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Spontaneous eye blink-based machine
learning for tracking clinical fluctuations
in Parkinson’s disease
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In this uncontrolled, open-label exploratory clinical study, the authors explore the potential of blink
data as a digital biomarker for estimating clinical indices of Parkinson’s disease (PD) using a machine
learning approach. Blink data were collected from 20 patients with PD before and after (up to 4 h) L-
dopa/decarboxylase inhibitor administration. Concurrent assessments of patient diary-based
ON/OFF and dyskinesia, L-dopa plasma concentration, and MDS-UPDRS Part III scores were
conducted at 30min intervals. The models were developed to predict clinical symptoms based on
blink data collected at 3min intervals. The most effective post-processing models accurately
predicted the ON/OFF states (mean area under the receiver operating characteristic curve
(AUCROC) = 0.87) and the presence of dyskinesia (mean AUCROC = 0.84). They also moderately
predicted MDS-UPDRS Part III scores (mean Spearman’s correlation ρ = 0.54) and plasma L-dopa
concentrations (ρ = 0.57). Our findings highlight the potential of the spontaneous eye blink as a
noninvasive, real-time digital biomarker for PD.

Parkinson’s disease (PD) is a neurodegenerative disorder that is primarily
characterized by the degeneration of dopaminergic neurons and the aber-
rant accumulation of alpha-synuclein1,2. The fundamental approach to
managing PD is dopamine replacement therapy2,3. The efficacy of this
therapeutic approach is currently evaluated throughmedical consultations,
symptomassessments, andpatient diaries basedon theMovementDisorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III,
which serves as a quantifiablemeasure ofmotor symptoms4,5. However, this
assessment methodology is labour-intensive, time-consuming, and con-
fined to hospital visits. Therefore, there is a pressing requirement for a
simple, immediate, continuous, and quantitative approach to monitoring
the fluctuating symptoms of PD in any setting. Despite the advent of
numerous wearable devices, their accessibility for clinical use remains
inadequate, and standardization of these devices has yet to be achieved6.

The involuntary act of eye blinking during arousal, commonly referred
to as “blink” or “spontaneous eye blink,” is governed by neural circuits that
aremediated by the basal ganglia7. The spinal trigeminal complex is amajor
element in the spontaneous blink generator8. There is evidence that the basal
ganglia, via the superior colliculus and nucleus raphe magnus, modulate
input to and excitability of the trigeminal complex, thus providing a path-
way through which dopamine could affect the trigeminal complex and, in
turn, blinking9. Previous studies have indicated that blink rate are affectedby

age10, emotional state11, dopaminergic treatment12, performance in mental
tasks13 and test condition such as conversation, reading, andwatching14. It is
well-documented that the spontaneous eye blink rate (sEBR) decreases
following the administration of dopamine antagonists such as haloperidol
and increases following the administration of dopamine agonists such as
apomorphine15. Moreover, alterations in sEBR have been observed in dis-
eases associated with dopamine abnormalities. For example, an increase in
spontaneous eye blinking has been observed in patients with schizophrenia
marked by excessive dopamine16. In contrast, patients with Parkinson’s
disease (PD) collectively exhibit a reduction in sEBR compared to healthy
controls14,17. Nevertheless, the administration of dopamine has been
observed to elevate the blinking frequency of a patient with PD to a level
within the normal range17–21. Kaminer et al. suggested that DA inhibits the
trigeminal complex, via its effects on the nucleus raphe magnus, which
results in increased spontaneous blinking7,8. It is noteworthy that some
patients with PD do not necessarily demonstrate a lower sEBR than that of
healthy controls during OFF periods. Kimper et al. found that blink fre-
quency in PDpatients withmotor fluctuationswas divided into two groups:
a low blink rate group, in which blink frequency decreased off state and a
high blink rate group, in which blink frequency increased off state. The high
blink rate was found in 32% of the patients. In both groups, blink frequency
normalized by L-dopa treatment. Clinical symptoms were compared
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between the two groups, yet there were no differences in age, duration of
disease, disease severity, anti-PD drugs, LEDDor type ofmotor fluctuation.
They considered that the high blink rate was caused by symptoms similar to
blepharospasm as off-dystonia17.

There have been a number of studies on PD blink rate to date, yet they
have issues with regard to observation duration and the data collection
method10,12,14,19,20.Most of the studieswerefixed-pointmeasurement trials in
the ON and OFF states capturing blinks during several minutes. On the
other hand, Iwaki et al. have found that fluctuations in blinking were con-
sistentwith those inPD symptoms for several hours inPDpatients suffering
from the wearing-off phenomenon21. However, they detected blink using
electromyography, which was associated with high noise levels and diffi-
culties in accurate detection of blink rates. In a notable contribution to the
field, Kimura and colleagues employed a 1 kHz ultra-high-speed camera to
examine blink kinetics in patients with PD22. Their findings revealed
noteworthy discrepancies in several aspects, including eye-opening and
closing speed and the amplitude of blinks, when compared to healthy
subjects.

In this study, we utilized an eyeglasses-type device as an eye tracker, to
record pupils and measure blink. We hypothesized that blink features col-
lected in this manner could predict scores of PD symptoms, symptom
fluctuation, dyskinesia, and plasma L-dopa concentration, primarily when
regular doses of L-dopa are administered.We trainedmodels to predict the

variability of PDsymptomspostL-dopaadministrationbasedon theseblink
features using machine learning techniques.

Results
Patient Demographics
Table 1 delineates demographic and clinical attributes of the 20 patients
incorporated in this study. The onset age was 63.05 (SD: 9.41) years, rela-
tively youthful for PD. A distinct disparity was observed in the MDS-
UPDRS-Part III score between off and on states, with dyskinesia noted in 7
patients (35%). The cognitive function of the patients remained intact.

