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Early detection of Parkinson’s disease
through multiplex blood and urine
biomarkers prior to clinical diagnosis

Check for updates

ShuoGao1,2,3,6, ZhengWang 1,2,3,4,6, YuanfengHuang1,2,3, Guangyang1, YijingWang1,2, YanYi2, QiaoZhou1,
Xingxing Jian1,2, Guihu Zhao1,2,3, Bin Li1,2,3, Linyong Xu5, Kun Xia1, Beisha Tang 3 & Jinchen Li 1,2,3

Blood andurine biomarkers are commonly used to diagnose andmonitor chronic diseases.We initially
screened 67 biomarkers, including 4 urine biomarkers and 63 blood biomarkers, and identified 13
bloodbiomarkers significantly associatedwithParkinson’sdisease (PD). Among these,wediscovered
three novel markers demonstrating strong associations: phosphate (P = 1.81 × 10−3), AST/ALT ratio
(P = 8.53 × 10−6), and immature reticulocyte fraction (IRF) (P = 3.49 × 10−20). We also substantiated
eight well-studied biomarkers and elucidated the roles of two previously ambiguous biomarkers. Our
analyses confirmed IGF-1 (P = 7.46 × 10−29) as a risk factor, and C-reactive protein (CRP)
(P = 1.43 × 10−3) as protective against PD. Genetic analysis highlighted that IRF, CRP, and IGF-1 share
significant genetic loci with PD, notably atMAPT,SETD1A,HLA-DRB1, andHLA-DQA1. Furthermore,
Mendelian randomization (MR) analysis suggested potential causal associations between IGF-1,
CRP, and PD. We identified several blood biomarkers that may be associated with the risk of
developing PD, providing valuable insights for further exploration of PD-related biomarkers.

Parkinson’s disease (PD) is the second most common neurodegenerative
disorder, affecting approximately 10 million people worldwide, with an
incidence of about 3% among those over 80 years old1. Despite extensive
research into themechanismsunderlyingPDover thepast decade, diagnosis
still relies on neurological examinations, primarily identifying motor
symptoms such as bradykinesia, resting tremor, and rigidity, along with a
range of non-motor symptoms (NMS) including reduced olfaction, con-
stipation, urinary dysfunction, and orthostatic hypotension. Even with the
proper application of these criteria, themisdiagnosis rate remains as high as
20%due to clinical overlapwith otherPDsyndromes2–5.Meanwhile, studies
have shown differences in diagnostic accuracy betweenmovement disorder
specialists and general clinicians, with an accuracy of 92.5% for the MDS
clinically probable PD criteria and 90.3% for general clinicians6,7. Research
indicates that by the timemost patients are diagnosed with PD, 50% to 70%
of dopaminergic neurons in the substantia nigra have already degenerated8.
Furthermore, prodromal symptoms of PD, such as rapid eye movement
sleep behavior disorder (RBD), may be present years before the disease

manifests clinically9,10. Consequently, there is an increasing necessity to
identify biomarkers that can detect the initiation of pathology or identify the
prodromal stage of the disease. Improving early diagnosis of PD can
enhance patient outcomes, however, the challenge of accurately identifying
the disease in its early stages remains significant11.

Various biomarkers that facilitate the early diagnosis of disease include
imaging, cerebrospinal fluid analysis, oxidative stress markers, neuropro-
tective factors, and inflammatory indicators. Previous research on bio-
markers for diagnosing PD has often concentrated on bodily fluids,
particularly cerebrospinal fluid and blood samples. However, there are
currently significant shortcomings in this area8,12. Investigations into cere-
brospinal fluid have primarily concentrated on α-synuclein13,14. Misfolded
alpha-synuclein aggregates are a defining feature of PD and other
synucleinopathies.

In patients with PD, cerebrospinal fluid levels of total αSyn are sig-
nificantly lower compared to healthy controls15,16. Recently, αSyn seed
amplification assays have demonstrated significant potential as a diagnostic
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tool for PD17. Furthermore, Increased concentrations of neurofilament light
chains in CSF and blood have been associated with diseases of the central
and peripheral nervous systems involving axonal damage or degeneration.
NfL is released into extracellular fluid following axonal injury, making it a
potential biomarker for such neurodegenerative conditions. Studies by Brit
Mollenhauer and colleagues in two independent longitudinal cohorts have
shown that baseline serumNfL levels are significantly higher in individuals
with Parkinson’s disease compared to control groups18. Although these
studies have identified numerous biomarkers relevant to PD diagnosis and
monitoring, the invasive nature of lumbar puncture for CSF collection,
along with the high cost primarily associated with CSF analysis, limits its
widespread use in PD diagnosis.

However, biomarkers based on blood and urine, due to their non-
invasive nature, low cost, and capability for frequent monitoring, can be
widely applied in clinical settings. Notably, blood biomarkers have
demonstrated superior sensitivity and specificity over cerebrospinal fluid in
accurately detecting Alzheimer’s disease19,20. For instance, the Neurofila-
ment light chain has been adopted as a biomarker for relapsing multiple
sclerosis21. In the AMORIS study conducted in Sweden, Fang et al. explored
the relationship between lipid-related biomarkers and PD in roughly
600,000 participants. They found that higher levels of total cholesterol, LDL
cholesterol, and triglycerides correlated with a decreased risk of PD22. In a
related analysis, Solmaz Yazdani et al. investigated immune-related bio-
markers in 812,073 participants, focusing on the hazard ratios for ALS and
PD associated with markers such as leukocytes and immunoglobulin G.
This comprehensive research, tracking changes in biomarkers up to two
decades prior to diagnosis, bolstered these findings23. However, these
findings were often limited to a small number of biomarkers and utilized
small clinical cohorts. More importantly, it was unclear whether pre-
diagnostic levels of blood and urine biomarkers in epidemiological cohorts
could predict the future risk of PD. To tackle these challenges, we conducted
a comprehensive analysis using a large longitudinal cohort from the UK
Biobank to investigate the association between baseline levels of multiple
blood and urine biomarkers and the risk of incident PD. Subsequently, we
performed extensive genetic analyses to explore the potential causal rela-
tionships linking these biomarkers to PD risk.

Results
Demographics
TheUKBiobank recruited a total of 502,357participants.Weexcludednon-
British White participants (N = 59,885), individuals with prevalent PD at
baseline (N = 294), and those with other types of neurological disorders at
baseline (N = 15,284). To handle missing data, we performed multiple
imputations with chained equations. After imputation, all blood and urine
biomarkers were standardized. Participants with values exceeding five
standard deviations were identified as outliers and removed (N = 34,614).
Ultimately, 392,280 participants were included in the analysis. Over a
median follow-upperiodof 9.5 years (InterquartileRange (IQR), 8.65–10.35
years), a total of 3,084 incident PD cases were observed. These cases had an
average follow-upperiod of 7.89 years and comprised 1,931males and 1,153
females. Themean age at onsetwas 63.01 years. Baseline characteristics data
are shown in Table 1.

