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Baseline [18F]FP-CIT PET-based deep
learning prediction of levodopa-induced
dyskinesia in Parkinson’s disease

Check for updates
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Jae Seung Kim 4, Changhwan Sung 4, Jungsu S. Oh 4, Jihwan Kim 1,2,5, Namkug Kim 2,6,7 &
Sun Ju Chung 3,7

We aimed to develop a convolutional neural network (CNN) model with multi-task learning to predict
the onset of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease (PD) using
baseline [18F]FP-CIT PET images. In this retrospective, single-center study, 402 patients were
classified based on whether they developed LID within 5 years after starting levodopa (within 5 years:
n = 134; beyond 5 years or none: n = 268). The proposedCNNmodel achieved ameanAUROC ± SDof
0.666 ± 0.036. Model-derived probabilities were also incorporated into a Cox regression model,
yielding a mean concordance index (C-index ± SD) of 0.643 ± 0.046, significantly outperforming the
model based on specific/nonspecific binding ratios of striatal subregions (C-index = 0.392 ± 0.036) in
four of five test configurations. These results suggest that model-extracted features from [18F]FP-CIT
PETcarry prognostic value for LID, although further performance improvements are needed for clinical
application.

The incidence of Parkinson’s disease (PD), the second most prevalent
neurodegenerative disease following Alzheimer’s disease, is rapidly
increasingworldwide1. The increasing global burden of PD in the absenceof
disease-modifying therapy mandates reliance on symptomatic treatment,
including dopaminergic medication, and surgical intervention in advanced
stages1–3. Levodopa is the gold standard treatment for motor-symptom
alleviation, although prolonged levodopa therapy induces serious, debili-
tating motor complications, such as wearing off and levodopa-induced
dyskinesia (LID)2,4, which presents as dose-related hyperkinetic involuntary
movements secondary to dopaminergic treatment that reduces the quality
of life in PD5 and afflicts approximately 40% of patients within 4–6 years of
pharmacotherapy6. Depending on interindividual variations, including risk
factors such as younger age at PD onset, higher levodopa dosage, favorable
medication response, female sex, greater motor and nonmotor burdens,
genetic risk score, and striatal dopamine-depletion pattern, LID presents at
different timepoints during the disease course7–10. Besides clinical char-
acteristics that are easily obtained through history-taking and neurological

exams, the quantification of striatal dopamine depletion canbemeasuredby
radiotracer-uptake reduction on presynaptic dopamine imaging with single
photon emission computerized tomography (SPECT) and positron emis-
sion tomography (PET)11,12.

Machine learning (ML) and deep learning (DL) techniques have been
applied to SPECT and PET images of PD. ML and convolutional neural
networks (CNNs) have achieved pooled area under the receiver operating
characteristic curve (AUROC) of 0.96 for identifying PD from normal
control and 0.93 for distinguishing PD from atypical parkinsonism using
presynaptic dopamine PET imaging13. Further advancements in multilabel
classification networks have successfully enabled the classification of PD,
multiple system atrophy, progressive supranuclear palsy, and normal
control14. Using both clinical and imaging features of dopamine transporter
(DAT) SPECT in large public longitudinal datasets of PD, such as the
Parkinson’s Progression Markers Initiative (PPMI) database, has enabled
the prediction of motor prognosis and suggested new PD subtypes15–18.
Additionally, although few studies have explored the use ofDAT imaging in
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multi-task learning (MTL), MTL has been applied in various medical
imaging tasks, including the diagnosis and segmentation of COVID-19
from chest radiography or CT scans, and tumor classification and seg-
mentation in 3D-automated breast ultrasound images19–21. Compared to
single-task learning, MTL allows DL models to learn more generalized
features through smoothing out the noises from each task and to con-
centrate on important semantic features shared by multiple tasks22.

Studies using conventional statistical methods showed that, compared
to patients without LID, those with LID exhibit more pronounced uptake
reduction in the sensorimotor striatum or putamen, with greater right/left
asymmetry in caudate uptake7,11,12,23–26. To predict LID using the PPMI
database, ML algorithms were applied to demographics, motor and non-
motor symptom severity scores, and striatal uptake values from DAT
SPECT27,28. However, DL models for predicting LID occurrence using
presynaptic dopamine imaging in an end-to-endmanner are scarce. In end-
to-end learning, DL models automatically extract image features from the
image file and target those relevant to the primary outcome without
requiring imaging experts or experience, which makes them more applic-
able in actual clinical settings. Rather than manually calculating uptake
values of striatal subregions or interhemispheric asymmetry, these models
learn from low- to high-level features of the entire image.

In this study, we developed a MTL CNN model, combining classifi-
cation and reconstruction tasks, using baseline presynaptic dopamine PET
images ([18F]FP-CIT PET) to classify patients with PD into those who
developed LID within 5 years of starting levodopa treatment (wLID group)
and those who did not (woLID group). Predicted probabilities from the
CNN model, denoted as DeepScores, were employed in the Cox regression
analysis to predict the disease duration without LID. Explainable artificial
intelligence (AI) techniques were applied for visualization and quantifica-
tion of image and clinical feature importance.

Results
Patient characteristics
Of the 3102 patients who visited the movement disorder clinic at Asan
Medical Center during the study period, 402 (wLID: 134 [33.3%]; woLID:
268 [66.7%]) met the inclusion criteria (Fig. 1) and were enrolled. Table 1
presents their initial clinicodemographic features and specific/nonspecific
binding ratios (SNBRs) of PET images. Compared to thewoLID group, the
wLID group had a younger age at onset, higher Hoehn and Yahr (H&Y)
scales, and higher Unified Parkinson’s Disease Rating Scale (UPDRS) Part
3 scores for finger taps, leg agility, and rigidity. No significant intergroup
difference in the SNBRs of the ventral striatum (VS), anterior caudate (AC),
and posterior caudate (PC) were observed between the two groups, while
anterior and posterior putamen (AP and PP, respectively) showed lower
values in the wLID group.