PD symptoms and Blink information progression post L-dopa
administration
The L-dopa/decarboxylase inhibitor (DCI) dosage varied among patients
and was administered after the overnight off-state. Motor symptom scores
were evaluated in the overnight off state when the patient symptom diary
indicateda complete off state of 1. L-dopa blood levels ascended, andPart III
scores decreased 30 to 60min post-administration when patient symptom
diaries transitioned to 3 and 4, signifying theONstate. Accompanying these
variations, their sEBR also noticeably fluctuated: sEBR increased in 9
patients (hereinafter referred to as the “Increased Group”), decreased in 6
(hereinafter referred to as the “Decreased Group”), and did not change in 3
(hereinafter referred to as “Unchanged Group”). Additionally,

Table 1 | Demographic and clinical attributes of the 20 patients

ALL patients sEBR

(n = 20) Increase (n = 9) Unchanged (n = 3) Decrease (n = 6)

Age (years old) 63.05 (9.41) 60.8 (8.9) 73.7 (4.7) 60.3 (9.5)

Gender (n) Male 11, Female9 Male 5, Female 4 Male 2, Female 1 Male 4, Female 2

Body Mass Index 23.59 (5.25) 23.0 (3.4) 22.9 (3.2) 23.94 (6.19)

Disease Duration (years) 12.2 (6.61) 14.4 (9.0) 9.3 (0.5) 10 (4.1)

MMSE 28.75 (1.92) 28.7 (2.7) 28.3 (0.6) 28.7 (1.2)

EQ-5D-5L 58.5 (19.47) 56.7 (15.6) 55 (25) 57.5 (24.2)

PDQ-39 SI 31.11 (16.60) 30.7 (12.1) 18.0 (9.7) 31.16 (16.43)

LEDD (mg) 1055.73 (384.0) 1076.5 (296.7) 800.0 (180.3) 1136.0 (566.2)

Hoehn Yahr at on state 2.2 (0.41) 2.2 (0.4) 2.3 (0.6) 2.2 (0.4)

Hoehn Yahr at off state 2.5 (0.76) 2.6 (0.5) 2.3 (0.6) 2.5 (1.2)

MDS-UPDRS part I 12 (3.63) 11.8 (2.9) 12.7 (6.4) 11.5 (4.2)

MDS-UPDRS part II 15.75 (6.30) 14.6 (7.2) 14.7 (8.5) 17.2 (5.3)

MDS-UPDRS part III at on state 15.8 (6.79) 12.2 (5.4) 17 (3.5) 16.8 (4.1)

MDS-UPDRS part III at off state 41.7 (12.37) 44.6 (15.4) 32.3 (5.5) 41.5 (10.9)

Improvement rate 60.9 (15.5) 71.9 (9.3) 46.9 (10.0) 58.8 (7.8)

MDS-UPDRS part IV 7.65 (3.33) 8.1 (3.3) 5.7 (1.5) 8.5 (4.3)

UDysRS 12.3 (13.1) 12.9 (13.7) 6.7 (11.5) 16.5 (18.2)

Test drug

Levodopa/Carbidopa (n) 17 7 3 6

Levodopa/Benserazide (n) 3 2 0 0

Levodopa dose (mg) 147.5 (52.5) 138.9 (48.6) 183.3 (76.4) 141.7 (49.2)

Dyskinesia 10 (50%) 6 (66.7%) 1 (33.3%) 3 (50%)

Improvement rate 60.9 (15.5) 71.9 (9.3) 46.9 (10.0) 58.8 (7.8)

PK parameter of levodopa

Cmax (pmol/ml) 10637.6 (4832.1) 12019.0 (4756.2) 11520.0 (8719.2) 9482.4 (2846.3)

Tmax (min.) 56.25 (39.50) 46.67 (35.53) 40 (17.32) 67.5 (37.65)

AUC 15918.1 (6395.2) 17153.7 (5817.5) 18768.2 (7354.8) 15486.7 (6496.0)

sEBR spontaneous eye blink rate, BMI body mass index,MMSEMini-Mental State Examination, EQ-5D-5L EuroQol 5-Dimension 5-Level, PDQ-39 SI Parkinson’s Disease Questionnaire-39 Summary
Index, LEDD levodopa equivalent daily dose,MDS-UPDRSMovement Disorder Society–Unified Parkinson’s Disease Rating Scale, UDysRS Unified Dyskinesia Rating Scale, Cmaxmaximum plasma
concentration, Tmax time to maximum plasma concentration, AUC area under the curve.
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categorization was unfeasible for two patients, as ON periods did not occur
in one patient, and the other exhibited extremely low pupil confidence.
Consequently, 75% of data points were discarded during data cleansing
(hereinafter referred to as “N/A Group”). A comparison of the clinical
symptoms among those groups revealed no differences in disease duration,
LEDD, quality of life scores, or cognitive function. However, the patients in
theunchanged groupwere significantly older than those in the other groups.
The rate ofmotor symptom improvementwith L-dopa/DCI administration
was significantly higher in the increase group than in the other two groups.
There were no differences in pharmacokinetic parameters among the
groups (Table 1). Although no significant differences in pharmacokinetic
parameters among the groups were observed, the increase and unchanged
groups exhibited a steep ascent till the peak (Supplementary Fig. 1). In
contrast, the decrease group demonstrated a gradual change overall.
Additionally, the concentrations remained low in the 2 patients who were
unavailable for the assessment.

Machine learning
The sEBR of PD patients exhibited significant fluctuations accompanied by
the administration of L-dopa/DCI. However, the clinical differences char-
acterizing sEBR-pattern-based patient groups were not recognized. There-
fore, while it is evident that there is a biological basis indicating the
relationship among PD, sEBR, and dopamine, sEBR alone is insufficient to
comprehensively describe the state of PD patients. Consequently, we have
chosen not to apply the conventional sEBR as a special metric. Instead, we
have aimed to utilize more multifaceted blink characteristics obtained from
the eye-tracker data such as sEBR for machine learning models, so as to
estimate the state of the patients.

We employed eXtreme Gradient Boosted Trees with early stopping as
our regressor and classifier models. These models were chosen based on
preliminary model evaluations by DataRobot, which demonstrated their
consistently superior performance for regression and binary classification
tasks. Hyperparameters models were set as follows: learning rate = 0.05,
n_estimators = 1000, and max_depth = 5. See the official XGBoost Doc-
umentation (https://xgboost.readthedocs.io/en/stable/index.html) for
details. Of the 20 selected features for each target variable, most were
derivatives of blink confidence, interval, and duration, with a limited con-
tribution from eye blink rate and its derivatives (refer to Fig. 1 for selected
features and their contributions).

