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Longitudinal non-negative matrix
factorization identifies the altered
trajectory of motor symptoms in
Parkinson’s disease

Check for updates

Xinmin Hou1, Kai Zhou1, Yuxuan Wu1,2, Rong Li3, Jiali Yu1, Qin Chen4, Fengmei Lu1,3, Huafu Chen3 &
Qing Gao1,2

Parkinson’s disease (PD) is the second most common neurodegenerative disease with progressive
structural alterations throughout the brain, resulting in motor symptoms that seriously affect patients’
daily life. The present study then aimed to explore the progressive co-changes in graymatter patterns
in PD and identify the longitudinal neuroimaging biomarkers that could predict the progressive motor
symptoms of PD. Non-negative Matrix Factorization (NMF) was first used to decompose gray matter
images into 7 latent factors from healthy samples, and then the latent factors were validated on an
independent dataset to verify the stability of the structural factors. Parkinson’s patients (including
baseline, 1-year follow-up, and 2-year follow-up data) and healthy controls (HC) from Parkinson’s
Progression Markers Initiative (PPMI) were used to find the correlation between factor weights and
motor-symptom relatedMovement Disorder Society Unified Parkinson’sDisease Rating Scale (MDS-
UPDRS) scores. The decreasing trend of the factor weights with increasing disease duration was
found in the first 6 factors. TheXGBoost predictionmodel demonstrated that Factor 2 (motor function),
3 (perceptual processing) & 7 (cerebellum) played pivotal roles in longitudinally predicting MDS-
UPDRS-Ⅱ scores, whereas Factor 3 & 5 (subcortical basal ganglia) accounted for most change in
MDS-UPDRS-Ⅲ. Our research indicated that the NMF factors could capture the progressive
alterations of structural architectures in PD, and the factor weights were capable of predicting the
clinical motor symptoms. This provides new perspectives for exploring the neural mechanisms
underlying the disease and future clinical diagnostic and therapeutic approaches associated with
disease progression.

Parkinson’s disease (PD) is a chronic and progressively debilitating neu-
rodegenerative disorder. It is clinically characterized by cardinal motor
symptoms including bradykinesia, resting tremor, muscle rigidity, and
postural instability1. These movement symptoms significantly impair
patients’ quality of life, leading to progressive disability and compromised
activities of daily living. As the disease advances, PD patients exhibit
extensive neurodegenerative changes throughout the brain, manifesting as
progressive functional and structural alterations at both macroscopic and

microscopic levels2,3. However, due to the inherent pathogenic hetero-
geneity and diverse progression patterns, the development of effective
clinical interventions remains challenging. Emerging evidence suggests that
clinical performance and neural degeneration patterns exhibit distinct
characteristics across different disease stages4. Consequently, establishing
validated longitudinal biomarkers and implementing dynamic monitoring
frameworks for neurodegeneration quantification arises as an imperative
research priority. Decoding patterns of progressive neural reorganization at
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the whole-brain level across distinct stages of the disease course will con-
tribute to clarifying the neural mechanism of PD over time.

Magnetic resonance imaging (MRI) is a non-invasive technique with
standardized acquisition parameters that enables the quantification of
macroscopic changes in brain regions. Previous studies have reported gray
matter (GM) volume alterations in both cortical and subcortical
structures5,6, which demonstrate significant associations with PD motor-
symptom severity. Past investigations have consistently identified reduced
GMvolume in both brain hemispheres of PDpatients, particularly affecting
key brain regions including the amygdala7, putamen8,9, frontal lobe10, and
thalamus11.However, these cross-sectional studies, focusing on specific time
points, are inherently limited in tracking how brain structures evolve over
time in PD. This limitation becomes particularly apparent given the sub-
stantial differences in individual progression rates, which sometimes even
lead to contradictory findings across studies12,13.

Longitudinal studies give a possible way to address the limitations4.
Findings from the research with follow-up periods ranging from 1.5 to 3
years for PD and healthy controls consistently indicate significant reduc-
tions in totalGMvolume among patientswith PD in early tomild stages14,15.
Blair et al.16 assessed GM density in patients across early and late disease
stages. They found that patients exhibited GM atrophy in the bilateral
hippocampus in advanced stages. Additionally, a separate longitudinal
study17 revealed a gradual GM volume shrinkage in the bilateral caudate
nucleus in PD from baseline to 12-month follow-up. These reports of
localized GM atrophy in the PD brain fail to account for the complex
interplay and pattern-level synergistic effects across the whole brain. This
may be due to the discrete analysis of the standard voxel-based morpho-
metry (VBM) method, focusing solely on local brain structural changes,
neglecting the correlation between brain regions that often signify char-
acteristics of the latent brain co-degenerating. Consequently, there remains
a gap in understanding the latent pattern of progressive changes in GM
volume in the brain in PD. A comprehensive investigation of whole-brain-
level GM alterations across distinct disease stages using longitudinal neu-
roimaging data is needed.