Evaluation of DL and ML models
Supplementary Table S1 and Fig. 2 present the performance of CNN and
ML models. A total of three CNN models (image-only single-task, image-
onlyMTL, and image-clinical variableMTL) and threeMLmodels (logistic
regression (LR), random forest (RF), and extreme gradient boosting
(XGBoost)) were compared using five hold-out test sets derived from five
different training/test data configurations. Image-only models were based
solely on PET images, whereas image-clinical variable models also incor-
porated clinical features listed inTable 1.Details of the clinical variables used
for model training are provided in the Methods section. The image-only
MTL model generated a higher mean AUROC (mAUROC) (standard
deviation, SD) of 0.666 (0.036) than the image-only single-task model at
0.643 (0.022), although the difference was not statistically significant
(p = 0.12).Adding clinical variables to the image-onlyMTLmodel, resulting
in the image-clinical variable MTLmodel, further increased the mAUROC
(SD) to 0.694 (0.034), but thedifference remained insignificant (p = 0.12). In
contrast, with the addition of clinical variables, all ML models showed
improved mAUROCs (LR: p = 0.02, RF: p = 0.003, XGBoost: p = 0.02),
suggesting that the clinical information compensated for the possible

insufficiency of SNBRs in predicting wLID. The mAUROCs did not sig-
nificantly differ across ML models for both image-only and image-clinical
variable inputs.

Among all models trained with image-only data, the image-onlyMTL
model achieved the highest mAUROC (image-only MTL vs LR: p = 0.18,
image-only MTL vs RF: p = 0.08, image-only MTL vs XGBoost: p = 0.03).
For models trained with image and clinical variables, the RF achieved the
highest mAUROC, without significantly differing from the image-clinical
variableMTLmodel (RFvs image-clinicalMTL:p = 0.51,RFvsLR:p = 0.15,
RF vs XGBoost: p = 0.78). Additionally, the mAUROC of the image-only
MTL model did not significantly differ from any of the three ML models
trained with both image and clinical variables (image-only MTL vs LR:
p = 0.34, image-only MTL vs RF: p = 0.19, image-only MTL vs
XGBoost: p = 0.37).

Explainable artificial intelligence
Figure 3a shows the activationmap of a PET image from a patient correctly
classified into the wLID group by the image-only MTL model. To visualize
the distribution of activation values across all images, we generated a violin
plot for intergroup comparison of themean activation values of ROIs in the
wLID andwoLID groups (Fig. 3b, c). In the structural atlas, activation values
were generally high on the AC, with the most significant intergroup dif-
ferences observed in theAPandPP. In the connectivity atlas, all three region
of interests (ROIs) showed distinct intergroup activation distributions, with
the greatest difference in the sensorimotor striatum.

Figure 4 presents the SHapley Additive exPlanations (SHAP)29

values for a test set from the RF model trained with image only (Fig.
4a) and with addition of clinical variables (Fig. 4b), which was
selected for achieving the best AUROCs of 0.682 and 0.792, respectively,
among all ML models. Consistent with the activation map
trends, SNBRs of AP and PP ranked high in importance, with higher
SNBRs constituting strong indicators for a slower onset of LID. Among
clinical variables, key contributors to LID presentation included
younger age at onset, high UPDRS Part 3 finger-tapping score, and high
H&Y scale.

DeepScore as a Time-to-Event Predictor
Supplementary Fig. S1 and Table S2 present Kaplan–Meier curves and
results of the log-rank test, comparing the wLID and woLID groups clas-
sified by the image-only and image-clinical variable MTL models. Table 2
presents the results of Cox regression analysis. Themean (SD) concordance
indices (C-indices) across the five test sets were 0.623 (0.041) for the Cox
model with DeepScores from the image-only sinlge-task model, 0.643
(0.046) for the image-only MTL model, and 0.652 (0.045) for the image-
clinical variable MTL model. The SNBR-only Cox model showed a mean
(SD) C-index of 0.392 (0.036), while the model incorporating SNBRs with
clinical variables yielded a lower C-index of 0.348 (0.053), which may be
attributed to overfitting. Although the three CNN models showed no sig-
nificant differences in C-indices, they outperformed the Cox models fitted
with SNBRs or with SNBRs plus clinical variables in at least four out of five
test sets.

The mean (standard deviation) of the C-indices of the five test sets are
provided. The differences in the C-indices are calculated by subtracting the
C-index of the model in the second row from that of the model in the
first row.

Medication Effect on LID
The wLID group had significantly higher levodopa-equivalent daily dose
(LEDD) than the woLID group up to the third year, with no significant
differences in the fourth and fifth years (first year: p < 0.001; second year:
p < 0.001; third year: p = 0.02; fourth year: p = 0.38; fifth year: p > 0.99),
based on theMann–WhitneyU test after Bonferroni correction formultiple
comparisons (p-values multiplied by 5). In contrast, the woLID group had
significantly higher cumulative levodopa-equivalent dose (LED) in the fifth
year compared to the wLID group, with no significant differences in the
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earlier years (first year: p = 0.59; second to fourth years: p > 0.99; fifth year:
p = 0.01), using the same test and correction (Fig. 5).