Dyskinesia Classification (Fig. 2A, Supplementary Fig. 2): The per-
formance of models was evaluated using the AUCROC over the entire eva-
luation period (Supplementary Fig. 2). Models trained using only blink-
related features (B) achieved a mean AUCROC of 0.77 (SD: 0.17) during the
test phase. In contrast, models relying solely on plasma L-dopa con-
centration as features performed near chance level, with ameanAUCROC of
0.61 (SD: 0.08). Adding background information features, such as elapsed
timepost-L-dopa administrationandpatient age (B+ BG), didnot improve
predictive performance, resulting in a mean AUCROC of 0.77 (SD: 0.16).
However, applying apost-processing smoothing technique to the blink-only
model (B, Smoothed) significantly improved performance, achieving a
mean AUCROC of 0.86 (SD: 0.11).

When dyskinesia predictions were restricted to the ON state (Fig. 2A),
performance of the blink-onlymodels remained consistent. Specifically, the
mean AUCROC was 0.76 (SD: 0.17) for Model B and 0.85 (SD: 0.18) for the
smoothed model prediction (B, Smoothed). For the model B+ BG, the
mean AUCROC was 0.70 (SD: 0.23), while that of the smoothed model
B+ BG performance was 0.73 (SD: 0.27). The model trained by using only
plasma L-dopa concentration (L) showed the decline with amean AUCROC

of 0.45 (SD: 0.10).
Figure 3A demonstrates the time-series plots of dyskinesia prediction

by themodel trainedwithB features in a representative test group, showing a
clear distinction in predicted dyskinesia likelihood between patients with
and without actual dyskinesia. These results highlight the robustness of
blink-related features in dyskinesia classification, particularly when post-
processed with smoothing techniques, while suggesting limited utility of

L-dopa concentration or background information for improving perfor-
mance on dyskinesia prediction.

ON/OFF Classification (Fig. 2B): ON/OFF Classification was also
evaluated using the AUCROC. In the test phase, the model with B features
achieved the mean AUCROC of 0.69 (SD: 0.14), which was not significantly
different from L (mean AUCROC = 0.73 (SD: 0.12)). Adding background
features (B+ BG) and post-processing smoothing (B, Smoothed) both
significantly improved prediction accuracy, which showed a different trend
from dyskinesia prediction. The highest mean AUCROC obtained was 0.87
(ASD: 0.10) (B+ BG, Smoothed), achieved significantly higher than any
other conditions.

MDS-UPDRS Part III Regression (Supplementary Fig. 3): The plot of
the test results for all patients showed a weak Spearman’s correlation ρ
between predicted and actual scores in all feature combinations
(0.18 ≤ ρ ≤ 0.39; B, B+ BG, L) (Supplementary Fig. 3A). Correlation ρ
between predicted and true scores of individual patients is shown in Sup-
plementary Fig. 3B. The model trained solely on B features achieved a ρ > 0
with statistical significance in only 30% of the patients (Supplementary
Fig. 3C), demonstrating a weak average correlation (mean ρ = 0.19 (SD:
0.22)). The addition of background features and smoothing post-processing
both improved the correlation. The highest mean ρ was achieved with the
combination of both additives (i.e., B+ BGSmoothed) showing amoderate
correlation (ρ = 0.54 (SD: 0.24)) but without significant difference from
Smoothed L (mean ρ = 0.48 (SD: 0.35)) (Supplementary Fig. 3B). The
percentage of patientswith ρ > 0with a statistical significance also improved
with these additions (Supplementary Fig. 3C). DDTW analysis indicated
that the post-processing smoothing significantly improved the extent to
which the predicted data could replicateoriginal trends (Supplementary Fig.
3D). Supplementary Fig. 3E presents the time-restored predicted scores for
two representative patients with the best-performing B+ BG model.
Although the moving average of the prediction deviated from the absolute
MDS-UPDRS Part III total scores, it potentially captures their temporal
change patterns.

Plasma L-dopa Concentration Prediction (Supplementary Fig. 4A):
Both B and B+ BG feature combinations showed weak correlation ρ
between predicted values and actual values in the plot of all test data
(0.11 ≤ ρ ≤ 0.37) (Supplementary Fig. 4A). The correlation ρ between pre-
diction and true scores of individual patients and the percentage of patients
with ρ > 0 with a statistical significance both improved with the addition of
background features and smoothing post-processing, with the combination
showing the highest average correlation (B+ BG, smoothed; mean ρ = 0.57
(SD: 0.21)) (Supplementary Fig. 4B, C). DDTW analysis indicated sig-
nificant improvement with post-processing smoothing (Supplementary
Fig. 4D).

Details of the statistical analysis, such as t-statistics and P-values, are
summarized in Supplementary Table 1.

Discussion
This study demonstrated that the changes in blink features following oral
administration of L-dopawere associated withmotor symptoms andmotor
complications of PD. The analysis of blink rates by traditional
methods is limited in scope, prompting our research to explore novel
blink features and employ machine learning techniques. We have
developed machine learning models that are capable of concurrently
estimating the presence of dyskinesia, ON/OFF symptoms, MDS-
UPDRS Part III scores, and plasma L-dopa concentration based on
eye blink features. Our findings indicate that eye blink represents a
promising, straightforward, non-invasive digital biomarker that
reflects a patient’s concurrent clinical status.