Association of Biomarkers with Incident Parkinson’s Disease
Firstly, We used a Lasso-Cox model adjusted for age and sex with the
penalty parameter lambda determined by tenfold cross-validation to select
biomarkers of predictivity, we preliminarily identified 46 potential blood
and urine biomarkers associated with the onset of PD, predominantly
related to blood cell count indicators (See Fig. 1).

We progressively included stricter covariates in our models to more
accurately estimate the relationship between specific biomarkers and the
onset of PD, while controlling for potential confounding variables. The
detailed results of the 3 models are presented in Table 2. In Model 1, we
adjusted for sex, age, smoking consumption, alcohol consumption, physical
activity levels, and education. These basic demographic and lifestyle factors

are common determinants of health and allowed us to assess the relation-
ship between biomarkers and PD risk in a population with similar lifestyle
habits, resulting in the identification of 22 significant biomarkers. InModel
2, we added covariates such as diabetes, hypertension, and stroke, which are
critical health conditions closely linked to neurological health. By control-
ling for these diseases, we could more precisely analyze the impact of bio-
markers on PD risk independently of these severe health conditions,
eliminating potential interference. This adjustment led to no significant
changes in the associations for most biomarkers, except for total protein,
whichwas no longer significantly related. Finally, inModel 3, we conducted
a multivariable Cox proportional hazards regression analysis that included
all covariates and significantly associated biomarkers identified inModel 2.
This comprehensive approach reduced the number of significant bio-
markers to 13, highlighting those independently associated with the
occurrence of PD events. This step helped minimize the influence of
uncontrolled variables, allowing us to identify independent and highly
correlated biomarkers potentially associated with PD onset, which may
provide valuable insights for better predicting the occurrence of PD. This
progression from identifying 22 significant biomarkers in Model 1 to 13 in
Model 3 illustrates the importance of rigorous adjustment of covariates in
isolating the most robust biomarkers for PD onset.

These biomarkers encompass categories such as enzymes, blood cell
parameters, metabolites, and proteins. Among these, the AST/ALT ratio
(HR = 1.14, 95% CI: 1.08–1.21, P = 8.53 × 10−6), NLR (HR = 1.14, 95% CI:
1.08–1.19, P = 6.06 × 10−7), glucose (HR = 1.13, 95% CI: 1.07–1.19,
P = 5.02 × 10−6), IGF-1 (HR = 1.25, 95% CI: 1.20–1.30, P = 7.46 × 10−29),
phosphate (HR = 1.08, 95% CI: 1.03–1.12, P = 1.81 × 10−3), and total bilir-
ubin (HR = 1.06, 95% CI: 1.02–1.11, P = 5.31 × 10−3) were positively asso-
ciated with PD risk. Conversely, platelet crit (HR = 0.76, 95%CI: 0.70–0.83,
P = 5.97 × 10−9), eosinophil count (HR = 0.92, 95% CI: 0.88–0.96,
P = 4.79 × 10−4), C-reactive protein (CRP) (HR = 0.89, 95% CI: 0.83–0.95,
P = 1.43 × 10−3), urate (HR = 0.85, 95% CI: 0.81–0.89, P = 1.13 × 10−10),
immature reticulocyte fraction (IRF) (HR = 0.75, 95% CI: 0.71–0.79,
P = 3.49 × 10−20), basophil count (HR = 1.31, 95% CI: 1.25–1.37,
P = 2.98 × 10−31), and platelet count (HR = 1.10, 95% CI: 1.01–1.20,
P = 3.91 × 10−2) were significantly associated with PD risk.

Among the biomarkers we studied, IRF, phosphate, and the AST/ALT
ratio are newly identified concerning PD with minimal prior investigation.
Established biomarkers like urate, total bilirubin, NLR, platelet crit, platelet
count, eosinophil count, Glucose and basophil count have been examined
primarily in experimental settings and are now being analyzed using large-
scale longitudinal data from the UK Biobank for the first time24–28. Fur-
thermore, IGF-1 and CRP, known for their roles in systemic inflammation,
have demonstrated potential links with PD in clinical and epidemiological
studies, though these findings have historically been inconsistent29–31. To
address these discrepancies and deepen our understanding, our study has
conducted extensive genetic analyses to further elucidate the relationships
between these biomarkers and PD.

Finally, we conducted stratified analyses by sex and age. Inmales,NLR,
glucose, phosphate, and total bilirubin were no longer significant, while in
females, there were no differences (See Supplementary Table 1). In the age-
stratified analysis, CRP and phosphate were no longer significant in indi-
viduals older than 65 years. After excluding individuals who developed
diseases within three years from the baseline measurement, the results
remained unchanged, confirming the reliability and stability of ourfindings.
(See Supplementary Table 2).

Genetic correlation analysis
To estimate the genetic correlation between 13 biomarkers and PD, we
utilized LD Score Regression (LDSC) and Genome-wide Complex Trait
Analysis (GNOVA), employing GWAS summary statistics. Our analysis
covered 11 of these biomarkers, identifying significant genetic correlations
with PD in six instances.Notably, bothCRP and IGF-1 exhibited significant
correlations in both LDSC and GNOVA analyses, with CRP showing a
negative correlation (genetic correlation: -0.14,P = 6.31 × 10−5) and IGF-1 a
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positive correlation (genetic correlation: 0.12, P = 7.52 × 10−6). This con-
sistent significance across both methodologies underscores their robust
association with PD (See Supplementary Table 3).

Additionally, the superior performance of GNOVA in single-trait
analyses enabled the detectionof four additionalfluid biomarkers associated
with PD that were not identified in the LDSC analysis. Specifically, eosi-
nophil count (genetic correlation: -0.08, P = 3.34 × 10-03), IRF (genetic
correlation: -0.08, P = 3.45 × 10−3), glucose (genetic correlation: -0.06,
P = 3.51 × 10−2), and total bilirubin (genetic correlation: 0.04,
P = 3.18 × 10−6) demonstrated notable correlations only in the GNOVA
analysis.

These findings not only validate some of the previously identified
biomarkers associated with PD risk but also confirm their genetic correla-
tion with the disease.