Non-negative matrix factorization (NMF) is an unsupervised multi-
variate analysis method18, similar to principal component analysis and
independent component analysis19–26 in some aspects.However, due to their
algorithms, these methods have limitations in the interpretability of their
results compared to NMF, even with high prediction accuracy. Non-
negativity constraints ensure that the decomposed matrices are free of
negative components and weights, enabling the data to be described as a
simple additive reconstruction of each decomposed component, which
enhances the identification of potential structural patterns. In neuroima-
ging, NMF has been widely used in MRI image segmentation27,28, disease
heterogeneity analysis29 and data dimensionality reduction30. Compared
with the VBMmethod, NMF can take advantage of the differences between
brain regions. Correlation information is used to cluster voxels with similar
information into latent factors, facilitating the identification of potential
distribution patterns of brain structure. With biologically meaningful fea-
tures, predictions of clinical scales will be more reliable, practical, and
interpretable.

Therefore, the present study usedNMF to obtain theGM latent factors
and identify the longitudinal structural changes in PD. Since this pattern-
based approach provides a more comprehensive and biologically plausible
representation of GM patterns than isolated regional measures, we first
hypothesize thatGMpatterns (as captured byNMF-derived factors) remain
relatively stable in HC during their sixties and seventies31, thus providing a
reliable normative basis. Secondly, we hypothesize that deviations in these
factor weights observed in PD relative to the established HC normative
trajectorywould reflect heterogeneous pathological change patterns specific
to PD progression, especially in GM patterns associated with motor cog-
nition. Therefore, we further hypothesize that the longitudinal factor
weights in PD would significantly predict longitudinal changes in motor-
symptom severity, which would function as clinically relevant neuroima-
ging biomarkers for tracking the longitudinal trajectory ofmotor symptoms

in PD. To this end, we first decomposedGM images into latent factors from
healthy adults in the Open Access Series of Imaging Studies 3 (OASIS-3),
and then validated the stability on an independent dataset by verifying the
similarity of the structural factors. The latent factors were subsequently
applied as a basis for the GM images of the PD patients for further long-
itudinal analysis and prediction. Figure 1 shows the flowchart of data
analysis.

Results
The decomposed latent GM factors
Following the NMF procedures outlined in the “Methods” section, we
observed that the reconstruction errors in both datasets exhibited similar
distributions (Fig. S1a, b). Notably, as the number of decomposition factors
exceeded 5 and the sparsity surpassed 0.3, the NMF reconstruction errors
gradually stabilized. Specifically, with 7 decomposition factors and a sparsity
of 0.4, the average similarity of the decomposition factors between theHC_1
and HC_2 datasets reached 0.75 (Fig. S1c).

Employing the optimal decomposition parameters (k = 7, λ = 0.4), we
obtained themost stable decomposed latent GM factors, denoted asWHC_1

(Fig. 2a). The decomposed results of the HC_2 dataset under the same
parameters are shown in Fig. S2 for comparison. Factor 1 predominantly
occupied the frontal lobe area, while Factor 2 was situated in the supple-
mentary motor area and precentral gyrus. Factor 3 covered the middle
temporal gyrus, precuneus, and inferior occipital gyrus, and Factor 4
spanned the pericalcarine cortex and superior occipital gyrus. Factor 5
encompassed mainly the basal ganglia, while Factor 6 included the amyg-
dala, parahippocampal gyrus, and inferior temporal gyrus. Factor 7 was
primarily distributed in the cerebellum area.

Longitudinal change trajectory of factor weights in PD
Linear Mixed-effects Model (LMM) with covariates regressed was applied
on PPMI longitudinal analysis after harmonizing the site/scanner con-
founding by longitudinal ComBat32. Post-hoc pairwise comparisons were
corrected by Tukey’s honest significant difference (Tukey HSD). PD GM
volume, as shown in Fig. 2b, revealed a declining trajectory as the disease
progressed. Specifically, some decreases were statistically significant at
baseline compared to the 1-year follow-up: Factors 1, 3, and 4: p < 0.0001;
Factor 6: p < 0.001 (Tukey HSD: q < 0.05). Furthermore, the 2-year follow-
up of Factors 4 and 6 showed a significant decline compared to the 1-year
follow-up (Factors 4 and 6: p < 0.05, Tukey HSD: q < 0.05). All factors
showed significant weight decrease over 2 years compared with baseline
(Factors 1, 3, 4 & 6: p < 0.0001; Factor 2: p < 0.01; Factor 5: p < 0.05, Tukey
HSD:q < 0.05), except for Factor 7,whichdemonstrated aunique trajectory.