This studyemploys adistinctive approachbyutilizing a comprehensive
range of blink-related features, extending beyond themeremeasurement of
blink rate, to anticipate motor fluctuations in patients with PD. Previous
research, including our own21, has been limited by the inconsistency of
findings regarding the change patterns in blink rate in response to L-dopa.
The predictive capacity of the models was augmented by the incorporation
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Fig. 1 | Top 30 features ranked by relative importance during the test phase, as
measured by mean SHAP values and frequency of selection. For each target task,
20 blink-related features were selected during training, and their mean SHAP values
(bars) and standard deviations are displayed. Bar colours represent the frequency
withwhich each featurewas selected across training iterations. Panels display feature

importance for A Dyskinesia classification, B ON/OFF classification, C MDS-
UPDRS Part III regression, andD Plasma L-dopa concentration regression. Refer to
Fig. 4C and Tables 2 and 3 for details on feature categories and extraction processes.
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Fig. 2 | ROC curves for dyskinesia and ON/OFF classification using different
feature sets. A ROC curves for dyskinesia classification during ON state, evaluated
across patient groups including both dyskinetic and non-dyskinetic individuals,
using models trained with blink-related features (“B”), blink+ background features
(“B+ BG”), and plasma L-dopa concentration (“L”). B ROC curves for ON/OFF
classification evaluated across all test patients using the same feature sets. The upper

panels show AUCROC values for raw predictions, while the lower panels show
AUCROC values after applying a smoothing technique on the prediction. The blue
curves represent themean ROC, with the shaded area indicating the 95% confidence
interval (CI) of all ROC curves. Mean AUCROC values are displayed on each panel,
with distinct letters indicating statistically significant differences (paired t-test with
Bonferroni correction, α = 0.0033).
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of a multitude of blink-related features, including confidence, duration and
interval, elapsed time following L-dopa administration, and patient age.

In both the prediction of dyskinesia and the ON/OFF state, models
based on blink features alone demonstrated high classification accuracy. In
particular, the blink-feature model demonstrated superior predictive per-
formance compared to the plasma L-dopa concentration model in pre-
dicting dyskinesia. This finding indicates that blinking may serve as a more
precise indicator of the central nervous system status in PD patients than
peripheral L-dopa levels. The incorporation of background features and
post-processing smoothing resulted in an enhanced performance of the
model for ON/OFF prediction. The regression models for MDS-UPDRS
Part III and plasma L-dopa concentration showed moderate positive cor-
relations in a number of patients when background information and
smoothing post-processing were applied. As background information,
elapsed time following L-dopa administration was a very significant con-
tributor in those models (Fig. 1). This is likely due to its direct correlation
with plasma L-dopa concentration, we presume. On the other hand,
“patient age” consistently contributed only to the estimation of MDS-
UPDRSPart III,which suggests an indirect relationshipbetweenage and the
severity of motor symptoms23.

For MDS-UPDRS Part III subscores of tremor, rigidity, bradykinesia,
and axial symptoms, models based on blink-related features (Models B and
B+ BG) showed no statistically significant differences in Spearman’s cor-
relation coefficients (ρ) across subscore categories (Supplementary Fig. 5A).
For the smoothed model B, the mean correlation ranged from 0.24 to 0.29
(Supplementary Fig. 5A).

The blink confidence-related features often contributed more to the
models’ performance than the traditional blink rate. Blink confidence,
derived from eye-opening and closing speed, duration, and amplitude,
indicates the quality of a blink. It is amore considerable value in a blinkwith
rapid eyelid movement and complete pupil covering (Figs. 4B and 1).

These findings indicate the potential of eye blinking, in con-
junction with basic background information, to provide an objective
assessment of ON/OFF and dyskinesia symptoms in real time. This
could be a pivotal advance in the assessment of therapies for motor

fluctuations, including anti-dyskinetic drugs. The headset used in this
study is lightweight, weighing only 9 g, and no patients reported any
discomfort during its use. Today, while most camera-based wearable
eye trackers, such as those from Tobii and Pupil Labs, are primarily
used in industrial or research settings, eye-tracking technology is
becoming increasingly integrated into consumer-grade devices.
Additionally, technologies capable of quantifying blinks using
smartphone or fixed video cameras have been widely explored24. By
combining such technologies, it could support telemedicine by ana-
lyzing eye blinks through remotely recorded video data, enabling
objective evaluation of PD motor symptoms without requiring fre-
quent clinic visits. Nevertheless, further research with a larger data
set and more sophisticated modelling is required before this
approach can be applied in practice to accurately regress MDS-
UPDRS Part III scores. It is noteworthy that the present study
included patients with diverse blink patterns. It should be noted,
however, that the training did not involve stratification during the
machine learning phase. Moreover, the L-dopa dosages utilized in
this study, ranging from 100−200 mg, constituted part of each
patient’s standard treatment regimen. This suggests that our models
are capable of effectively capturing symptom fluctuations in real-life
settings, thereby indicating the potential applicability of our blink
model in clinical practice.

The following limitations are intrinsic to this study: This study is
exploratory in nature and based on a limited sample size of 20 cases from a
single institution,with only sevenpatients developingdyskinesia.Moreover,
the study concentrated on advanced-stage PD patients who exhibited dis-
cernible responses to L-dopa. The diagnosis of PD was based on clinical
criteria and not confirmed pathologically. To provide more comprehensive
validation and practical application, future studies should include a larger,
multicenter cohort with patients at various stages of PD.

In conclusion, this study demonstrates the potential of blink features,
either alone or in combination with other features, as an innovative and
non-invasive tool for the real-time monitoring of PD clinical status, both
inside and outside of hospital settings.

Fig. 3 | Time-series predictions of dyskinesia and ON/OFF states for repre-
sentative patients. A Dyskinesia predictions using models trained with blink-
related features (“B”) are shown for two non-dyskinetic patients (#1, #3) and one
dyskinetic patient (#4). Dotted blue lines indicate raw predictions; solid blue lines
show smoothed predictions. True ON states and observed dyskinesia periods are

markedwith red and orange lines, respectively.BON/OFF predictions usingmodels
trained with blink+ background features (“B+ BG”) are shown for the same
patients. Dotted orange lines indicate raw ON predictions; solid orange lines show
smoothed predictions. True ON states are marked with red lines.
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Methods
Subject recruitment and ethical approval
Patients with PD were recruited from the Department of Neurology at
JuntendoUniversity School ofMedicine betweenMay andDecember 2021.
All patients providedwritten informed consent after being fully informed of
the purpose and procedures of the study. This clinical trial has been

approved by the Research EthicsCommittee, Faculty ofMedicine, Juntendo
University (H20-0376) and registered in the University Hospital Medical
Information Network- Clinical Trials Registry (UMIN000044246).