Estimation of pleiotropic enrichment
The stratified quantile-quantile (QQ) plots for PD conditioned on the
P-values associated with IGF-1, CRP, and IRF reveal a clear pattern of
successive enrichment, indicating that the proportion of non-null SNPs in
PD increases with higher levels of association with these three biomarkers.
This trend of successive enrichment is further supported from the opposite
direction of analysis (see Supplementary Fig. 1). This observed enrichment
in the QQ plots provides a compelling rationale to explore fold enrichment
plots, which offer additional insights into the magnitude of these associa-
tions. Fold enrichment plots further quantify these relationships by asses-
sing the degree of upward shift from the expected null line (P = 1), thus
providing a clearer measure of the strength of the genetic overlap and the
extent of enrichment. In these plots, we observed significant levels of
enrichment: CRP-conditioned PD enrichment exceeded 7-fold, IGF-1-
conditioned enrichment was approximately 13-fold, and IRF-conditioned
enrichment reached 4-fold. In the reverse direction, the enrichment levels

were even more pronounced: CRP-conditioned PD enrichment surpassed
20-fold, IGF-1-conditioned enrichment was around 4.5-fold, and IRF-
conditioned enrichment approached 20-fold. These results not only con-
firm the trends indicated in the QQ plots but also highlight the significant
pleiotropic effects, illustrating the substantial genetic interplay between
these biomarkers and PD, thereby underscoring their potential roles in the
pathogenesis and genetic architecture of PD (see Supplementary Fig. 2).

To discover genetic variants associatedwith biomarkers conditional on
PD, we continued to perform conditional false discovery rate (conjFDR)
analysis to identify pleiotropic variants betweenCRP and the risk of PD.We
identified four pleiotropic loci with conjFDR values less than 0.01 (Table 3).
The most significant locus was rs17573509 (MAPT), The MAPT H1 hap-
lotype is widely recognized as a risk factor for various neurodegenerative
diseases, such as PD, progressive supranuclear palsy, and corticobasal
degeneration. Other significant loci include HLA-DRB1 and HLA-DQA1
located in themajor histocompatibility complex (HLA), as well as SETD1A,
which is crucial in hematopoiesis and development.

We leveraged the pleiotropic effects associatedwith various traits using
a genetic pleiotropic condFDRmethod, employingGWASsummarydata to
investigate the genetic overlap among polygenic traits. This approach dee-
pens our understanding of genetic pleiotropy and enhances statistical
power, thereby elucidating the geneticmechanisms associatedwithmultiple
phenotypes. Through this method, we systematically assessed the shared
genetic background between biomarkers and PD.

Mendelian randomization analysis
In our study, we aimed to conduct MR analyses on three biomarkers: IRF,
IGF-1, and CRP, all of which have been previously identified as having
pleiotropic loci associated with PD. This approach helps minimize con-
founding biases and eliminate potential reverse causality, enabling us to
assess the impact of these biomarkers on the risk of developing PD. By using

Table 1 | Population characteristics included in the study

Characteristics Before imputation After imputation After exclusion

No PD
(n = 423,499)

Incident
PD (n = 3395)

No PD (n = 423,499) Incident
PD (n = 3395)

No PD
(n = 389,196)

Incident
PD (n = 3084)

Follow-up time (Years) 15.17 ± 0.90 15.23 ± 0.90 15.17 ± 0.90 15.23 ± 0.90 9.50 ± 0.85 7.89 ± 2.63

Age (Years) 56.77 ± 8.01 62.97 ± 5.18 56.77 ± 8.01 62.97 ± 5.18 56.74 ± 8.00 63.01 ± 5.13

Sex

Male 193,324 (45.6%) 2132 (62.8%) 193,324 (45.6%) 2132 (62.8%) 175,913 (45.2%) 1931 (62.6%)

Female 230,175 (54.4%) 1263 (37.2%) 230,175 (54.4%) 1263 (37.2%) 213,283 (54.8%) 1153 (37.4%)

BMI (Kg/m2) 27.36 ± 4.73 27.63 ± 4.49 27.36 ± 4.73 27.63 ± 4.49 27.28 ± 4.64 27.49 ± 4.38

Townsend
deprivation index

−1.54 ± 2.95 −1.61 ± 2.94 −1.54 ± 2.95 −1.61 ± 2.94 −1.58 ± 2.92 −1.66 ± 2.88

Physical activity (High) 64,398 (15.2%) 482 (14.2%) 64,398 (15.2%) 482 (14.2%) 59,762 (15.4%) 455 (14.8%)

Smoking status

Never 230,774 (54.7%) 1,807 (53.5%) 231,500 (54.7%) 1,815 (53.5%) 214,296 (55.1%) 1,657 (53.7%)

Former 148,216 (35.1%) 1,367 (40.5%) 148,763 (35.1%) 1,374 (40.5%) 135,986 (34.9%) 1,243 (40.3%)

Current 43,050 (10.2%) 205 (6.1%) 432,36 (10.2%) 206 (6.1%) 38,914 (10.0%) 184 (6.0%)

Drinking status

Never 131,15 (3.1%) 147 (4.3%) 13,133 (3.1%) 147 (4.3%) 11,772 (3.0%) 128 (4.2%)

Former 13,925 (3.3%) 190 (5.6%) 13,939 (3.3%) 191 (5.6%) 12,260 (3.2%) 166 (5.4%)

Current 396,112 (93.6%) 3,051 (90.1%) 396,427 (93.6%) 3,057 (90.0%) 365,164 (93.8%) 2,790 (90.5%)

Education (High) 68,890 (20.0%) 506 (20.5%) 85,616 (20.2%) 708 (20.9%) 78,771 (20.2%) 639 (20.7%)

High pressure (Yes) 167,101 (39.5%) 2,020 (59.5%) 167,101 (39.5%) 2,020 (59.5%) 150,156 (38.6%) 1,797 (58.3%)

Stroke (Yes) 12,826 (3.0%) 465 (13.7%) 12,827 (3.0%) 465 (13.7%) 11,162 (2.9%) 408 (13.2%)

Diabetes (Yes) 38,127 (9.0%) 568 (16.7%) 38,128 (9.0%) 568 (16.7%) 30,249 (7.8%) 458 (14.9%)

This table presents the characteristics of the study population, divided into three categories: before imputation, after imputation, and after exclusion. The characteristics analyzed include all covariates,
Mean values (standard deviation) for continuous variables, and n (%) for categorical variables. Definition of abbreviations: BMI body mass index, PD Parkinson’s disease.

https://doi.org/10.1038/s41531-025-00888-2 Article

npj Parkinson’s Disease |           (2025) 11:35 3

www.nature.com/npjparkd


0 1 2 4 53

L1 Norm

C
oe

ffi
ci

en
ts

0 12 24 33 44 52

Log( )