Given differences in LEDD and cumulative LED between the wLID
andwoLID groups, we evaluated their impact on LID occurrence using Cox
regression models (Supplementary Table S3). Building on the previous
survival analyses with the same SNBR and clinical variables, we added

LEDD, LEDD × log(time), cumulative LED, and cumulative LED × log(-
time). Among all variables, only LEDD was a significant predictor of LID
(hazard ratio, HR: 1.0052, 95% CI: 1.0008–1.0097; p = 0.02). Due to the
correlation between LEDD and cumulative LED in meaning, despite low
variance inflation factors (1.6 and 1.68, respectively), we fitted two separate
models: one with LEDD and its interaction term, and another with

Fig. 1 | Data flow. The number of PET images
included or excluded at each step is shown, along
with brief reasons for exclusion, resulting in the final
dataset used for model development.
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cumulative LED and its interaction. In the latter, neither cumulative LED
nor its interaction was significantly associated with LID. In contrast, higher
LEDDwas linked to increased LID risk (HR 1.0084, 95% CI: 1.004–1.0127;
p < 0.001), with a decreasing effect over time (LEDD× log(time): HR 0.999,
95% CI: 0.9984–0.9996; p = 0.002).

DeepScores from the image-only single-task, image-only MTL, and
image-clinical variable MTL models were each used in separate Cox
regression models, alongside clinical variables, LEDD, and LEDD × log(-
time).While SNBRs of the five ROIs showed no significant association with
LID occurrence under identical experimental conditions, all three Deep-
Scores significantly increased LID risk (image-only single-task: HR 604.2,
95% CI: 15–24327.9; p < 0.001; image-only MTL: HR 32.7, 95% CI:
1.5–691.2; p = 0.03; image-clinical variable MTL: HR 614.3, 95% CI:
75.5–5000.1; p < 0.001). Cumulative LED and its interaction term were
excluded, as prior analyses showed no significant association. Thesemodels
were fitted using DeepScores from all five test sets predicted by their
respective models. To validate consistency, we also fitted Cox models for
each test set individually, which showed similar trendswith varying p-values
(Supplementary Table S4).

Discussion
In this study, we applied a CNN model with MTL on [18F]FP-CIT PET
images to predict LID onset in PD within 5 years of starting levodopa. The
model-predicted probabilities, named DeepScores, were used for binary
classification of patients intowLID andwoLID groups, and subsequently, in
a Cox regression model to predict LID-free disease duration. Training a
CNNmodelwithMTLof classificationand reconstruction inparallel,where
the Shared Encoder and their separate heads were trained simultaneously,
along with integration of clinical features, led to increased mean AUROCs
andC-indices.However, the degree of improvement varied among different
training and test set configurations andwas not sufficient to reach statistical
significance.

In the binary classification setting, the image-only CNN models,
whether trained in a single-task manner for classification only (image-only
single-task) or in a MTL framework combining classification and recon-
struction (image-only MTL), achieved mAUROCs comparable to that of
the CNN model taking both image and clinical variables as inputs (image-
clinical variableMTL). In contrast, all threeMLmodels showed a significant
increase in mAUROCs after addition of clinical variables to SNBRs. This
finding suggests that the image-only CNN models were able to extract
imaging features that, in case of the ML models, required compensation
through clinical variables. Furthermore, the activation maps of our image-
onlyMTLmodel visualized the salient regions for thepredictionof thewLID
group. The ROIs with the largest differences in average activation values
between the wLID and woLID groups were AP and PP, in the structural
atlas, and the sensorimotor striatum, in the connectivity atlas. These results
are consistent with the SHAPvalues obtained from theRFmodel, where the
APandPPSNBRswere rankedhighly. Patientswith early-onset LID tend to
have more reduced DAT availability in the putamen and the sensorimotor
striatum, as shown in many studies11,30. Baseline DAT imaging in de novo,
drug-naive patients with PD has been studied in similar settings using [123I]
FP-CITSPECTfromthePPMIpublic dataset24 and [18F]FP-CITPET froma
local dataset in South Korea12,25,26. In the PPMI dataset, patients who
developed LID had lower putaminal specific binding ratios (SBRs) at
baseline and a higher rate of decrease in putaminal SBRs over 2–4 years24.
Similarly, lowerDATavailability of putamenor sensorimotor striatumwere
associated with LID in the local dataset12,25,26. Importantly, these previous
works on DAT imaging used DAT levels to compare patients with and
without LID, whereas we used the original PET images, rather than SNBRs,
to distinguish the two groups and showed that our model was trained in a
direction consistent with prior findings.

Our three CNN models were trained for binary classification of
patients with andwithout LID using a 5-year threshold, but LID occurrence
canalsobe considered a time-to-eventproblem in survival analysis. Building
on a previous work that used retinal photographs to predict coronary artery
calcium scores for cardiovascular risk stratification31, we applied our CNN
models’ predicted probabilities of being classified into the wLID group,
DeepScores, for survival analysis using Cox regression models. Although
Cox regression models trained with SNBRs, with or without clinical vari-
ables, tended to overfit to the training sets, leading to low C-indices in the
test sets, those trained with DeepScores showed solid performance with
significant improvements inC-indices in at least four out of the five test sets.
Using anotherCox regressionmodelwith time-varying covariates and time-
varying coefficients, we also demonstrated that DeepScores still remained a
significant risk factor for LID, even after adjusting for LEDD, and its
interaction term from prescription records up to the most recent one just
before LID occurrence. In contrast, none of the SNBRs showed a significant
association. Cox regression analyses in previous studies on LID prediction
relied onmultiple imaging and clinical variables7,23,25,26, whereas we used the
CNN model’s predicted probabilities to demonstrate that the model auto-
matically learns time-to-event information during binary classification.
Furthermore, similar to the substantial variability observed inAUROCs and
C-indices across different test sets, the p-values of LEDD, its interaction
term, and DeepScore from Cox models also varied considerably among
them. In one of the five test sets, none of these variables showed a significant

