(x) are the probability in the first and second groups,
respectively.

Shapley additive explanation

The SHAP technique utilises a game-theoretic framework to interpret
predictions from any ML model"*. Based on the Shapley value concept from
cooperative game theory, SHAP assigns a fair contribution value to each
feature of a data instance, analogous to players in a game'””. These values,
referred to as Shapley values, distribute the prediction outcome among the
features. In the context of SHAP, the model prediction is then expressed as
ref. 173

M
f@=gC) =0+ 7 (17)
i=1

wherein f(x) is the original model output and g(z') represents the SHAP
explanation model. The base value ¢, represents the prediction with no
features present, while ¢, corresponds to the SHAP value for the i-th feature,
measuring the feature contribution to the difference between the actual
prediction and the base value. The term z; € {0, 1} is a binary variable that
indicates whether the i-th feature is present (1) or absent (0), while M is the
total number of features. Thereby, SHAP represents the prediction as a sum
of binary components. In this work, we employ the SHAP scheme for tree-
based ensemble models, commonly referred to as TreeSHAP'”.

Bayesian networks

BNs provide a graphical framework that facilitates the representation
and comprehensive analysis of uncertainty, as well as the inter-
dependencies among multiple variables'””. Fundamentally, BNs are a
compact representation of a multivariate statistical distribution func-
tion, which efficiently encode the joint probability distribution (JPD)
of a set of random variables, X = {x,,x,, ..., x, }, through conditional
independence statements, conditional functions and, principally,
conditional probability matrices (CPMs)'”>'”°. From this foundation,
BN permit the integration of various sources of information, coupling
both probabilistic and deterministic models seamlessly*. Additionally,
BNs can effectively be applied to obtain reliable inferences even when
the data is ambiguous or incomplete'”.

A BN consists of two primary components: a directed acyclic graph
(DAG) where nodes correspond to the random variables X, and a set of
directed arcs (arrows) depicting the probabilistic dependencies between
these variables. Accompanying the DAG are the associated CPMs for each
node, specifying quantitatively the effects of dependencies among
variables'”®. Via the concept of causal independence (i.e., d-separation),
the JPD of all variables in X is given by the product of conditional prob-
abilities, as follows'”’

(xl,xz,...,xn) = HP(xi|pa(xi)) (18)
i=1

where pa(x;) denotes the set of parent variables of x;, and P(x;|pa(x;)) is

the CPM for x;. Moreover, BNs can perform diagnostic analyses (also

referred to as backward analyses) through a variety of inference techniques
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based on Bayes’ theorem in the form

P(EIX)P(X)  P(E,X)

PRB = "0 = oPEX)

(19)

here, P(X|E) is the posterior probability based on the obtained evidence (E),
P(X) denotes the prior probability, P(E,X) represents the conditional
probability (assuming that X is true), and P(E) is the likelihood (also known
as expectedness) that the evidence will be observed. Specifically, P(E) is
calculated via the sum ), P(E, X"), where P(E, X') represents the joint
probability of the evidence E and a possible hypothesis state X', summed
over all possible states X'.
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