The study design and patient population are as follows:
This study is an uncontrolled, open-label, and exploratory clinical

study. It consists of 1 weekof baseline assessment, habituation to the glasses-

Fig. 4 | Blink data acquisition, analysis and machine learning procedure. A The
Pupil Core eye tracker (Pupil Labs GmbH, Berlin, Germany. The upper left image is
cited from the product webpage (https://pupil-labs.com/products/core) with per-
mission), example of pupil image by infrared eye cameras, and recording setup of eye
tracker wired to a smartphone. B Blink extraction from pupil data and blink feature
extraction. Pupil Player extracts eye blinks based on pupil confidence. A differential
filter was applied to extract blink onset and offset. Blink interval and duration were
calculated from the onset and offset detection. Blink confidencewas calculated as the
proportion of the shaded area within the region enclosed by the dashed line calcu-
lated for each blink. C Data processing flow. The Base Blink Features #1 were
transformed into three features through the Baseline Correction: Raw Value
(retaining the original, unprocessed value), the Difference from Baseline (baseline:
the mean prior to L-dopa administration within the data from the same individual),
and the Absolute Value of the Difference from Baseline. These parameters were

subsequently normalized in two ways: within the individual and across all patient
data. The Base Blink Features #2 were initially converted into multiple statistical
features using Statistical Feature Extraction, and then processed in the samemanner
as Base Features #1, yielding a total of 468 features. These features were then selected
for each model in the training phase based on their contribution. Details of features
can be found in Tables 2 and 3. DMachine learning procedure. Time-series data
were segmented by a time window of 3 min and treated as independent data points.
Clinical indicators such as dyskinesia, ON/OFF, MDS-UPDRS Part III total score
and plasma L-dopa concentration were set as target variables, while blink features
were set as feature variables. machine learning was conducted using DataRobot, the
automated machine learning platform, and custom-Python programs. The DataR-
obot logo is cited from product webpage (https://www.datarobot.com/) with per-
mission. See text for details.
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type device, and training in symptom diary, followed by a 1 day blink
evaluation. On the day of the blink evaluation, the patients were
administered a single dose of L-dopa/DCI in the fasting state, fol-
lowing a 12 h discontinuation of anti-PD medication. The blink
information, fluctuations in Parkinson’s motor symptoms, and
L-dopa pharmacokinetics were evaluated for a maximum of 4 h after
administration.

The subjects were 20 patients with advanced-stage PD and fluctuating
symptoms, who had been hospitalized for device therapy since they were
suffering difficulties in their daily lives due to the wearing-off phenomenon.
The authors employed patients who met and did not conflict with the
inclusion and exclusion criteria as follows, respectively: Inclusion criteria:
(1)Clinically establishedorprobablePDmeeting theMDSclinical diagnosis
criteria for PD (2015), (2) Stage≤ III on theHoehn andYahr scale in theON
state, (3) Receiving treatment with L-dopa for ≥ 6months (26 weeks) and
showing its effects, (4) Patientswith advancedPDwho are tobe hospitalized
for medical evaluation, drug adjustment, and rehabilitation, (5) capable of
providing a voluntary written informed consent based upon their sufficient
understanding of the research, (6) Patients who are able to join the eva-
luationwithout using their own eyeglasses in the case that they regularly use
glasses in their daily life. Exclusion criteria: (1) Atypical Parkinsonism
syndromes, (2) Dementia or at high risk of it (Mini Mental State Exam-
ination (MMSE) score ≤ 20), (3) Contraindicated for concomitant medi-
cations (L-dopa/DCI), (4) Hypersensitivity to concomitantmedications (L-
dopa/DCI) and/or their ingredients, (5)Co-existingpsychiatric disease (e.g.,
depression, bipolar disorder or schizophrenia) and/or clinically significant
complications (e.g., cerebrovascular accident, heart disease, chronic
respiratory disease, uncontrolled hypertension and diabetes), (6) History of
psychiatric disease (e.g., depression, bipolar disorder or schizophrenia) and/
or device-aided therapies (i.e., GPi pallidotomy, thalamotomy, and deep
brain stimulation), (7) Those who the principal investigator judges to be
inappropriate as research subjects

Clinical assessments
The subjects underwent a series of assessments at baseline to obtain
data regarding their age, gender, body mass index, disease duration,
Mini-Mental State Examination (MMSE) scores, levodopa equivalent
daily doses, and stage of the disease according to the Hoehn-Yahr
scale, both during and outside of episodes. The following instruments
were utilized: the EuroQol 5 Dimensions 5-Level (EQ-5D-5L), the
Parkinson’s Disease Questionnaire-39 (PDQ-39), the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) Parts I, II, III, IV, and the Unified Dyskinesia Rating Scale
(UDysRS). To confirm L-dopa levels on the day of blink evaluation,
multiple measurements of MDS-UPDRS part III, UDysRS, and
bedside score were obtained at the same time as blood collection. The
MDS-UPDRS and UDysRS were evaluated by trained experts.
Patients were instructed to record bedside scores for their motor
symptoms of PD in their diaries, according to a four-point scale:
completely off (1), partially off (2), partially on (3), and completely
on (4), while discussing the symptoms with their attending
physicians.

Pharmacokinetics assessments of levodopa
Following an overnight fast andmedication-free period of 12 h, the patients
were administered a single dose of L-dopa/DCI, whichwas the same dose as
that for usual regimen. Blood samples were collected for pharmacokinetic
analysis of L-dopa at the following time points: before administration and at
15, 30, 45, 60, 90, 120, 150, 180, and 240min after administration. Plasma
L-dopa concentrationwas determinedby the validatedmethod described in
Measurement of L-dopa Concentration Section. The maximum L-dopa
concentration (Cmax), time to maximum L-dopa concentration (Tmax),
and area under the concentration-time curve from time 0 to the last mea-
sured time point (AUC0-t) were obtained as parameters of L-dopa
pharmacokinetics.