Meta-analytic function decoding of factors
To decode the psychological and physiological functions of the derived
factors, we compared the spatial patternof factors to the functional anatomy
of the human brain using NiMARE. A total of 36 terms with strong cor-
relations to the factors were selected, eachdemonstrating distinct functional
profiles. A heatmap was subsequently generated to visually assess the
potential functions associatedwith each factor (Fig. 2c). Specifically, Factor 1
was associated with higher cognitive processing, such as decision-making,
personality, social behavioral regulation, executive function, and cognitive
control; Factor 2 was correlated with motor control concepts, including
motor and actions; Factor 3 centered around perceptual processing,
including visual, auditory, action and observation; Factor 4 exhibited rela-
tively concentrated correlations in terms associated with visual perception
and navigation; Factor 5 was linked to concepts related to incentive and
reward; Factor 6 highlighted affective processing and emotion regulation;
Factor 7 demonstrated the peak in navigation and motor.

Longitudinal motor-symptom severity prediction
The XGBoost regression model showed that the factor weights successfully
predicted the longitudinal motor-symptom severity measured by MDS-
UPDRS II and III. When using factor weights in baseline to predict 1-year
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follow-up MDS-UPDRS-II (Spearman’s ρ = 0.4715, 95% CI: [0.2671,
0.6759], p < 0.001, MSE = 8.9928), Factors 3 and 7 demonstrated a pre-
dominant contribution (Fig. 3a).When using factor weights in baseline and
1-year follow-up to predict 2-year follow-upMDS-UPDRS-II, (Spearman’s
ρ = 0.4543, 95% CI: [0.2457, 0.6629], p < 0.001, MSE = 19.4617) both Fac-
tors 2 and 3 in baseline exhibited notable importance, and Factor 4 in 1-year
follow-up showed relative importance (Fig. 3c).

When using factor weights in baseline to predict 1-year follow-up
MDS-UPDRS-III (Spearman’s ρ = 0.4984, 95% CI: [0.3008, 0.6959],
p < 0.0001, MSE = 59.3074), Factor 3 emerged as the leading predictor
(Fig. 3b). When using factor weights in baseline and 1-year follow-up to
predict 2-year follow-upMDS-UPDRS-III (Spearman’s ρ = 0.5625, 95%CI:
[0.3828, 0.7422], p < 0.0001, MSE = 61.1864), Factor 5 in baseline emerged
as a critical contributor, while Factor 3 in baseline showed relative impor-
tance, and its 1-year follow-up values retained substantial influence
(Fig. 3d). The prediction behavior was summarized in Fig. 3e.

Discussion
Our study explored the latent structureofGMinhealthy elderly brainsusing
the NMF method and identified 7 factors corresponding to different cov-
ariance patterns. The factors decomposed theGM into the frontal lobe area,
the motor area, the perceptual processing area, the visual processing area,
the subcortical basal ganglia, the emotion processing area, and the cere-
bellum area. These factors demonstrated robustness when applied to an
independent dataset (Fig. S2). Through further longitudinal analysis in PD,
we found that the weights of these factors exhibited consistently gradual
reductions in GM volume over 2-year follow-up, except for Factor 7, the
cerebellum, which exhibited an inverted U-shaped trajectory (Fig. 2). The
RFmodel proved that the weights had the ability to predict the longitudinal
clinical scores of MDS-UPDRS-Ⅱ & Ⅲ in PD, and the important factors
contributing to the prediction were detected. The findings revealed distinct

patterns in how these factors contribute to predicting symptom severity as
the disease progresses.

The MDS-UPDRS-Ⅱ captures motor-related daily living experiences
in Parkinson’s disease33. In both longitudinal prediction models of MDS-
UPDRS-Ⅱ, Factor 3 (perceptual processing) demonstrated a marked per-
sistence in feature importance during disease progression (feature impor-
tance from0.2596 at 1-year prediction to 0.4535 at 2-year prediction). It was
a hub for motion perception34, and the inferior occipital gyrus integrated
visual inputs for motor planning35. While some argued that occipital-
temporal atrophy primarily reflects comorbid Lewy body pathology36,37, we
found that Factor 3 specifically predicted motor (MDS-UPDRS-Ⅱ andⅢ)
scores, supporting its role in visuomotor integration instead of pure
dementia progression38–40. These regions played a crucial role in motor
control, visual feedback, and cognitive-motor coordination. Factor 7 (cer-
ebellum) suggested an important role of the cerebellum in early PD
advances. Notably, in longitudinal GM volume analysis, the weights of
Factor 7 exhibited a distinct trajectory and even not significantly different:
an inverted U-shaped trajectory instead of a decline in cerebellar GM
volume was observed over time. Other studies on patients with movement
disorders have also reported increased cerebellar volume in this age group,
attributing it to a possible compensatory mechanism in response to func-
tional impairments41–46. Further functional studies are needed to clarify the
causal relationship between cerebellar activity and early PD pathology.