Table 1 | Demographic and clinical characteristics

Variable woLID (n = 268) wLID (n = 134) p-value

Sex, male, n (%) 106 (39.6) 50 (37.3) 0.66a

Age at onset, years 64.3 ± 8.8 60.4 ± 10.2 <0.001b

Age at onset <60
years, n (%)

72 (26.9) 64 (47.8) <0.001a

Symptom duration,
months

17 (12–24) 19 (13–27) 0.1c

Time from levodopa
initiation to LID
onset, days

NA 1023 (669–1521) NA

Hoehn & Yahr scale, n
(%)*

Scale 1: 59 (23.7) 10 (8.0) <0.001d

Scale 2:
157 (63.1)

76 (60.8)

Scale 3: 31 (12.4) 37 (29.6)

Scale 4: 2 (0.8) 2 (1.6)

UPDRS-III Score**

(Item 20) Tremor at
rest (UEx)

1 (0–2) 1 (0–2) 0.55c

(Item 20) Tremor at
rest (LEx)

0 (0–0) 0 (0–1) 0.57c

(Item 23) Finger taps 3 (2–4) 4 (3–5) <0.001c

(Item 26) Leg agility 3 (2–4) 4 (3–5) <0.001c

(Item 22) Rigidity 3 (1–3) 3 (2–4) <0.001c

[18F]FP-CIT PET SNBRs

Anatomical map

Ventral striatum 4.9 ± 1.1 4.7 ± 1.2 0.08e

Anterior caudate 4.0 ± 1.7 3.9 ± 1.6 0.57e

Posterior caudate 2.4 ± 1.3 2.5 ± 1.4 0.53e

Anterior putamen 3.8 ± 1.2 3.4 ± 1.2 0.001e

Posterior putamen 2.1 ± 0.8 1.8 ± 0.7 <0.001e

UPDRS-III Unified Parkinson’s Disease Rating scale Part 3, UEx upper extremity, LEx lower
extremity, SNBRs specific/nonspecific binding ratios.
Continuous variables are presented as mean ± standard deviation for parametric data and median
(interquartile range) for nonparametric data.
*Percentages next to the raw counts for the Hoehn & Yahr scale were calculated based on n = 249
for the woLID group and n = 125 for the wLID group. Missing values were excluded from the
percentage calculations.
**Median (interquartile range) values were calculated based on available data, with missing values
excluded. The total sample size (n) for each itemwas as follows: Item 20UEx (woLID: n = 252;wLID:
n = 124), Item 20 LEx (woLID: n = 248; wLID: n = 123), Item 23 (woLID: n = 253; wLID: n = 124), Item
26 (woLID: n = 246; wLID: n = 123), and Item 22 (woLID: n = 253; wLID: n = 124).
aChi-square test; bWelch’s t-test; cMann–Whitney U test; dFisher’s exact test; eStudent’s t-test.
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association with LID. In another test set, the p-values of LEDD and its
interaction term fluctuated depending on which DeepScore, derived from
which CNNmodel out of the three models, was used. This finding suggests
that other factors not included in this study, or currently unknown factors,
may have contributed to early LID occurrence in the patients in these test
sets, highlighting the need for further research to explore new LID risk
factors.

Our study has several key strengths. First, we used PET images and
readily obtainable clinical variables from the initial assessment as model
inputs. Although LEDD and duration of levodopa treatment are the
strongest predictors of LID7,8,28, we showed that baseline features alone
without dopaminergicmedication history can be used to predict LID onset.
Whereas our model’s AUROCs were lower than a previous study that used
ML models with the public PPMI dataset, that study employed clinical
information from the last visit before LID onset or the latest available record
for patients without LID28. Importantly, their input features included LEDD
and duration of levodopa treatment. Another prior study usingMLmodels
designed for survival analysis predicted LID using non-imaging clinical
features across multiple cohorts27. Although their reported AUROCs were
comparable to ours, their models required a wide variety of detailed clinical
inputs, including UPDRS Parts 1, 2, and 3 scores, autonomic function tests,
activities of daily living, and genetic mutations, which may not be easily
obtainable in typical clinical settings27.

Second, our CNN models were trained in an end-to-end manner
while ML models required SNBR calculation per ROIs. While some ML
models showed comparable performance to ours, using SNBRs as image
features has drawbacks such as inaccuracies arising from coregistration
failure of ROI templates and native images. As PET or T1-weighted
magnetic resonance imaging (T1 MRI) scans of patients with PD often
deviate from those of normal controls, such as in cases of cortical atro-
phy, coregistering these images to brain templates built from normal
controls can induce low coregistration quality. While brain templates
specifically developed from images of patients with PD are available32,
they may still struggle to represent the diverse neuropathological findings
within this population. Manual labeling of striatal regions by human
experts can provide accurate SNBRs, but labeling is often very costly and
time-consuming. In comparison, our CNN models can be more readily
applied in clinical settings without the need for prior image coregistration
and SNBR calculation.

