Table 2 Descriptive statistics and missing data percentages for continuous variables in the DSS dataset

From: Predicting stress corrosion cracking in downhole environments: a Bayesian network approach for duplex stainless steels

Features

Minimum

Maximum

Mean

Std. deviation

Missing data [%]

\({\sigma }_{{YS}}\) [MPa]

386.11

1199.69

654.45

219.51

8.09

\({\sigma }_{{UTS}}\) [MPa]

600.00

1503.06

797.12

204.97

9.62

\({\varepsilon }_{f}\) [%]

9.00

45.00

24.04

7.42

10.24

Cr [wt%]

17.21

26.40

23.25

1.50

0.0

Ni [%]

1.44

8.00

5.93

0.90

0.0

Minor Additions [%]a

1.52

10.97

4.47

1.23

0.0

PRE [a.u.]b

25.59

48.04

36.31

3.69

0.0

pH

1.50

8.00

3.81

1.37

29.76

pCO2 [bar]

0.00

92.88

7.52

18.09

9.13

pH2S [bar]

0.00

9.91

0.50

0.99

1.49

Cl [ppm]

100

1,463,492.0

56,100.80

97,009.82

13.42

Temperature [°C]

16.20

288.00

83.29

49.15

3.87

\({\sigma }_{{app}}\) [MPa]c

0.00

1225.92

478.97

340.19

28.61

\({\sigma }_{R}\) [-] c

0.00

1.55

0.62

0.425

28.61

  1. a Minor additions in DSS samples include C, Mo, N, W, Mn, P, S, Si, Cu.
  2. b PRE is estimated according to Eq. (1).
  3. c\({\sigma }_{{app}}\) and \({\sigma }_{R}\) have the same proportion of missing data, as \({\sigma }_{R}\) is given by Eq. (2).