In the second year prediction of MDS-UPDRS-Ⅱ, the growing sig-
nificance of baseline Factor 2 (motor function) highlighted the pro-
gressive disruption of premotor cortical networks, which were critical for
self-initiated movement and autonomous action initiation47. This dys-
function likely exacerbated difficulties in executing routine motor tasks,
as the brain’s ability to generate spontaneous movement became
increasingly compromised48,49. Concurrently, the emergence of the
importance of 1-year atrophy in Factor 4 (visual processing) introduced a

Fig. 1 | Theflowchart of data analysis. aT1w images were processed in the standard
SPM workflow to construct a GM matrix for NMF. b The NMF reconstruction
algorithmwas performed on PPMI under themost stable factors fromHC_1. cAfter
performing longitudinal ComBAT, group-level and longitudinal analyses of the
weights were conducted to investigate the trajectory of disease progression

associated with each factor. The XGBoost predictivemodel was employed to validate
the utility of these factors as biomarkers. GM: gray matter; TIV: total intracranial
volume; NMF: non-negative matrix factorization; NNBP: non-negative basis
pursuit.

https://doi.org/10.1038/s41531-025-01127-4 Article

npj Parkinson’s Disease |          (2025) 11:263 3

www.nature.com/npjparkd


new layer of complexity: reduced gray matter volumes in these domains
would impair the visual-motor coordination and navigation50, and con-
sequently affect the motor symptom in the following year as disease
progression. Over a 2-year follow-up, the weights associated with Factors

2, 3, and 4 showed a significant progressive decline, indicating increasing
difficulties in the executive integration of action plans51. Together, these
findings underscore how PD progression transforms motor behavior
from a relatively simple system into a complex one that becomes

Fig. 2 | NMF decomposition 7 factors spatial distribution differences in weights,
and NeuroSynth meta-analytic decoding of factors. a Factor 1: higher cognitive
processing; Factor 2:motor function; Factor 3: perceptual processing; Factor 4: visual
processing; Factor 5: subcortical basal ganglia; Factor 6: emotion processing; Factor
7: cerebellum. The darker color indicates a higher contribution at the spatial location

for the factors. b The patterns of longitudinal weight change of each factor. *Sig-
nificant between-group differences after Tukey HSD (p < 0.05) *<0.05; **<0.01;
***<0.001; ****<0.0001. c Heatmap shows the correlation coefficients for each
factor with the 36 terms of interest. A darker color represents a high correlation
coefficient.
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increasingly reliant on frontal-parietal-cerebellar-cortical interactions to
sustain functional independence52.

Factors 3 and 5 demonstrated robust predictive utility for MDS-
UPDRS-III scores, a relatively objective clinician-rated scale assessingmotor
impairment severity in PD, across disease progression. Factor 3 showed
consistent importance across allMDS-UPDRS-Ⅲ predictions, while Factor
5 stressed the most critical role in the 2-year prediction of the scale. Their
combined degeneration could impair visuomotor coordination, a known
factor to overt gait dysfunction in PD53,54. Factor 5 was mostly composed of
the basal ganglia, one of the crucial subcortical structures in the human
central nervous system that influencesmotor ability, cognitive function, and
emotional behavior atmultiple levels55,56. Previous studies have revealed that
patients with PD experience significant loss of GM volume in basal ganglia
regions such as the nucleus accumbens, amygdala, and caudate nucleus as
the disease progresses5,6. The temporal shift in primary baseline predictors
probably suggested that patients suffered more severe and obvious motor
dysfunction along the progression of the disease.

The present study has several limitations. Firstly, we assumed the
stability of the structural pattern factors obtained byNMFwithin the 60–70
age range, and the factors acted as a normative basis in our study. Although
it has been verified that gray matter atrophy patterns in healthy individuals
exhibit high stability in the 60–70 age range31, the strictlymatched age range
of all datasets and thematched longitudinal controlsmayquantify the subtle
age-related GM loss and provide more purified and detailed comparison
results. The absence of age-matched healthy controls in our study implied

that long-termchangesmight not be conclusively separated fromnormative
aging effects. Secondly, as far as the method is concerned per se, NMF is to
explore thenormative basis from the 5,855,005GMvoxels as the elements of
the GM distributed pattern. In our study, seven factors/elements were
detected in HC, which represent the main skeleton of the GM in HC. To
balance the size of the detailed structure and the main basis, we used the
smooth kernel of 8mm, as prior studies suggested57,58. Therefore, unlike the
standard VBM analysis, which focused solely on local brain structural
changes, some small structures, such as the substantia nigra might not be
included in the factors obtained by NMF. Finally, the predictive perfor-
mance for clinical scales, while statistically significant, remained moderate
in our limited sample. Although the feature importance remained relatively
stable across the different models, our predictive models would be better
considered as exploratory tools with limited clinical applicability.