Measurement of L-dopa concentration
The plasma L-dopa concentration was measured by high-performance
liquid chromatography (ThermoScientific™UltiMate™3000HPLC system).
Briefly, 500 μL of plasma was obtained by centrifugation of blood collected
in EDTA-2Na tubes (3000 rpm, 10min, 4 °C), mixed with 50 μL of 60%
perchloric acid and centrifuged (12,000 rpm, 40min, 4 °C). The supernatant
was further centrifuged in an ultrafree tube, and the newly obtainedpurified
supernatant (25 µL) was injected into an HPLC system equipped with a
WPS-3000 TRS autosampler with a cooling device, an Acclaim™ 120 C18
column (Ф4.6 × 150mm), and an ECD-3000RS detector. Themobile phase
buffer A was prepared by adding 27.6 g sodium phosphate, 680 µL of
0.2mg/mL nitrilotriacetic acid, and 100 µL tetrahydrofuran to distilled
water so that the total volume would be 2 L, and thenmixing it with 400 µL
5%SDS, 200 µLProClin150, and 728 µL phosphoric acid. Themobile phase
buffer B was prepared by adding 27.6 g sodium phosphate and 100 µL of
0.2mg/mL nitrilotriacetic acid to distilled water so that the total volume
would be 1 L, and then mixing it with 1060mL methanol, 4.2mL 5% SDS,
and 6mL phosphoric acid. The gradient elution was delivered as follows
(A:B): 0–2.5 min, 96:4; 2.5–12.5 min, 96:4–62:38; 12.5–21.5min,
62:38–40:60; 21.5–25.5 min, 40:60–10:90; 25.5–30.5min, 10:90;
30.5–31.5 min, 10:90–96:4. L-dopawas separated from thebuffer solution at
a flow rate of 1.0 mL/min and column temperature of 31 °C. Chromato-
graphs were analyzed by Chromeleon 7.2. The limit of detection and
quantification were 6.74 pmol/mL and 22.4 pmol/mL, respectively.

Acquisition of pupil data
Pupil data were collected from the eyes of patients using a wearable eye-
tracking headset (Fig. 4A) (Pupil Core; Pupil LabsGmbH,Berlin,Germany)
for a period of 4 h following L-dopa administration on the day of blink
evaluation,with data recorded from30minprior to administrationuntil the
end of the 4-h period. The headset frame is made of flexible and lightweight
plastic (9 g)25. This design did not cause any oppressive or uncomfortable
feelings when wearing the device. The headset was equipped with two
infrared eye cameras, with one camera dedicated to each eye and a sampling
rate of 200Hz. A USB cable was utilized to establish a connection between
the headset and a smartphone (Android OS, version 11) affixed to the
patient’s upper arm. The video data of the eyes was recorded with the Pupil
Mobile software (version 1.2.3).

Blink data extraction
Pupil and blink data were extracted from recorded videos of eyes with Pupil
Player software (v. 3.5.1) (Fig. 4B). Pupil Player detects pupils based on
ellipse fitting25 to the infrared video image where a pupil appears as a black
ellipse when the eyelid is opened. When the pupil is not detected at all, the
value “pupil confidence” based on ellipse fitting was set to 0.0, while the
value is 1.0 when the pupil is detected as an ellipse with high accuracy. Pupil
confidence for each eyewas concatenatedby recorded timeandadifferential
filterwas applied to extract blink onset and offset. Blinking is detectedwith a
decrease in filtered pupil confidence below the threshold (onset) caused by
the concealment of the pupil by the eyelid, and a subsequent increase in
filteredpupil confidence above the threshold (offset) causedby eye-opening,
occurring at a time less than thefilter length. Thedatawere cleanedbasedon
the confidence in the pupil detection to eliminate poor recordings of eye
opening as following processes:1. Data Division: We divided the 200Hz
pupil data into 3-min time windows. Each represents an independent data
point, focusing on eyeblinking characteristics. 2.Criteria forDataQuality:1)
If pupil confidence is below0.2, we consider the eyes closed. 2) If the eyes are
closed for>50%of the timewindow, or if the averagepupil confidencewhen
the eyes are open is below 0.5, we exclude this data point. This is because the
patient’s eyes might not be fully open due to reasons like drowsiness or
camera setup issues.

Categorization of blink rate changes
PD patients have been reported to show either an increase or decrease in
sEBR17,18 in response to L-dopa, we categorized patients into “Increased,”
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“Decreased,” and “Unchanged” groups based on the changes in blink rate
from OFF to ON periods in our observation. In order to categorize these
patterns, we first defined ON and OFF periods based on 1-4 bedside scores
(BS):

ON:¼BS > 2

OFF:¼BS≤ 2

We then calculated the number of blinks per minute during these
periods, denoted as sEBRON for ON periods and sEBROFF for OFF periods.
Patients were categorized into “Increased,” “Decreased,” and “Unchanged”
groups basedon the changes in blink rate fromOFF toONperiods.Weused
a 15% change in sEBRON compared to sEBROFF as an indicator:

Increased :¼ sEBRON

sEBROFF
> 1:15

Decreased :¼ sEBRON

sEBROFF
≤ 0:85

Unchanged :¼ 1:15≥
sEBRON

sEBROFF
> 0:85

The 15% threshold for defining changes was subjectively and retro-
spectively chosen to represent our observational results best.

Machine learning procedure and statistical analysis
We aimed to estimate concurrent clinical information from blink features
within a specific timewindow usingmachine learning techniques (Fig. 4D).
In order to achieve this, we employed both the DataRobot platform (Ver-
sions: 7.2.8 and 8.0.6; DataRobot, Inc.), which automates model selection
and hyperparameter tuning (automated machine learning), and custom
Python programs. Ensemble models were intentionally omitted to simplify
interpretation.

Data processing
Time-series blink data were segmented into 3min windows and treated as
independent data points. We utilized 1485 cleansed data points from 20
patients for this process. Target variables included: 1.Presence of dyskinesia
(binary classification), 2.Bedside score-based ON/OFF state (binary classi-
fication), 3.TotalMDS-UPDRS Part III score (regression), 4.Plasma L-dopa
concentration (regression).

Due to the actual values of target variables being obtained every
15−30min, we employed linear interpolation for data points within these
intervals.