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

52 51 44 41 32 24 21 15 1210 4 3 3 1 1 1 1 0

BA%
IRF

APOA
PCT
CRP

UA
MSCV
APOB

VITD
EO#

K+
WBC
RDW
MPV
MCH
TRIG
CRE
ALT
PLT
PLR
LMR

LDLD
HBA1C

MO%
ALB
PDW
AST
Na+

MCV
CA

CYS
BUN

HDL/ApoA
TBIL

PHOS
NLR
GGT

TP
HDL

AST/ALT
CRE(urine)

HRL#
GLU
MRV
IGF1
BA#

−0.25 0.00 0.25 0.50
Average Coefficient

B
io

m
ar

ke
r

Average Coefficient

−0.25

0.00

0.25

0.50

A

B C

Fig. 1 | Biomarker selection by LASSO regression model and biomarker’s
importance. This figure illustrates the importance and direction of biomarkers
selected throughLasso regression analysis. PanelA shows the average coefficients for
each biomarker, with the color and length of the bars representing the magnitude
and direction of their impact on the predictive outcome. Panel B illustrates the
changes in coefficients of biomarkers during the LASSO regression process as a
function of the L1 norm. Each colored line represents the coefficient trajectory of a
different biomarker across varying levels of L1 norm regularization. The plot
visualizes how coefficients are shrunk towards zero, highlighting which biomarkers
remain significant as the regularization increases. Panel C illustrates the LASSO

coefficient profiles for the 35 variables as the log-transformed regularization para-
meter λ varies. The vertical axis shows the partial likelihood deviance, indicating the
model’s goodness of fit, while the horizontal axis displays the log(λ) values. A vertical
line within the graph marks the λ value selected by 10-fold cross-validation, opti-
mized for balancing model complexity and predictive accuracy. As λ decreases,
model compression intensifies, which enhances the model’s ability to discern and
retain only the most important variables. The sequence of numbers at the top
indicates the count of variables retained in the model at each specific λ, helping to
visualize how variable selection changes with increasing regularization.
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genetic variants as instrumental variables, we can explore potential causal
relationships between these biomarkers and PD with greater precision.

We analyzed the causal effects of CRP and IGF-1 on PD risk usingMR
analyses. For CRP, 179 independent SNPs served as instrumental variables,
showing robust instrument strength (median F-statistic of 65.7) and no
evidence of weak instrument bias or horizontal pleiotropy (MR-Egger
intercept P = 0.78). The inverse varianceweighted (IVW)method indicated
a negative causal relationship between CRP levels and PD risk, consistent
across leave-one-out analysis. In contrast, 289 SNPs were used for IGF-1,
also demonstrating strong instrument validity (median F-statistic of 55.3)
and no pleiotropic effects (MR-Egger intercept P = 0.74). The IVW results
suggested a positive association between IGF-1 levels and PD risk. For IRF,
no significant causal association was found in the analysis.

The MR analyses underscore the causal relationships between specific
inflammatory biomarkers and PD. Specifically, our findings indicate that

CRP may have a protective role against PD, suggesting a possible anti-
inflammatorymechanism thatmitigates disease progression.Conversely, the
positive associationbetween IGF-1 levels and increasedPDriskhighlights the
complex role of inflammatory processes in neurodegeneration (See Fig. 2).

Discussion
This study leveraged the UK Biobank’s extensive dataset of blood and urine
biomarkers to advance our understanding of PD through case-control
studies, genetic analysis, and MR. We identified 13 biomarkers associated
withPD, includingnewly exploredmarkers such as theAST/ALT ratio, IRF,
and phosphates, alongside IGF-1 and CRP, which had previously shown
inconsistent results in research. Genetic correlation analysis revealed sig-
nificant inverse genome-wide correlations between PD and several bio-
markers like eosinophil count, IRF, CRP, glucose, and total bilirubin, while
showing a positive correlation with IGF-1. Among these, the relationships

Table 2 | Associations of biomarkers and the risk of Parkinson’s disease

Biomarkers Model I Model II Model III

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

AST/ALT 1.18 (1.13, 1.23) 3.34 × 10-12 1.19 (1.13, 1.24) 6.24 × 10-13 1.14 (1.08, 1.21) 8.53 × 10-06

HDL/ApoA 1.10 (1.05, 1.15) 1.18 × 10-04 1.12 (1.07, 1.17) 1.02 × 10-05 1.06 (1.00, 1.12) 6.74 × 10−02

NLR 1.19 (1.13, 1.24) 2.10 × 10-12 1.16 (1.11, 1.22) 3.93 × 10-10 1.14 (1.08, 1.19) 6.06 × 10-07

Platelet count 0.86 (0.82, 0.90) 2.88 × 10-09 0.86 (0.82, 0.90) 9.69 × 10-10 1.10 (1.01, 1.20) 3.91 × 10-02

Platelet crit 0.83 (0.79, 0.87) 1.28 × 10-12 0.83 (0.79, 0.87) 1.38 × 10-13 0.76 (0.70, 0.83) 5.97 × 10-09

Eosinophill count 0.88 (0.85, 0.93) 3.82 × 10-07 0.88 (0.84, 0.92) 5.52 × 10-08 0.92 (0.88, 0.96) 4.79 × 10-04

Basophill count 1.24 (1.19, 1.30) 5.41 × 10-22 1.24 (1.19, 1.30) 5.51 × 10-22 1.31 (1.25, 1.37) 2.98 × 10-31

Monocyte percentage 0.92 (0.88, 0.96) 9.49 × 10-04 0.91 (0.87, 0.96) 2.11 × 10-04 0.95 (0.91, 1.00) 5.94 × 10−02

Immature reticulocyte fraction 0.75 (0.72, 0.78) 4.01 × 10-37 0.74 (0.71, 0.77) 1.12 × 10-40 0.75 (0.71, 0.79) 3.49 × 10-20

High light scatter reticulocyte count 0.84 (0.80, 0.88) 6.06 × 10-12 0.81 (0.78, 0.85) 9.01 × 10-16 1.07 (1.00, 1.14) 6.78 × 10−02

Sodium in urine 0.94 (0.90, 0.98) 3.84 × 10-03 0.94 (0.91, 0.98) 4.75 × 10-03 0.99 (0.95, 1.03) 6.41 × 10−01

Alanine aminotransferase 0.83 (0.78, 0.89) 1.76 × 10-08 0.82 (0.77, 0.87) 3.93 × 10-10 0.98 (0.91, 1.05) 5.70 × 10−01