In sum, our study leverages NMF to map the heterogeneity of long-
itudinal gray matter change patterns in PD. We identified seven distinct
neuroanatomical factors in HC that serve as normative reference patterns,
whichwere consistent when using an independent dataset. The factors were
found to be functionally associated with (1) higher cognitive processing; (2)
motor function; (3) perceptual processing; (4) visual processing; (5) sub-
cortical basal ganglia; (6) emotion processing; (7) cerebellum. Crucially, the
weights corresponding to the factors exhibited disease-specific longitudinal
trajectories in PD, which demonstrated significant predictive power for
motor-symptom progression. Factors 2, 3, and 7 played pivotal roles in
longitudinally predicting MDS-UPDRS-Ⅱ scores, whereas Factors 3 and 5

Fig. 3 | Reconstructionweights of PDpredict theMDS-UPDRSⅡ/Ⅲ scores in the
first/second year by XGBoost. For each set, the components are presented from left
to right as follows: correlation graph of CV results; feature contribution (blue:
baseline; red: 1 year). a Baseline weights ->1-year MDS-UPDRS-II. b Baseline
weights ->1-year MDS-UPDRS-Ⅲ. c Baseline and 1-year follow-up weights ->2-

year MDS-UPDRS-Ⅱ. d Baseline and 1-year follow-up weights ->2-year MDS-
UPDRS-Ⅲ. e Summary of the results above. Respectively, the longitudinal statistical
results for MDS-UPDRS-II and III are presented, with the most powerful predictive
factor identified for each disease stage through the prediction model on CV.
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accounted for most change in MDS-UPDRS-Ⅲ, suggesting differentiated
GM elements that characterized the progressive changes of motor-related
daily living experiences and motor impairment severity, respectively. The
proposed data-driven framework provides a novel approach for char-
acterizing disease heterogeneity progression in this neurodegenerative dis-
ease, and shows potentially quantitative neuroimaging biomarkers of
pathological progression of PD.

Methods
Participants
Three datasetswere included in this study, all ofwhichwere approvedby the
ethical review boards of the respective research institutions.
(1) Dataset 1 (HC_1) was sourced from OASIS-3. OASIS-3 is a publicly

available neuroimaging database developed by the University of
Washington, encompassing multiple age groups59. It includes MRI
data from healthy adults, individuals with mild cognitive impairment,
and patients with Alzheimer’s disease, offering a substantial repository
of high-quality brain imaging data for research purposes. Following
OASIS-3’s inclusion criteria for healthy subjects, this study included
199 participants aged between 50 and 85 years, withMini-Mental State
Examination (MMSE) > 24 and Clinical Dementia Rating Scale
(CDR) = 0, indicating healthy controls.

(2) Dataset 2 (HC_2) was derived from the collaborative efforts of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Neu-
roimaging in Frontotemporal Dementia (NIFD). ADNI is a long-
itudinal research endeavor spanning multiple research centers, aimed
at identifying andvalidating clinical indicators, imaging characteristics,
geneticmarkers, and biochemical indicators for the early identification
and monitoring of Alzheimer’s disease60. NIFD, on the other hand,
provides longitudinal clinical and imaging data related to fronto-
temporal lobar degeneration61. By combining the enrollment criteria of
these two studies concerning healthy elderly subjects, we included 163
healthy controls aged between 50 and 85, with MMSE > 24 and
CDR = 0. Clinical information for HC_1 and HC_2 is summarized in
Table 1.

The Parkinson’s data was sourced from the PPMI. PPMI is a large-
scale, multinational, multicenter study dedicated to collecting and publicly
sharing clinical data, genomic information, patient-reported outcomes, and
imaging study results related to Parkinson’s disease62. PPMI baseline
inclusion criteria for PD patients included: (1) exhibiting at least twomotor
symptoms; (2) being diagnosedwithPDnomore than2 years ago and in the
early clinical stage of the disease at baseline; (3) no symptomatic treatment
within 6 months post-baseline; (4) presence of Dopamine Transporter
(DAT) deficiency. Healthy subjects included in the study must exhibit no
obvious neurological impairment, have no first-degree familymemberwith
PD, and score above 26 on the Montreal Cognitive Assessment (MOCA).
Based on these criteria, we selected 48 healthy individuals (baseline data
only) and 78 PDpatients (containing data at baseline, 1-year follow-up, and
2-year follow-up) from the PPMI database. Table 2 summarizes baseline
demographic and clinical data.