Third, the probability scores generated by the CNNmodels, referred
to as DeepScores, may serve as a supplemental risk factor for predicting
LID susceptibility. Although the advantage of DeepScores over SNBRs
was not evident in the binary classification setting, DeepScores sig-
nificantly improved survival prediction in most test sets. The fact that

DeepScores were significantly associated with LID after adjusting for both
medication and clinical factors, including major known risk factors such
as age at symptom onset, age at PD diagnosis, and motor-symptom
severity7–10, implies that DeepScore may represent a potential indepen-
dent risk factor for LID. However, forDeepScore to be used for predicting
LID onset, further efforts are needed to improve model performance,
including investigation of additional imaging and clinical biomarkers
related to LID.

This study has several important limitations. First, it was conducted
retrospectively through medical record reviews rather than prospective
monitoring of LID onset. As patients visited the movement clinic every
3–6 months, the exact timing of LID onset—potentially occurring between
visits—could not be precisely determined. Additionally, since most visits
occurredduring regular outpatienthours, LIDepisodes in the earlymorning
or late at night may have been missed. Given the retrospective design, we
defined LID onset based on direct clinical observation rather than patient
reports, which could be confounded by othermovement symptoms such as
tremor or dystonia. However, this approach may have led to mis-
classification, with some patients who experienced LID outside clinic visits
potentially labeled as woLID, despite developing LID within five years. As
result, both training and test datasets may have been biased toward the
woLID group. Future studies should consider alternative data collection
strategies, including more frequent follow-ups, wearable devices for dyski-
nesia detection, or in-home video monitoring. Sensitivity analysis using
multiple LID onset date estimations within visit intervals could have helped
assess the impact of timing discrepancies. However, in our relatively small
dataset and binary classification setting, fewer than 2% of patients changed
group classification under different estimation criteria, suggesting a mini-
mal impact on the overall study results.

Second, although PET images were acquired as part of the initial
assessment, some patients were already taking levodopa at the time of the
scan. This occurred when movement specialists, confident in the PD
diagnosis, prescribed levodopa at the initial visit, andPET scans couldnot be
scheduled on the same day. To account for this, we limited the maximum
medication period to 3 months.

Third, a 5-year threshold was used for binary classification of
patients. Although the time interval between the initiation of levodopa
and LID occurrence was initially calculated in days, which could have
supported the development of a DL regression model, we determined
that these recorded intervals might not be accurate for several reasons,
as noted in the first limitation. Therefore, we chose to reformulate the
task as a binary classification problem. We experimentally selected an
appropriate threshold for categorization through ablation studies with
3-year, 5-year, and 8-year cutoffs. The 3-year and 8-year thresholds

Fig. 2 | Boxplots of the area under the receiver
operating characteristic curve of four models.
Center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range;
diamond-shaped points, outliers. CNN MTL con-
volutional neural network multi-task learning, LR
logistic regression, RF random forest, XGBoost
extreme gradient boosting, AUROC area under the
receiver operating characteristic curve. P-values:
<0.05 (*), <0.01 (**).
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resulted in more severe class imbalances, leading models to pre-
dominantly predict the majority class rather than learning relevant
features to differentiate between the wLID and woLID groups. In the
absence of an established threshold for classifying patients based on LID
onset, we selected the 5-year threshold, which yielded a 1:2 ratio
between the wLID and woLID groups, consistent with proportions
reported in a previous study using the PPMI database7. For future work,
we plan to develop deep survival models which predict time-to-event
rather than classification probabilities. Given that our CNN
models optimized for binary classification already capture features
related to survival, deep survival models could lead to more accurate
predictions.

Fourth, our dataset consisted of 402 patients, which is relatively small
for developing DL models. To enhance model robustness, we employed a
five-fold cross-validation (5CV) strategy on each of five data configurations,
which required 25 training runs (5 folds × 5 configurations) permodel. This
study design ensured that every image was included in a hold-out test set
exactly once,minimizing bias in performance evaluation.Despite this effort,
AUROCs varied across the five test sets (Fig. 2), highlighting the need for
larger sample sizes to achieve more stable results. Similarly, in the survival
analyses, the SDs of the C-indices were wide, and the 95% CIs of C-index
differences betweenmodels varied by test set. Due to the limited dataset size,
we were restricted to five data configurations, yielding five AUROCs or five
C-indices per model. Consequently, paired t-tests comparing these model

Fig. 3 | Activation map of the convolutional neural network model. a Example of
an activation map overlaid on the corresponding PET image. b Violin plot of the
mean activation values of the five regions of interests (ROIs) based on the structural
atlas (center line, median; lines above and below the center line, upper and lower

quartiles). cViolin plot of the mean activation values of the three ROIs based on the
connectivity atlas. Vent. ventral, Ant. anterior, Pos. posterior. The ROIs are shown
on a PET image next to the violin plots. P-values: <0.05 (*), <0.01 (**), <0.001 (***).
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metrics were based on these five values, which may have limited the sta-
tistical power of the tests. Also, this is a single-center study without external
test sets. Collecting a sufficient number of patients from other centers was
challenging because patients had to be regularly seen by movement spe-
cialists for periods greater than 5 years starting from the initial visit. We
recognize the importance of external validation for model generalizability
and plan to collaborate with multiple centers to gather PET images for this
purpose.

In conclusion, we developed a CNN model with MTL for binary
classification of patients with PD into those who did or did not develop LID
within 5 years of levodopa treatment, using baseline [18F]FP-CIT PET
images. Moving one step further from statistical comparison of SNBRs
between patients vulnerable or resistant to LID, we tried to evaluate the
prediction power of DAT PET imaging in predicting the onset of LID.
Although the model performance is yet insufficient for direct clinical
application, this work represents one of the first attempts in evaluating the
significance of DAT PET imaging as a predictor of motor prognosis in
patients with PD using DL. Future efforts will aim to integrate additional
clinical information and other brain imaging modalities, to improve pre-
diction accuracy.