Apolipoprotein B 0.88 (0.84, 0.92) 3.20 × 10-09 0.92 (0.89, 0.96) 1.46 × 10-04 1.06 (0.96, 1.17) 3.01 × 10−01

C-reactive protein 0.83 (0.77, 0.89) 3.52 × 10-07 0.82 (0.77, 0.88) 8.33 × 10-08 0.89 (0.83, 0.95) 1.43 × 10-03

Glucose 1.16 (1.11, 1.21) 2.54 × 10-09 1.12 (1.06, 1.17) 1.64 × 10-05 1.13 (1.07, 1.19) 5.02 × 10-06

IGF-1 1.28 (1.23, 1.33) 4.17 × 10-36 1.28 (1.23, 1.33) 2.63 × 10-36 1.25 (1.20, 1.30) 7.46 × 10-29

LDL direct 0.88 (0.84, 0.91) 1.49 × 10-08 0.92 (0.88, 0.96) 1.78 × 10-04 0.91 (0.82, 1.01) 9.95 × 10−02

Phosphate 1.06 (1.02, 1.11) 6.62 × 10-03 1.06 (1.02, 1.10) 7.67 × 10-03 1.08 (1.03, 1.12) 1.81 × 10-03

Total bilirubin 1.10 (1.06, 1.15) 1.68 × 10-06 1.10 (1.06, 1.14) 4.08 × 10-06 1.06 (1.02, 1.11) 5.31 × 10-03

Total protein 1.05 (1.01, 1.09) 4.94 × 10-02 1.04 (1.00, 1.08) 8.84 × 10−02 - -

Triglycerides 0.86 (0.82, 0.90) 1.15 × 10-08 0.86 (0.82, 0.90) 4.73 × 10-09 0.85 (0.81, 0.89) 2.29 × 10−01

Urate 0.82 (0.78, 0.86) 2.53 × 10-15 0.81 (0.77, 0.85) 8.63 × 10-19 0.85 (0.81, 0.89) 1.13 × 10-10

HR hazard ratio,CI confidence interval, ns, not significance,AST aspartate transaminase,ALT alanine transaminase,HDLHigh-density lipoprotein,ApoAApolipoprotein A,NLR neutrophil-to-lymphocyte
ratio. Model I: Adjusted for age, sex, sociodemographic factors, and lifestyle domains. Model II: Adjusted for variables in Model I plus cardiovascular diseases. Model III: Includes only the statistically
significant biomarkers (P < 0.05) in Model II. These significant factors were further analyzed in a multivariate survival analysis.

Table 3 | Shared risk loci between biomarkers and Parkinson’s disease

SNP Genomic position Closest gene FDR-value P-value in PD GWAS P-value in Biomarker GWAS

Immature reticulocyte fraction

rs1870293 16:30970941 SETD1A 3.09 × 10-6 1.13 × 10-9 8.20 × 10-9

rs17573509 17:44081224 MAPT 2.67 × 10-6 1.58 × 10-12 6.87 × 10-9

IGF-1

rs7760841 6:32574868 HLA-DRB1; HLA-DQA1 2.66 × 10-4 1.41 × 10-6 6.31 × 10-18

C-reactive protein

rs7760841 6:32574868 HLA-DRB1; HLA-DQA1 1.27 × 10-4 1.41 × 10-6 5.44 × 10-8

SNP, single nucleotide polymorphism; FDR, false discovery rate. The genomic position was based on GRCh37.
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with IGF-1 and CRP were the most pronounced. Our pleiotropy analysis
confirmed four significant shared genetic loci linked to PD, including three
previously reported (HLA-DRB1, HLA-DQA1, MAPT) and one less com-
monly reported locus, SETD1A. Ultimately, MR studies supported the
nature of these associations, indicating potential causal relationships
between the immunoinflammatory biomarkers IGF-1 and CRP and PD.
These MR findings help resolve inconsistencies reported in earlier studies
and provide robust support for these biomarkers’ roles in PD.

Our study identified several biomarkers, including the AST/ALT ratio,
which has not been previously confirmed as a significant indicator. Com-
monly associated with liver damage, the AST/ALT ratio is also linked to
various metabolic syndromes. Moreover, research has shown that this ratio
has a negative correlation with grip strength and walking speed, both of
which are relevant to PD32,33. This suggests that the AST/ALT ratio may
serve as a valuable biomarker in understanding the broader physiological
impacts associated with PD. Phosphates, typically associated with the
musculoskeletal system, can cause metabolic dysregulation, leading to an
accumulation of excessive inorganic phosphates. Excessive phosphate levels
are thought to impair the function of Complex I in the mitochondrial
electron transport chain, a key component in PD pathology34,35. This
impairment is associated with the activation of the mitochondrial perme-
ability transition pore, which leads to increased production of reactive
oxygen species, heightened inflammation, DNA damage, and depolariza-
tion of themitochondrialmembrane36. Consequently, additional research is
essential to fully understand the potential impact of phosphate dysregula-
tion in PD. The IRF reflects the erythropoietic activity of the bone marrow
and is commonly used in the laboratory diagnosis of anemia37. A follow-up
study from the KoreanNational Screening Program found that anemia was
associated with a lower risk of PD, particularly in patients with moderate to
severe anemia38. Additionally, some studies have shown that newly diag-
nosed anemia increases the risk of PD39. Therefore, further research is
needed to explore the complex relationship between IRF and PD.

To further explore whether there are pleiotropic risk variants shared
between biomarkers and PD, we systematically assessed the shared genetic
background between biomarkers and PD. We subsequently utilized sum-
mary statistics from genome-wide association studies to analyze the genetic
correlations between statistically significant biomarkers and PD. Using the
condFDR method, we analyzed their genetic enrichment and successfully
identified four commongenetic loci. Among these loci, theMAPT identified
between IRF and PD encodes the microtubule-associated protein tau.
Research indicates that tauproteinmay influence alpha-synuclein andcould
be a key target for treating diseases related to tau and alpha-synuclein.
Dysfunctions in SETD1A could lead to schizophrenia, and its reduced
function may disrupt the normal development of cortical axons, dendrites,
and spines, leading to cognitive deficits. Re-expression of SETD1A in
adulthood may help reverse these cognitive impairments40,41. The genes
HLA-DRB1 andHLA-DQA1, which are shared among IGF-1,CRP, andPD,
are implicated in immune regulation. These findings suggest a significant
role of these genetic regions in modulating immune responses, which may
influence the pathogenesis of PD. PD and Alzheimer’s disease (AD) show
genome-wide associations within the HLA class II region, which includes

the closely linked HLA-DR and HLA-DQ genes42. The HLA-
DRB1*04 subtype can selectively bind the PHF6 sequence of tau protein,
influencing the progression of neurodegenerative diseases43.