Ethical approval was obtained from local ethics committees for each
original studies: For the HC_1 and HC_2 data (OASIS-3, ADNI, and
NIFD), approval was granted by the Institutional Review Board of
Washington University School of Medicine; WW-ADNI Resource Allo-
cation Review Committee; the Trial Innovation Network at Johns Hopkins
University, and local ethics committees at all sites approved the studies.
PPMI data were approved by the ethical standards committee on human
research at each participating institution. All subjects gavewritten informed
consent in accordance with the Declaration of Helsinki prior to enrollment.
As this study involved secondary analysis of existing de-identified data, no
new ethical approval was required from the ethics committees for the
current report.

MRI acquisition
All magnetic resonance imaging scans adhered to the standard protocols
established by their respective studies. Sagittal 3D T1-weighted
(T1w) images were acquired using the gradient echo/inversion recovery
(GR/IR) sequence. Scanning parameters per study are detailed in Table 3,
in accordance with the data inclusion criteria of their respective
research plans.

Table 1 | HC_1 and HC_2 subject information table

HC_1 HC_2 p-value
Mean ± SD Mean ± SD

n 199 163

Sex (male/female) 80/119 69/94 0.6820a

Age (yr) 69.01 ± 7.15 69.29 ± 6.22 0.6869b

MMSE 29.06 ± 1.14 29.18 ± 1.03 0.4065b

ap-value was calculated using a two-sample t-test.
bp-value was calculated using the χ2 test.

Table 2 | Clinical results at baseline in PD and control samples

HC PD p-value
Mean ± SD Mean ± SD

n 48 78

Sex (male/female) 29/19 48/30 0.9002a

Age (yr) 61.75 ± 9.33 61.88 ± 8.57 0.9412b

Disease
duration (mon)

0.00 ± 0.00 6.74 ± 6.59

Education (yr) 15.63 ± 2.38 17.73 ± 2.87 0.0881b

MDS-UPDRS
Part Ⅰ

2.46 ± 3.36 4.40 ± 3.27 <0.0001b

MDS-UPDRS
Part Ⅱ

0.17 ± 0.60 4.82 ± 3.57 <0.0001b

MDS-UPDRS Part
III c

0.46 ± 1.29 21.56 ± 9.38 <0.0001b

MOCA 28.08 ± 1.08 27.35 ± 2.14 0.1233b

ESS 5.90 ± 3.84 6.14 ± 3.15 0.4633b

RBDSQ 2.31 ± 1.90 3.89 ± 2.58 <0.0001b

HY 0.00 ± 0.00 1.55 ± 0.50

MDS-UPDRS indicates Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; HY
indicates Hoehn and Yahr stage score; ESS indicates Epworth sleepiness scale; RBDSQ indicates
REM Sleep Behavior Disorder Screening Questionnaire.
ap-value was calculated using a two-sample t-test.
bp-value was calculated using χ2 test.
cMDS-UPDRS III was performed in the off-state at baseline.

Table 3 | MRI data acquisition parameters

OASIS-3 ADNI NIFD PPMI

Repetition Time (ms) 2400.0 2300.0 2300.0 2300.0

Echo Time (ms) 3.16 3.00 3.00 2.98

Inversion Time (ms) 1000 900 900 900

Slice Thickness (mm) 1.0 1.2/1.0 1.0 1.0

Field Strength (tesla) 3.0 3.0 3.0 3.0

Flip Angle (degree) 8.0 9.0 9.0 9.0

Slices 176 176 160 176

Field of View (mm2) 256 × 256 240 × 256 240 × 256 240 × 256
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Image preprocessing
Each participant’s T1w images were processed using MATLAB 2018a and
the CAT12 toolbox in SPM 12 (https://neuro-jena.github.io/cat/). The
preprocessing steps included the following: (1) Manual correction of the
origin of all T1w images to align the anterior commissure and posterior
commissure on the same horizontal line. (2) Segmenting the images to
extract three tissue components: gray matter, white matter, and cere-
brospinal fluid. (3) Normalizing the gray matter images to the Montreal
Neurological Institute template. (4) Modulating the gray matter voxel
density into volumes. (5) Correcting the gray matter volume by dividing it
by the total intracranial volume to mitigate the impact of multi-center site
acquisition on the results. (6) Smoothing the gray matter images using an
8mm full-width at half maximum Gaussian kernel (Fig. 1a).

Data harmonization
We implemented the validated longitudinal ComBat method to harmonize
GM factor weights across multicenter PPMI datasets using its imple-
mentation in R with parametric empirical Bayes estimation (https://github.
com/jcbeer/longCombat?tab=readme-ov-file). This technique, extended
from cross-sectional ComBat63, effectively removes non-biological variance
induced by differing MRI scanners and acquisition protocols while pre-
serving longitudinal within-subject dependencies. Harmonization was
performedon all sevenGM factor weights, with diagnostic group (PD/HC),
age, sex, total intracranial volume (TIV), and education years specified as
biological covariates to retain. Scanner site and longitudinal time points
were modeled as batch effects.