Methods
Participants
Patientswith parkinsonismwho visited ourmovement-disorder clinic from
January 2005 to March 2022 were retrospectively enrolled. The inclusion
criteria were as follows: (1) PD diagnosis, based on theUnited KingdomPD
Society Brain Bank criteria, by twomovement specialists (SJC and SJ)33; (2)

Fig. 4 | Beeswarm and bar plots of the SHAP values. Random forest models trained with a image only and b image with clinical variables. The mean rankings from all five
test sets are in parentheses next to the feature names. Value closer to 1 indicate higher rankings.

Table 2 | Results of the Cox regression analysis

Model Comparison C-index Differences in the C-index
(95% CI)

(1) DeepScore (image-
only MTL)

0.643 (0.046) Test 1: (−0.077, 0.030)
Test 2: (−0.012, 0.078)
Test 3: (−0.083, 0.101)
Test 4: (−0.026, 0.095)
Test 5: (−0.044, 0.064)

DeepScore (image-only
single-task)

0.623 (0.041)

(2) DeepScore (image-clinical
variable MTL)

0.652 (0.045) Test 1: (−0.028, 0.099)
Test 2: (−0.109, 0.052)
Test 3: (−0.026, 0.113)
Test 4: (−0.131, 0.088)
Test 5: (−0.036, 0.101)

DeepScore (image-
only MTL)

0.643 (0.046)

(3) DeepScore (image-only
single-task)

0.623 (0.041) Test 1: (0.013, 0.363)
Test 2: (0.034, 0.406)
Test 3: (−0.043, 0.325)
Test 4: (0.111, 0.478)
Test 5: (0.167, 0.471)

Cox regression (SNBRs) 0.392 (0.036)

(4) DeepScore (image-
only MTL)

0.643 (0.046) Test 1: (0.008, 0.334)
Test 2: (0.071, 0.424)
Test 3: (−0.021, 0.303)
Test 4: (0.151, 0.503)
Test 5: (0.173, 0.484)

Cox regression (SNBRs) 0.392 (0.036)

(5) DeepScore (image-clinical
variable MTL)

0.652 (0.045) Test 1: (0.091, 0.429)
Test 2: (0.042, 0.431)
Test 3: (0.065, 0.405)
Test 4: (0.109, 0.512)
Test 5: (0.312, 0.626)

Cox regression (SNBRs +
clinical)

0.348 (0.053)

C-index concordance index. CI confidence interval, SNBR specific/nonspecific binding ratio.
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PD-related [18F]FP-CIT PET findings visually confirmed by nuclear med-
icine specialists34; (3) both PET andMRI scans performed at our center; (4)
less than 5-year interval from motor-symptom onset to PET scan acquisi-
tion; (5) either levodopa-naive or levodopa initiated within 3 months; (6)
regular follow-up (at 3–6months) at our clinic; and (7) LID presentation or
absence during 5-year regular follow-up. LID was defined as dyskinesia of
the face, head, extremities or trunk, identified by movement specialists
during regular follow-up. The exclusion criteriawere as follows: (1) > 5-year
interval between PET and MRI scan acquisition dates; (2) significant PET
image artifacts; (3) ischemic striatal lesions on PET or MRI; (4) PET scans
> 1.5 mm slice thickness; (5) unsatisfactory PET or MRI image-
preprocessing output; (6) use of a different PET scanner; and (7) motor-
symptom onset age ≤ 40. Participants were assigned to two groups; those
withLIDwithin 5 years (wLID) andwithout LID for > 5 years (woLID; those
with LID onset beyond 5 years or were LID-free at > 5-year follow-up) after
levodopa initiation. We selected a 5-year threshold, which yielded a man-
ageable data balance of 1:2 between the wLID and woLID groups for CNN
model training.

Clinical features
At the visit preceding levodopa initiation, we collected baseline demo-
graphic information and motor status, including sex, age at motor-
symptom onset, H&Y scale, and specific UPDRS Part 3 items (tremor at
rest, upper-extremity rigidity, finger tapping, and leg agility). Missing
values for the H&Y scale and UPDRS Part 3 items, each accounting for
less than 10%, were imputed using the median value of the respective
variable. Using previous conversion rules35, LEDD and cumulative LED
were calculated from prescription records, and annual dosages were
compared between the wLID and woLID groups. For the wLID group,
patients who developed LID within a given year were excluded from the
LEDD and cumulative LED calculations for the following year. For
example, when calculating second-year values, patients who developed
LID during the first year were excluded.

PET and MRI acquisition
N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane
([18F]FP-CIT) was synthesized using a published protocol36; 180 min
after an intravenous injection of 185 MBq [18F]FP-CIT, PET scans were
performed for 10 min with a Biograph TruePoint 40 scanner (Siemens,
Knoxville, TN, USA), which provides an in-plane spatial resolution of

2.0 mm full-width at half maximum at the center of the field of view.
Before PET imaging, a low-dose brain computed tomography scan was
conducted (120 kVp, 20 mAs, with 1.5 mm slice thickness) to facilitate
image fusion and attenuation correction. PET scans were in three-
dimensional mode, and reconstructed using the TrueX algorithm, with
all-pass filters applied to matrices of 336 × 336.