The significance of IGF-1 and CRP in PD research has been unclear,
prompting us to conduct MR analyses to resolve these uncertainties. We
explored the causal relationships between these genetically correlated bio-
markers and PD, aiming to provide definitive insights into their roles in the
disease’s pathogenesis. In previous studies, IGF-1 is known for its neuro-
protective functions, playing a crucial role in thedevelopment of thenervous
system and the survival and differentiation of neurons44. Research indicates
that IGF-1 levels decrease with age, correlating with PD, which pre-
dominantly affects the elderly45.However, several cohort studies suggest that
PD patients exhibit higher levels of IGF-1 compared to healthy controls,
potentially as a compensatory mechanism in response to the disease46. Our
findings corroborate these cohort studies, indicating that elevated levels of
IGF-1 are associated with an increased risk of PD. CRP is a biomarker that
reflects the body’s inflammatory state, with plasma CRP levels capable of
rising rapidly and significantly in response to acute inflammatory stimuli47.
It has been reported to be associatedwith the risk andprogression of PD48. A
previous large meta-analysis indicated that peripheral CRP levels were
elevated in PD patients, suggesting that inflammationmay play a role in the
pathogenesis and symptoms of PD49. Additionally, a study based on the
OxfordDiscovery prospective cohort found thatCRPmight serve as a blood
biomarker for predicting PD prognosis50. However, another study that
included 12,642 participants found no significant association between CRP
and the risk of developing PD51. These studies are often limited by sample
size, highlighting the need for further research to explore the relationship
between CRP and PD.

Our findings indicate that elevated levels of IGF-1 are associated with
an increased risk of PD, while higher baseline levels of CRP are linked to a
reduced risk of PD. This study represents the first demonstration of a causal
relationship between IGF-1 and PD using MR analysis. These findings
enhance our understanding of the association between these two bio-
markers and PD risk, providing partial evidence for further exploration of
their underlying pathogenesis.

The main strength of this study is the use of diverse pre-diagnostic
blood and urine biomarkers to predict the risk of PD, addressing the lim-
itations of small sample sizes and potential confounding factors in previous
studies.Additionally,weutilized the large sample size from theUKBiobank,
which enhances the statistical power and robustness of ourfindings,making
the conclusions more reliable and generalizable. In our sensitivity analysis,
we strategically excluded patients diagnosed with PD within three years
prior to the study to minimize potential reverse causation—a common
challenge in longitudinal studies. Furthermore, we employed a robust series
of genetic validations that not only effectively addressed reverse causation
but also mitigated the impact of residual confounding factors in epide-
miological studies. These measures have significantly strengthened the
validity of our results, solidly corroborating our epidemiological findings
and enhancing our understanding of PD’s pathogenesis. Additionally, our
integration of genetic analysis withMR provided a novel perspective on the
causal relationships between identified biomarkers and PD, confirming

Fig. 2 |MendelianRandomization Analysis of CRP and IGF-1 Associations.This figure displaysMR results for the association between CRP and IGF-1 with PD, focusing
on the IVW method. We primarily examine the p-values and hazard ratio ranges from the IVW results.
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findings that may have otherwise been obscured by biases. This study
focused primarily on white British participants, which minimizes potential
confounding from ethnic differences in plasma concentrations. However,
this limitation reduces the generalizability of the findings to other demo-
graphic groups. Notably, white British individuals make up approximately
94.1%of theUKBiobank cohort, providing a sufficiently large sample size to
ensure robust statistical power and valid conclusions. Despite this, future
research should include more diverse populations to better understand the
role of bloodandurine biomarkers inPDrisk.Using ICDcodes todefinePD
might lead to misdiagnosis or misclassification issues, and as a result latent
incident cases of the disease associated with less severe clinical symptoms
might not have been captured, further in-depth studies are needed to vali-
date these findings. Furthermore, biomarkers derived from body fluids,
notably blood and urine, are vulnerable to fluctuations caused by physio-
logical conditions andpharmacological interventions. Finally, given that our
study was observational and the UK Biobank does not provide detailed
information onmedication use or certain pre-diagnostic characteristics, we
recognize that, although MR was used to validate causal associations, the
interpretation of the relationship between biomarkers and Parkinson’s
disease should still be approached with caution.

Methods
Study Population Data Availability
The UK Biobank, a community-based longitudinal cohort, includes over
half a million individuals aged 40–69 years, recruited between 2006 and
2010. Participants attended one of 22 assessment centers across England,
Scotland, or Wales, where they completed questionnaires and participated
in face-to-face interviews. Trained staff conducted phenotypic measure-
ments and collected biosamples. The process began with self-administered
questionnaires on touch screens, followed by computer-assisted personal
interviews when necessary. The UKBiobank questionnaire, developed with
input from international experts, covered key topics including socio-
demographic information, lifestyle factors (such as smoking and alcohol
use), early life exposures, psychological state, cognitive function, family and
medical history, and overall health52. This rich resource enables us to con-
duct detailed and extensive research. Utilizing these detailed biomarker
profiles, our study seeks to deepen the understanding of the relationship
between these biomarkers and the onset of PD, enhancing our capabilities
for early detection and better understanding of the disease’s mechanisms53.

Biomarkers Measurement
The UK Biobank collected blood and urine samples during baseline
recruitment, measuring pertinent blood biochemistry, blood count, and
urine-related biomarkers. The specific Field IDs for the UK Biobank can be
found in Supplementary Table 4. For detailed information on missing
values, refer to Supplementary Fig. 3. Detailed information regarding the
experimental procedures and quality control protocols can be found on the
UK Biobank website.

Previous studies have indicated that various lipid trait ratios and
immune-related markers are associated with dementia and cognitive
function51,54–56. we calculated various ratios, including AST/ALT, HDL/
ApoA, LDL/ApoB, and ApoB/ApoA ratios, NLR (Neutrophil-to-lympho-
cyte ratio), PLR (platelet–lymphocyte ratio), LMR (Lymphocyte-to-
monocyte ratio), SII (systemic immune inflammation index). Before divi-
sion, all components of the ratios were converted into the same units.
Subsequently, standardization transformations were applied to all fluid
biomarkers. Samples deviating more than 5 standard deviations from the
mean were considered outliers and were excluded from the analysis invol-
ving relevant participants.