Feature extraction and normalization
We extracted 468 blink-related features from each time window, including
base blink features such as blink rate, blink intervals and blink confidence,
and their derivatives. The definition of base blink features is summarized in
Table 2 and Fig. 4B. The derivatives of base features were extracted by
following processes. Also see Fig. 4C and Table 3 for details. First, blink rate
and energy—referred to as “base blink features #1”—were obtained as a
single value per time window. A baseline correction was performed using
the individual’s average before L-dopa administration, which transformed
the raw data into three types of features: the original unprocessed value, the
difference from baseline, and the absolute difference from baseline. These
features were subsequently normalized in two ways: one normalization was
appliedwithin eachpatient’s data to capture intra-individual variability, and
another normalization was performed across patients to clarify the relative
positioning. For the training phase, the normalization utilized data from all
patients included in the training, and for the testing phase, the test patient’s
features were normalized using data from all patients. Similarly, base blink
features #2—comprising interval, duration, confidence, and depth—were
calculated for each blink within the timewindow, allowing the derivation of
statistical parameters such asmean,median, standard deviation,maximum,
andminimum. In addition, themean and standard deviation fromall blinks
observed during the recording for each individual were used to categorize
these features into five groups (LOW, MID-LOW, MID, MID-HIGH, and
HIGH), according to rules detailed in Table 3. The frequency of each
category was then counted within each time window; for instance, if three
LOW and twoMID blinks were observed for blink confidence, the features
were recorded as CONFIDENCE_FRQ_LOW= 3 and CON-
FIDENCE_FRQ_MID = 2. Furthermore, the relative frequency and the
ratio of each category to themost frequently observed category (MID) were
computed. In the example above, CONFIDENCE_FRQ_LOW_REL=
CONFIDENCE_FRQ_LOW / CONFIDENCE_FRQ_MID = 3 / 2 = 1.5.
Similar baseline correction and normalization procedures as for base blink
features #1 were applied, resulting in a total of 468 blink-related features.

In addition to blink features, non-blink features such as plasma L-dopa
concentration, elapsed time after L-dopa administration, and patient age
were included. Plasma L-dopa concentration is an invasive but reflective
indicator of Parkinson’s disease (PD)motor symptoms26, while elapsed time
after L-dopa administration is easily obtained and anticipated to correlate
with PD motor symptoms. Patient age was also included, as it is known to
relate to both blink dynamics and PD symptoms23,27. To prevent overfitting
due to predictable data collection intervals and small sample size, Gaussian
noise (σ = 30) was added to elapsed time, while Gaussian noise (σ = 3) was

Table 2 | Summary of base blink features, background and reference features

Category Feature Name Equation Description

Base Blink
Features #1

RATE n The total number of blinks observed within the time window.

ENERGY
E ¼ Pn

i¼0

1
D2
i

The sum of the reciprocal of the squared blink duration for each blink within the time window.

Base Blink
Features #2

INTERVAL I ¼ tonset i � tonset iþ1 The time elapsed between the onset of one blink and the onset of the subsequent blink.

DURATION D ¼ toffset � tonset The time elapsed between the onset and offset of the blink.

CONFIDENCE C ¼ 1� 1
D

R toffset
tonset

Cpupil
Blink confidence reflects the quality of individual blinks. It is defined as one minus the mean of pupil
confidences between the onset and offset of each blink. See Fig. 4(B) for graphical explanation.

DEPTH C=D Blink depth is defined as blink confidence divided by blink duration.

Background
Features

L-DOPA_TIME Tnoisy ¼ T � TL�dopa þ ϵ Elapsed time after L-dopa administration (min)+Gaussian white noise ϵ � N 0; σ2
� �

; σ ¼ 30.

AGE Agenoisy ¼ Ageþ ϵ Patient age+Gaussian white noise ϵ � N 0; σ2
� �

; σ ¼ 3.

Reference
Feature

L-DOPA_CONC CL�dopa Linearly interpolated plasma L-dopa concentration (ng/mL) sampled every 15−30min.
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Table 3 | Construction of derivative features. Also see the text and Fig. 1C for a detailed feature engineering procedure

Category Suffix Equation Description

Basic
Statistics

_MEAN �X ¼ 1
n

Pn
i¼1

Xi
The mean of the feature observed within the time window

_MEDIAN MedianðXÞ The median of the feature observed within the time window

_SD
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðXi � �XÞ2

q
The standard deviation of the feature observed within the time window

_MAX MaxðXÞ The maximum value of the feature observed within the time window

_MIN MinðXÞ The minimum value of the feature observed within the time window

(MEAN_IND)
�Xind ¼ 1

Nind

PNind

i¼1
Xi

The mean of the feature from all blinks observed through the recording of the individual
(used for “Frequency” calculation, not used as a machine learning feature)

(SD_IND) σ ind ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nind

PNind
i¼1 ðXi � �XindÞ

2
q

The standard deviation of the feature from all blinks observed through the recording of
the individual (used for “Frequency” calculation, not used as amachine learning feature)

Frequency
(Absolute)

_FRQ_LOW Pn
i¼1

1ðXi < �Xind � 1:04σ indÞ
The number of blinkswithin the timewindow, for which the feature value is <1.04SD_IND
below the MEAN_IND (contains ~15% of data points)

_FRQ_MID-LOW Pn
i¼1

1ð�Xind � 1:04σ ind ≤Xi < �Xind � 0:39σ indÞ
Thenumber of blinkswithin the timewindow, forwhich the feature value is≥1.04SD_IND
below the MEAN_IND but <0.39 SD_IND below the MEAN_IND (contains ~20% of data
points)

_FRQ_MID Pn
i¼1

1ð�Xind � 0:39σ ind ≤Xi<�Xind þ 0:39σ indÞ
Thenumber of blinkswithin the timewindow, forwhich the feature value is≥0.39SD_IND
below the MEAN_IND but <0.39 SD_IND above the MEAN_IND (contains ~30% of data
points)

_FRQ_MID-HIGH Pn
i¼1

1ð�Xind þ 0:39σ ind ≤Xi<�Xind þ 1:04σ indÞ
Thenumber of blinkswithin the timewindow, forwhich the feature value is≥0.39SD_IND
above the MEAN_IND but <1.04SD_IND above the MEAN_IND (contains ~20% of data
points)

_FRQ_HIGH Pn
i¼1

1ðXi ≥
�Xind þ 1:04σ indÞ

Thenumber of blinkswithin the timewindow, forwhich the feature value is≥1.04SD_IND
above the MEAN_IND (contains ~15% of data points)