Brain MRI T1 images were obtained in the axial orientation, with
parameters reported asmedian (interquartile ranges, IQR) values to account
for variations due to the retrospective nature of the study: TR 9.9ms (9.8,
450.2), TE 4.6ms (4.6, 10.0), flip angle 9.0° (8.0, 70.0), x, y-voxel spacing
0.5 × 0.5mm (0.4, 0.5), slice thickness 5.0mm (3.0, 5.0), and spacing
between slices 7.0 mm (3.0, 7.0). Seven scanners with magnetic field
strengths of 1.5 T and 3.0 T from three vendors were used: Achieva 1.5 T
and 3.0 T, Ingenia 3.0 T (Philips), Magnetom Avanto 1.5 T, Skyra 3.0 T
(Siemens), SignaArchitect 3.0 T, andSignaCV/i 1.5 T (General Electric).As
T1 images were used exclusively for registering PET images to theMontreal
Neurological Institute (MNI) template, with no analysis conducted on the
T1 images themselves, no restrictions were placed on the MRI acquisition
parameters.

PET image preprocessing and quantification
PET and MRI T1 images were converted from the DICOM to NIfTI
format with skull stripping using SynthStrip37 and HD-BET38, respec-
tively. After bias-field correction with light regularization and a 60-mm
full-width at half maximum (FWHM) cutoff, T1 images were coregis-
tered with the corresponding PET images, and spatially normalized to
the MNI template using SPM12 (Statistical Parametric Mapping, the
Wellcome Trust Centre for Neuroimaging) on Matlab R2022b software.
The inverse deformation map obtained from this normalization was
applied to the following ROIs in the MNI space: VS, AC, PC, AP, and PP
from the Oxford-GSK-Imanova structural atlas39, with the anterior
commissure dividing the anterior and posterior regions; limbic, sensor-
imotor, and executive striatum from the Oxford-GSK-Imanova striatal
connectivity atlas40; and bilateral calcarine cortices from the Automated
Anatomical Labelling Atlas 341. The ROIs, mapped to the native PET
space, were used to calculate the SNBR as follows: SNBR = {(mean uptake
value (UV) of bilateral ROIs) – (mean UV of bilateral calcarine cortices)}
/ (mean UV of bilateral calcarine cortices).

For DL model training and testing, PET images were intensity
normalized by dividing all voxel values by the mean UV of the bilateral

Fig. 5 | Levodopa-equivalent daily dose (LEDD) and cumulative levodopa-
equivalent dose (LED) over time since levodopa initiation in wLID and woLID
groups. aAverage LEDD (b) Average cumulative LED. The numbers above or below

each point represent the number of patients used to calculate the average LEDD or
average cumulative LED. Error bars represent standard errors.
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calcarine cortices of each image. To concentrate on the striatum and
reduce computational resources, we cropped the PET images to a uni-
form size (96 × 64 × 64), centered on the nonzero region of the Oxford-
GSK-Imanova structural atlas.

Implementation of the DL model
The training dataset configurations and model architecture are depicted
in Figs. 6 and 7, respectively. PET images were randomly divided into five
subsets, stratified by wLID, sex, and age at motor-symptom onset. With
each subset as a hold-out test set, the remaining subsets were subdivided
into five folds for cross-validation, and then ensembled by averaging the
predicted probabilities of wLID from each fold to generate theDeepScore,
which was used for binary classification and for survival analysis.
Therefore, all images in the five hold-out test sets had corresponding
DeepScores and binary classification results. With all images from the
entire dataset included in the hold-out test sets exactly once, this
approach maximized data utilization and avoided bias from selecting a
specific data configuration.

Using MTL of classification and reconstruction to enhance the
generalization accuracy of feature representation for binary classification,
while concurrently reconstructing the original input image, we developed
a three dimensional (3D)-CNN model that comprised a Shared Encoder
with four residual blocks, a Reconstruction Decoder, and two

Classification Heads. Using image-only features from the bottleneck
layer or additionally incorporating clinical features, Classification Heads
I and II, respectively, predict the probability of classification into the
wLID group. We used three structural combinations; (1) Shared Encoder
+ Classification Head I (image-only single-task), (2) Shared Encoder +
Reconstruction Decoder + Classification Head I (image-only MTL), and
(3) Shared Encoder + Classification Head II (image-clinical variable
MTL). Models (1) and (2) were trained from scratch, whereas model (3)
used the pretrained weights from model (2) for the Shared Encoder,
which were fixed during training. Implementation details are provided in
Supplementary Table S5.

In Fig. 7, the 18 clinical variables included sex, age at onset, binary
indicator for age at motor-symptom onset < 60 years, time from motor
symptom onset to PET acquisition (in 3-month intervals), H&Y scale,
UPDRS Part 3 scores for tremor at rest (right/left arm and leg), rigidity
(right/left arm), finger taps (right/left), and leg agility (right/left), and
sum of the scores of tremor at rest, rigidity, and bradykinesia (finger taps,
leg agility). All clinical variables, except sex (encoded as 0 or 1), were
min-max normalized to a range of 0–2 rather than 0–1, based on ablation
study results showing improved model performance with this range. This
decision also considered the value distribution of the Shared Encoder’s
output vector (i.e., input vector to the classification head), which was to
be concatenated with the clinical variable vector to generate the final

Fig. 6 | Study design of the hold-out cross-validation study. For each test set configuration (Test 1 through Test 5), the remaining four subsets underwent five-fold cross
validation. Predictions from each fold were averaged to produce the final output for the test set.

Fig. 7 | Deep learning model architecture for multi-task learning with CNN. The
Shared Encoder output serves as input for both the Reconstruction Decoder and
Classification Heads. The Reconstruction Decoder rebuilds the cropped PET

image, while Classification Heads I and II predict the probability of wLID. Numbers
next to the blocks indicate the number of channels × voxels (y-axis × x-axis ×
z-axis).
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classification predictions. The same normalization method was applied
when building ML models.