Non-negative matrix factorization
NMF produces a sparse, part-based data representation under the con-
straint of non-negativity18, and the results of NMF can be viewed as an
additive combination of factors and weights. We used sparse non-negative
matrix decomposition under l0 norm constraints64, which can specify the
number of non-zero elements in the decomposition factor or weight. The
package for NMF is available at https://github.com/smatmo/l0-sparse-
NMF. Its mathematical definition is as follows:

min jjX �WXjj2s � t
Wð:Þ≥ 0
Hð:Þ≥ 0P

W :; kð Þ > 0ð Þ≤ L

8><
>:

ð1Þ

In the formula, X is anm×n-dimensional non-negative GMmatrix, where
m represents the number of GM voxels, and n represents the number of
subjects. This process is specifically carried out for the GM voxels in the
brain, using a GM template sourced from the GM probability map in the
SPM12 toolbox, with a probability threshold set to 0.25. The final output of
segmentation, for each subject, was a 3D image registered to the GM
template andwith a size of 169 × 205 × 169.W is anm× kmatrix, where k is
the number of decompositions and k≤min(m,n), representing the number
of GM matrix decomposition factors. H has dimensions of k × n,
representing the weight of each subject in each GM latent factor,
respectively. L represents the maximum number of non-zero elements in
each column of W.

NMF followed a two-stage iterative approach, as illustrated in the
Algorithm64. We first calculated an optimal, unconstrained solution for the
basis matrix W (with fixed H) in step 3 by sparseNNLS.m. l0-constraints
were satisfied by projecting the basis vectors onto the closest non-negative
vector in Euclidean space (Steps 4–6). Step 7 enhanced H, maintaining the
sparse structure and updating the non-zero entries ofW. The technique for
unconstrainedNMFdoes not increase ||X−WH||2 and typically reduces the
objective by the following multiplicative updates rules18.

H H � WTX
� �

WTWH
� � ð2Þ

and

W  W � XHT
� �

WHHT
� � ð3Þ

where ⊗ and / denote element-wise multiplication and division,
respectively. Therefore, Step 7 in the Algorithm can be implemented by
executing for several iterations.

In our script, the “num” was set as 30. Reproducibility was quantified
by the similarity of factors between the HC_1 and the HC_2 cohorts,
computed as the mean correlation between corresponding factor pairs
(using the Hungarian matching algorithm, which is accessible by https://
github.com/ondrejdee/hungarian/).

Reconstruction error and decomposition parameters
We aimed for the NMF decomposition latent factor to be consistent across
different datasets. Therefore, we initially computed the reconstruction error
across varying numbers of decompositions (k: 2–20) and sparsity values (λ:
0.1–0.9) in both the HC_1 and HC_2 datasets. The NMF reconstruction
error was quantified as the Frobenius norm between the original input gray
matter matrix and its corresponding reconstructed matrix.

ϵkλ ¼ jjX �W ×Hjj 2F
λ ¼ L

m

(
ð4Þ

In the formula, ϵkλ represents the decomposition error when the number of
decompositions is k and the sparsity is λ.

The Hungarian matching algorithm was then used to match the
decomposition factors of the two datasets, and the average Pearson simi-
larity of the matching factors was calculated to measure the repeatability of
NMF in different datasets. As shown in Equation [5]:

rk;λ ¼
Pk

i¼1r Wi
HC1

;Wi
HC2

� �

k
ð5Þ

In the formula, �rk;λ represents the average Pearson similarity of the two
datasetswhen the numberof decompositions is k and the sparsity is λ. Then,
select k and λ when �rk;λ is the largest as the optimal decomposition para-
meters. In line with previous research65, theNMFprocedure was performed
100 times to reduce the impact of random initializations. The final factors
were determined by selecting the one that was most similar to the decom-
positions obtained in the remaining 99 runs.

Finally, we used the reconstruction algorithm to calculate the
decomposition weight of the gray matter matrix of PPMI baseline healthy
subjects and PD at different time points under the most stable
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decomposition resultWHC_1 constraint, as shown in Equation [6].

XPPMI HC ¼WAging 1 ×HPPMI HC

XPPMI PD ¼WAging 1 ×HPPMIPD
ð6Þ

Meta-analytic functional association mapping
Probabilistic functional profiles of the identified factors were decoded using
Neurosynth v0.4.1, which is available on https://github.com/neurostuff/
NiMARE. It’s a large-scale meta-analysis platform synthesizing over 15,000
published fMRI studies66. We selected the representative regions of each
factor for meta-analysis to mitigate confounding effects and enhance ana-
lytical specificity. We quantified associations with 36 curated functional
terms spanning affective, cognitive control, sensory, and motor domains
with a frequency threshold of 0.001.Theoutput valueswere scaled to 0~1 for
a better visualization.