Parkinson’s Disease Outcome Definitions
PD diagnoses and onset dates are documented within hospital admission
records across the UK, encompassing diagnostic data derived from Eng-
land’s Hospital Episode Statistics, Scotland’s Morbidity Records, and
Wales’s Patient Episode Database, all classified using the 10th Revision of

the International Classification of Diseases (ICD-10)52. The G20 code
encompassesPD, including conditions such as hemiparkinsonism, paralysis
agitans, and parkinsonism that is not otherwise specified (NOS), idiopathic,
or primary. Participants were considered at risk for PD from the date of
enrollment, with follow-up continuing until either the initial diagnosis or
September 2023,whichever camefirst. Tominimize thepotential for reverse
causality, individuals with prevalent PDwere excluded from the study prior
to enrollment.

Analytical Cohort
Figure 3 shows the process for constructing the analytical cohort. From the
initial 502,357 participants in the UK Biobank, we excluded 59,885 indivi-
duals without British white ancestry, 294 individuals with PD at baseline,
and 15,284 individuals with pre-existing nervous system diseases. After
applying these criteria, we assessed the impact of missing trait values, par-
ticularly for the multivariable analysis, by performing multiple imputations
using chained equations. This process was carried out over 10 iterations,
generating 10 complete datasets for subsequent analys57. Following nor-
malization, we excluded 34,614 outliers exceeding ±5 standard deviations.
Consequently, the final sample size for the PD and biomarker analyses was
392,280 participants.

Statistical Analyses
LASSO (Least Absolute Shrinkage and Selection Operator) is a form of
regularization that reduces coefficients to enhance prediction accuracy. To
preliminarily screen blood and urine biomarkers associated with PD onset,
we performed gender and age adjusted LASSO Cox regression analysis,
using a penalty parameter (λ) optimized through tenfold cross-validation.
This approachhelped identify biomarkersmost strongly associatedwithPD
onset risk while minimizing the risk of overfitting58. The LASSOmodel was
constructed using the “glmnet” package in R. This variable selection process
was repeated across each imputed dataset, resulting in ten models. Subse-
quently, we set a threshold for inclusion in subsequent analytical models,
requiring variables to retain nonzero coefficients in at least seven imputa-
tions of the LASSO model. Variables maintaining nonzero coefficients in
fewer than seven LASSOmodels were excluded from further analysis57. We
used theRubin rule in all subsequent analyses togenerate thefinal combined
effect estimates59.

The confounding factors included in our study are age, sex, BMI,
Townsend deprivation index, physical activity, smoking status, drinking
status, education level, hypertension, stroke, and diabetes. Age refers to the
age at enrollment, while BMIwasmeasured using theOmronHEM-7015IT
digital bloodpressuremonitor as the average of two sittingmeasurementsof
systolic blood pressure. BMI was calculated by dividing the individual’s
weight (in kilograms), measured using the Tanita BC-418 MA body com-
position analyzer, by the square of their height (in meters). The Townsend
deprivation index assesses area deprivation based on four domains:
unemployment, car ownership, household overcrowding, and owner
occupation information, with higher scores indicating greater social
deprivation. Smoking and drinking statuses were classified as never, pre-
vious, or current. Education level was categorized as whether the individual
held a college/university degree or other professional qualifications. Stroke,
hypertension, and diabetes were defined based on self-reported status and
whether participants were taking antihypertensive medication or insulin.

Building upon the preliminary feature selection conducted using
LASSO-Cox regression, we employed Cox proportional hazards regression
models to further evaluate the relationship between blood and urine bio-
markers and the onset of PD. By iteratively refining the models and
incorporating progressively stringent covariates, we aimed to minimize
potential confounding and obtain more precise estimates of associations.
Specifically, we started with Model 1, which included adjustments for key
confounders such as gender, age, Townsend deprivation index, smoking,
alcohol consumption, BMI, physical activity, and education. Biomarkers
with statistical significance (P < 0.05, Bonferroni corrected) inModel 1were
included in Model 2, which further accounted for cardiovascular and
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metabolic factors, including hypertension, diabetes, and stroke. Ultimately,
Model 3 integrated the significant biomarkers identified in Model 2, while
adjusting for all potential confounders, allowing us to identify biomarkers
with independent associations with PD onset.We regard these findings as a
starting point for a more in-depth investigation to explore their further
significance and potential implications.

Genetic Correlation
The LDSC sumstats format files used in genetic correlation analysis are
derived from the genome-wide association study (GWAS) round 2 data
from the Neale Lab and are available for free on their website (https://www.
nealelab.is/uk-biobank). We utilized default parameters in the Gnova and
LDSC methods to estimate the genetic correlation between significant bio-
markers and PD risk within the Cox proportional hazards regression model.

LDSC estimates the correlation between increased genetic suscept-
ibility to diseases and quantitative trait values by analyzing single nucleotide
polymorphisms (SNPs). By examining the relationship between test sta-
tistics and LDSC, it allows for the quantification of the contribution of each
SNP to the overall genetic risk. This method can be used to assess whether
different blood biomarkers share a common genetic basis with PD, pro-
viding insight into the potential genetic overlap between these biomarkers
and PD susceptibility.

In the results of genetic correlation analysis between different pheno-
type pairs, a positive correlation indicates that the increased risk for one
condition or higher values of a continuous trait is associated with increased
risk or higher values of another trait. Conversely, a negative correlation
means that an increased risk for one condition or higher values of a trait is
associatedwith a decreased risk or lower values of another trait60,61. GNOVA

I Flowchart of included participants and imputation 

UK Biobank 
( N=502,357 )

UK Biobank
( N=426,894 )

Individual exclusion:
59,885 Without British white ancestry 
294 Had P  at baseline
15,284 Had  nervous system disease 

Multiple 
Imputation

UK Biobank 
( N=392,280 )

Individual exclusion:
After normalization, 34,614 individuals 
exceeding ± 5 outliers are excluded, 

.