MLmodels
Utilizing the same data configuration as in CNN models, LR, RF, and
XGBoostmodelswere used to predict the probability ofwLID, with 5CV for
hyperparameter tuningvia grid search; thefittedmodelwas evaluatedon the
corresponding test set. The models were trained in two settings: (1) using
only SNBRs of thefiveROIs, and (2) using both SNBRs and clinical features.
For the ML models, the input clinical variables included sex, age at onset,
time frommotor-symptomonset to PET acquisition (in 3-month intervals),
H&Y scale, and UPDRS Part 3 scores for tremor at rest (right + left arm,
right+ left leg), rigidity (right+ left arm), finger taps (right+ left), and leg
agility (right + left). Compared to using individual scores, summing these
scores enhanced model interpretability and generated higher mAUROC
values.Themodelswere implementedusingScikit-learnv1.0.2, SciPyv1.7.3,
and XGBoost v1.6.2.

Explainable artificial intelligence
To visualize the image and clinical features used for discrimination, we
employed activation maps for the image-only MTL model, and SHAP
values for the ML models. We generated activation maps from the
second-to-last convolution layer of the Shared Encoder by averaging
features channel-wise, applying a sigmoid function, and interpolating to
the input-image size. For each hold-out test set, the activation maps
from five folds were averaged using the respective models trained for
each test set. Subsequently, the mean activation values of the ROIs from
the Oxford-GSK-Imanova structural atlas39 and the Oxford-GSK-
Imanova striatal connectivity atlas40 were calculated by averaging
voxel-wise activation values within each ROI for PET images that were
correctly classified by the model. SHAP values were calculated for each
test set, and the rankings of each feature were averaged across the five
test-sets to determine overall feature importance. SHAP package v0.42.1
(https://github.com/shap/shap/releases/tag/v0.42.1) was used, with the
Explainer function for LR and the TreeExplainer function for RF and
XGBoost.

Survival analysis
Besides classifying patients into the wLID and woLID groups, we eval-
uated the DL model’s ability to predict LID-free survival to the last
available follow-up dates. To compare survival distributions,
Kaplan–Meier curves and log-rank tests with Bonferroni correction were
performed on the five test sets. Using DeepScores from the three CNN
models, SNBRs, and clinical variables of the ML models, we calculated
the C-indices of the Cox regression models. Considering both p-values
and residual plots, the proportional hazards assumption was checked
using Schoenfeld residuals. Intervariable multicollinearity was assessed
using a variation inflation factor threshold of 10, and Pearson correlation
coefficients of 0.8 and 0.9 for clinical variables and SNBRs, respectively.
The 95% CIs for the differences in the C-indices of the Cox models were
obtained via 1000 bootstrap iterations on the test sets to compare model
performances, as previously described31,42. As in the DL and ML models,
all analyses used the same data configuration for training and testing Cox
models.

For additional survival analysis, we evaluated the effect of medication
on LID occurrence by fitting Cox regression models using all five test sets
combined. These models included the same clinical variables as above, and
either SNBRs or DeepScores added as covariates. Since LEDD and cumu-
lative LED did not meet the proportional hazards assumption and varied
over time, we applied a time-varying covariates and time-varying coeffi-
cients model. This incorporated interaction terms—LEDD × log(time) and
cumulative LED× log(time)—based on the patterns observed in Schoenfeld
residual plots. All analyses were conducted in R (version 4.3.1) using the
survival package v3.5-5.

Model evaluation and statistical analysis
Baseline demographics, clinical features, and SNBRs are presented as
frequency (proportion) for categorical variables and as mean (SD) or
median (IQR) for continuous variables, depending on whether they are
parametric or nonparametric. The normality of variables was assessed
using the Shapiro–Wilk test and by visually inspecting data distribution
through QQ plots and histograms. Chi-square and Fisher’s exact tests
were used for categorical variables, whereas the Welch’s t-test, Student’s
t-test, and Mann–Whitney U test were applied for continuous variables
as appropriate. Using accuracy, sensitivity, specificity, F1 score, and
AUROC, we evaluated the performance of the CNN and ML models on
the five test sets, whose mean (SD) values were calculated across the five
test sets and mAUROC was used to compare model performances. A
paired t-test compared the mAUROC of each model, and an indepen-
dent t-test compared the mean activation values of ROIs between model-
predicted wLID and woLID groups. The paired t-test was chosen over
bootstrapping to follow previous work43 and to reduce the inference time
required for bootstrapping. A two-sided significance level of 0.05 was
used for all tests.

Ethics approval
This cross-sectional studywas approved by the institutional review board at
the AsanMedical Center (IRB 2022-0614). The study protocol conforms to
the ethical guidelines of the 1975Declaration ofHelsinki.Written informed
consent from participants was waived by the ethics committee at the Asan
Medical Center because of the retrospective nature of the study.

Use of large language models
We received assistance from the large languagemodel, ChatGPT-4 (https://
chat.openai.com/), developed by OpenAI (https://openai.com/), solely for
grammatical revisions and text clarification.Nonew information or content
was generated by ChatGPT.

Data availability
The data utilized in this study are not publicly accessible due to patient
privacy concerns. However, requests to access the data may be considered
upon contact with the corresponding authors.

Code availability
Source codes for preprocessing and model implementation will be openly
accessible to the public at https://github.com/mi2rl/LIDprediction.
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