MDS-UPDRS for model validation
TheMDS-UPDRSwasdeveloped toprovide a comprehensive assessmentof
PD symptoms and their impact on daily functioning33. This scale was
established in response to the need for a standardized tool that could
effectively capture themultifaceted nature of PD, encompassing bothmotor
and non-motor symptoms, which can reflect the quality of patients’ life67.
TheMDS-UPDRS consists of four distinct parts: Part I evaluates non-motor
experiences of daily living, Part II assesses motor experiences of daily living,
Part III focuses on the motor examination, and Part IV addresses motor
complications. It allows a thorough evaluation of disease progression and
treatment effects. The affection of theMDS-UPDRS in longitudinal datasets
has been proven68,69. Since our research mainly focused on the evolution of
motor symptoms over time, partsⅡ andⅢ of the scale were selected for this
study to characterize and evaluate the disease trajectory of the patient.

XGBoost prediction model
To investigate whether the weights of the NMF decomposition factor can
predict longitudinal clinical scale scores, XGBoost70 was utilized to predict
the MDS-UPDRS scale scores. This selection was based on the comparison
of a range of models, including linear regression, Decision Tree, Extra Tree,
AdaBoost, and Random Forest (Supplementary Material 1). We imple-
mented a rigorous multi-stage validation approach to develop and evaluate
our predictive model. Firstly, we randomly partitioned the dataset into a
training set and an independent test set using a 3:1 ratio. To optimizemodel
performance while mitigating overfitting risks, we employed a 5-fold cross-
validation (CV) process on the training set with grid search hyperparameter
tuning. The performance of prediction models during cross-validation was
assessed using the Mean Squared Error (MSE) between the predicted and
observed scale scores, with the significance level p = 0.05. The optimally
configured model, selected based on the cross-validation results, was then
trained on the entire training set and evaluated on the independent test set.
With the limited data contexts, CV could provide more stable estimating
results, but we reported the independent testing set as the generalization
measure (SupplementaryMaterial 2). To further validate the significance of
our predictivemodel, we conducted a permutation test with 5000 iterations,
maintaining a rigorous significance threshold of p < 0.001 for determining
statistical significance of the observed predictive performance. Finally, we
computed the feature importance of each predictivemodel across the entire
dataset, with results visualized as radar charts. Feature importance analysis
was computed using the weight method. All clinical scale scores violated
normality assumptions (Kolmogorov–Smirnov test, p < 0.01 for all scales).
We therefore adopted Spearman’s rank correlation for all correlation ana-
lyses between the predicted and true scores.

Statistical analysis
Following the reconstruction of the model trained on HC_1 (mean age:
69.01) onto the younger PPMI cohort (mean age: HC 61.75; PD 61.88), we
implemented a linear adjustment to the factor weights (Supplementary
Material 2)31. Two-sample t-tests and χ² tests were used to examine group
differences in basic demographic variables. To assess significant differences
in factor values across time points, this study performed post-hoc pairwise
comparisons for each factor using LMM:

Hijt ¼ β0 þ β1 � time1 þ β2 � time2 þ β3 � ageþ β4 � sex þ β5 � education
þβ6 � TIV þ β7 � site1 þ β8 � site2 þ ui þ ϵij

ð7Þ

In the formula, Hijt represents the projected weight of the j-th factor for
subject i at time t. Age, education, and total intracranial volume (TIV)
were normalized. ui and ϵij are the random intercept and error, respectively,
and are subject to a normal distribution. The new models appropriately
account for within-subject correlations through random intercepts while
adjusting for key covariates, including age, sex, education, and TIV. Least
squares means were used to estimate expected factor values at each time
point:

μ̂t ¼ E Hijt jtime ¼ t
h i

fort 2 0; 1; 2f g ð8Þ

The Tukey HSDwas then used to control for multiple comparisons in
the analyses. All analyses were performed in R.

Data availability
Data for this study are freely available in the public domain through https://
ida.loni.usc.edu/. Specifically, our data was selected from the following
websites: Parkinson’s Progression Markers Initiative website (https://www.
ppmi-info.org/); Open Access Series of Imaging Studies 3 (https://sites.
wustl.edu/oasisbrains/home/oasis-3/); Alzheimer’s Disease Neuroimaging
Initiative (https://adni.loni.usc.edu/data-samples/adni-data/); Neuroima-
ging in Frontotemporal Dementia (https://www.allftd.org/data). For more
detailed information, please see the “Methods” section.

Code availability
All code used to perform the analyses can be found at https://github.com/
UESTC-nuero-lab/Longitudinal-NMF-identifies-the-altered-trajectory-of-
motorsymptoms-in-Parkinsons-disease.
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