LASSO-Cox Regression 
Model

II Biomarker selection and statistical analysis 

Cox Proportional Hazards 
Model

Stratified Analysis

Sensitivity Analysis

LASSO  Cox model adjust for sex 
and age

Model I: Adjust for sociodemographic 
and lifestyle factors
Model II: Model I + cardiometabolic 
factors 
Model III: Multivariable models 

Stratified by sex and age

Identified 46 out of 67 biomarkers as 
significantly associated with PD

Excluded people diagnosed with PD 
ithin the first three years

13  biomarkers were found to be 
significantly and independently 
associated with  PD

III Genetic correlation analysis

Genetic Correlation Analysis

Pleiotropic Analysis

Mendelian Randomization

LDSC and GNOVA analysis

Conditional quantile–quantile(QQ) 
plot
Fold enrichment plot Conjunctional 
Manhattan plot

Identified 6 biomarkers have genetic 
correlation with PD

IRF, C-reactive protein and 
IGF-1 share pleiotropic variants 
with PD respectively

C-reactive protein and IGF-1 have
causal correlation with PD

Missing data were handled using 
multiple imputation with chained 
equations

Fig. 3 | Flowchart of the study. The study involves three main parts: participant
selection, biomarker selection and statistical analysis, and genetic correlation ana-
lysis. In Part I, we started with 502,357 participants from the UK Biobank, applying
exclusion criteria and multiple imputation, resulting in a final sample of 392,280

participants. In Part II, we used LASSO-Cox regression and a progressively stringent
covariate-adjusted Cox proportional hazards mode. In Part III, we conducted
genetic correlation analysis, identifying genetic links and causal relationships for key
biomarkers. PD Parkinson’s disease, CRPC-reactive Protein, QQ quantile–quantile.
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estimates genetic covariance using summary data of shared genetic varia-
tions between two GWAS and then calculates genetic correlation based on
genetic covariance and variance-based heritability. Both LDSC and
GNOVA analyses can statistically explain the possibility of sample overlap
between PD and biomarkers.

Pleiotropic Enrichment Analysis
For biomarkers with significant genetic associations with PD, we further
investigated whether the genetic overlap between these biomarkers and PD
is mediated by shared regulatory mechanisms in gene expression.

To evaluate the pleiotropic enrichment between two traits, stratified
Q-Q plots were employed. Such plots typically depict nominal P-values
(−log10(p)) on the y-axis against empirical quantiles (−log10(q)) on the
x-axis. Pleiotropic enrichment can be discerned by the leftward devia-
tion from the expected null line, as the primary trait successively
depends on different significance levels of blood biomarkers. If indeed
pleiotropic enrichment exists, an early departure from the null line
towards the left will be evident. Larger gaps between the stratified Q-Q
curves visually indicate higher levels of pleiotropic enrichment between
the two traits.

To confirm these enrichment effects, fold-enrichment plots were
generated. These plots illustrate the fold-enrichment of nominal−log10(P)
values for PD SNPs below the conventional GWAS threshold of
P < 5 × 10−8, as well as for subsets of SNPs categorized based on the sig-
nificance of their association with biomarkers and vice versa. Fold-
enrichment is evaluated by the extent of upwarddeviation from thenull line.

We employed the conditional false discovery (condFDR) rate method
to identify shared risk loci between biomarkers and PD. Specifically,
condFDR was used to detect PD-associated SNPs related to the biomarker,
and vice versa. The condFDRwas utilized to identify SNPs jointly associated
with both PD and the biomarker. After applying the condFDRprocedure to
both traits, the conjFDRanalysis reported loci that simultaneously exceeded
the significance threshold for condFDR in both traits, where the threshold is
defined as the maximum of the condFDR values for the two traits, with a
significance level set at 0.0162.

GWAS Summary Statistics
In this study, the exposure and outcome GWAS data were obtained
from the open-access database (https://gwas.mrcieu.ac.uk/)63,64. We
utilized GWAS data for IGF-1 and CRP from the IEU database (ebi-
a-GCST90014008 and ebi-a-GCST90014002, respectively). These
data were derived from a genome-wide association study (GWAS)
conducted on up to 407,746 participants of White British ancestry
from the UK Biobank. Analyses were performed using the REGENIE
software, which employed a rank-based inverse normal transforma-
tion to convert quantitative phenotypes into Z-scores. Regarding the
IRF, we utilized publicly available GWAS results collected by the
Neale Lab (ukb-d-30280_irnt), which include summary statistics for
both the raw and rank-normalized versions of these biomarker
measurements. Additionally, the statistical model adjusted for
population stratification by incorporating age, age squared, sex, an
age-by-sex interaction term, and the top ten principal components
provided by the UK Biobank65. GWAS data for PD outcomes were
obtained from the International Parkinson’s Disease Genomics
Consortium (IPDGC; ieu-b-7). This analysis integrated data from
three previously published studies, 13 new datasets, and UKD. Their
case included clinician-identified PD cases and 23andMe self-
reported cases and UK Biobank proxy cases66.

The instrumental variables (SNPs) must satisfy three core
assumptions: First, relevance: SNPs must be robustly associated with
the exposure. Second, independence: SNPs should not be influenced
by confounders of the exposure-outcome relationship, such as
population stratification or selection bias. Third, exclusion restric-
tion: SNPs should affect the outcome only through the exposure
pathway, implying no horizontal pleiotropy.

For Assumption 1, SNPs with P < 5 × 10−8 served as instrumental
variables for MR analysis, and excluded variants with an F-value < 10
to minimize weak instrument bias67. In addition, We excluded SNPs
located within a 5000-kb range upstream and downstream of the
most significant SNP to minimize linkage disequilibrium and avoid
including SNPs that might be correlated (r2 > 0.01 in the 1000
Genomes European data). For hypothesis 2, we excluded the same
SNPS in the GWAS data of the covariates in our Cox proportional
hazard regression model I to rule out potential mixing and found
two SNPS rs11642090 and rs7259070 that existed between BMI and
IGF-1. For Assumption 3, We used the MR-egger test to rule out
pleiotropy.

Bidirectional Mendelian Randomization
In this study, we employed four methods to investigate the potential
causal relationship between biomarkers and PD: inverse-variance
weighted (IVW), weighted mode, weighted median, and MR-Egger.
When all selected SNPs are valid instruments, the IVW method is
considered the most accurate and efficient for estimating causal
effects, particularly suitable for using multiple genetic variants as
instruments68. The weighted mode method is similar to the IVW
method but allows for the consideration of correlation between
genetic instruments and is used when employing a set of conservative
genetic instruments. The weighted median method is a robust MR
approach that estimates causal effects by calculating the median of
the ratio estimates from genetic variants and is resilient to outliers.
The MR-Egger method accommodates horizontal pleiotropy in the
instruments but requires that the pleiotropy is independent of the
variant-exposure association.

To test the robustness of the MR results, we conducted additional
sensitivity analyses, including using Cochran’s Q statistic to measure het-
erogeneity, MR-Egger regression to assess potential pleiotropy in the SNPs
used as instruments, and leave-one-out analysis by sequentially removing
genetic variants from the analysis and re-estimating the causal effect to
evaluate the dependence on specific variants.

Data availability
After the health-related research is approved by the UK Biobank Access
Team, the data andmaterials are available online at https://www.ukbiobank.
ac.uk/.
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