Frequency
(Relative)

_FRQ_LOW_REL 1
n

Pn
i¼1

1ðXi < �Xind � 1:04σ indÞ
The proportion of blinks within the time window, for which the feature value is
<1.04SD_IND below the MEAN_IND (contains ~15% of data points)

_FRQ_MID-
LOW_REL

1
n

Pn
i¼1

1ð�Xind � 1:04σ ind ≤Xi < �Xind � 0:39σ indÞ
The proportion of blinks within the time window, for which the feature value is ≥
1.04SD_IND below the MEAN_IND but < 0.39SD_IND below the MEAN_IND (contains
~20% of data points)

_FRQ_MID_REL 1
n

Pn
i¼1

1ð�Xind � 0:39σ ind ≤Xi < �Xind þ 0:39σ indÞ
The proportion of blinks within the time window, for which the feature value is ≥
0.39SD_IND below the MEAN_IND but < 0.39SD_IND above the MEAN_IND (contains
~30% of data points)

_FRQ_MID-
HIGH_REL

1
n

Pn
i¼1

1ð�Xind þ 0:39σ ind ≤Xi < �Xind þ 1:04σ indÞ
The proportion of blinks within the time window, for which the feature value is ≥ 0.39
SD_IND above theMEAN_IND but <1.04SD_IND above the MEAN_IND (contains ~20%
of data points)

_FRQ_HIGH_REL 1
n

Pn
i¼1

1ðXi ≥
�Xind þ 1:04σ indÞ

The proportion of blinks within the time window, for which the feature value is ≥ 1.04
SD_IND above the MEAN_IND (contains ~15% of data points)

Frequency
Ratio to
Median

_FRQ_LOW_RAT _FRQ_LOW / _FRQ_MID The ratio of blinks with low feature values to those with the mid-range feature values
within the time window

_FRQ_MID-
LOW_RAT

_FRQ_MID-LOW / _FRQ_MID The ratio of blinkswithmid-low feature values to thosewith themid-range feature values
within the time window

_FRQ_MID-
HIGH_RAT

_FRQ_MID-HIGH / _FRQ_MID The ratio of blinks withmid-high feature values to those with themid-range feature value
within the time window

_FRQ_HIGH_RAT _FRQ_HIGH / _FRQ_MID The ratio of blinks with high feature values to those with the mid-range values within the
time window

Baseline
Correction

_BL X � �XBL The difference from the baseline i.e., the average recording of the individual before
L-dopa administration

_BL_ABS jX � �XBLj The absolute value of the difference from the baseline i.e., the average recording of the
individual before L-dopa administration

Normalization _IND X�MaxðXind Þ
Max Xindð Þ�MinðXind Þ

The normalized value of the feature by maximum and minimum recordings from the
individual

- X�MaxðXALL Þ
Max XALLð Þ�MinðXALL Þ

The normalized value of the feature by the maximum and minimum recordings from all
available patients. For the training phase, the features were normalized using the data
fromall the patients included in the training. For the testing phase, the features of the test
patient were normalized using the data from all the patients.
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added to patient age. These features were normalized in two ways: first,
within-patient normalization was applied to capture each patient’s relative
variability; second, across-patient normalization was performed to clarify
relative positioning across the patient group (Fig. 4B, C; Tables 2 and 3).

Model Construction and Evaluation
We performed model construction and evaluation using a leave-one
patient/group-out approach. For ON/OFF state, MDS-UPDRS Part III
score and plasma L-dopa concentration, models were trained using data
from 19 patients and evaluated on the remaining patient. For dyskinesia,
since only seven patients exhibited this symptom, a leave-one-patient-out
evaluation with AUCROC was not feasible. In order to address this, we
assigned one or two non-dyskinetic patients to each dyskinetic patient,
forming two- or three-patient groups for leave-one-group-out evaluation.
Non-dyskinetic patients were selected from different blink rate change
patterns (i.e., Increased, Decreased, or Unchanged) randomly to ensure
diversity.We prepared 14 groups to prevent bias, ensuring that each patient
was included in two groups without being paired with the same patient.

During each training phase of leave-one patient/group-out approach,
20 blink-related features were selected for each target variable by a two-step
approach. First, the Boruta algorithm was used to exclude features with
contributions that were statistically lower than randomnoise28. Next, SHAP
(SHapleyAdditive exPlanations) analysis29was applied to iteratively remove
features with the lowest contributions at a 10% exclusion rate until 20
features remained.

Evaluation Metrics and Statistical Analysis
The performance of models was evaluated based on the task. For binary
classification tasks, including ON/OFF state and dyskinesia, models were
evaluated based on the LogLoss metric, and the area under the receiver
operating characteristic (ROC) curve (AUCROC) was calculated for each
eligible patient or patient group and compared. For dyskinesia, ROC curves
were generated for both ON state and the entire evaluation period for 14
groups. ForON/OFF state, ROCcurves were generated for 19 patients. One
patientwhowas entirely in theOFF state anddidnot showanyONstatewas
omitted. For regression tasks, including MDS-UPDRS Part III scores and
plasma L-dopa concentration, performance was assessed using the Root
Mean Squared Error (RMSE). Then Spearman’s correlation (ρ) between
predictions and actual valueswas calculated for each patient and compared,
with the proportion of patients with positive (ρ > 0) and statistically sig-
nificant ρ (test of no correlation (two-sided, p < 0.05)). In order to examine
the extent to which the predicted data could replicate original trends when
restored to a time series, we calculated Derivative Dynamic TimeWarping
(DDTW) for each patient30.

Predictive performance was assessed across three different feature
combinations:1. Selected blink features (B), 2. Blink features+ background
information (elapsed time post-L-dopa and patient age) (B+ BG), 3.
Plasma L-dopa concentration alone (L). Additionally, we evaluated the
predictive performance after post-processing raw predictions with a 15min
moving average for practical application (smoothed). Results were com-
pared using paired t-tests with Bonferroni’s correction. All possible feature
combinations were tested, i.e., B, B+ BG, and L, both with and without
smoothing.

Data availability
The datasets generated and/or analysed during the current study are not
publicly available due to a data-use agreement but are available from the
corresponding author on reasonable request.
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