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Exposure to ambient air pollution and
onset of Parkinson’s disease in a large
cohort study
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This population-based longitudinal cohort study examines the association between ambient air
pollution (PM2.5 and NO2) and Parkinson’s disease (PD) using a 28% representative sample of
Northern Ireland’s population (2009–2016). Wematched complete address records to annual average
PM2.5 and NO2 concentrations at a 1 km grid level and tracked PD onset via first receipt of PD
medication. After controlling for confounding factors at individual, household, and neighbourhood
levels, we found no association between medium-term PM2.5 or NO2 exposure and PD onset in the
overall cohort, over-50s, or sex-stratified samples. However, a positive association was observed
between PM2.5 exposure and PD onset in those under 50 in 2011, with weaker evidence for NO2. We
discuss potential etiological and non-etiological explanations for this age-related difference.

The Global Burden of Disease (GBD) study reported that 8.5 million people
globally hadParkinson’s disease (PD) in2019,with cases growingdue to aging
populations, showing a 145% increase between 1990 and 20161. In theUnited
Kingdom (UK), PDprevalence for people over 20 in 2018was 145,519, with a
lifetime diagnosis risk of 2.7%. Incidence is expected to rise above 21,000
annually by 2025, alongside an 18% rise in prevalence2. In the United States
(US) incidence rates for individuals aged 65+ range from 108 to 212 per
100,000, and from 47 to 77 per 100,000 for those aged 45+3. Understanding
modifiable determinants of PD could help to mitigate this growing problem.

The etiology of PD remains unclear, with interactions between envir-
onmental and genetic factors implicated. Some emerging evidence links
ambient air pollution, including particulate matter with a diameter of 2.5
micrometres or less (PM2.5) andnitrogendioxide (NO2) toPD

4.Ambient air
pollution may contribute directly through neuro-inflammation and oxi-
dative stress5 or indirectly through cardiovascular health6–10 or cere-
brovascular disease11. Other risk factors include dairy products, pesticides,
high body mass index, diabetes, cancer, and brain injury12.

The detrimental impact of air pollution on health in general has gar-
nered significant attention in recent years13,14. Studies specifically on
ambient air pollution and PDvary, examining pollutants such as PM2.5 and
PM10

4,13,15–31, as well as SO2, NO2, NOx, CO and Ozone4,19,21,32–34 and air-
borne metals such as lead, copper and manganese17,35,36.

Results are mixed, as evidenced by recent meta-analysis20,29,37, with
some papers showing strong statistical associations4,23,32,35,36, while others
have found weak or no associations16,19,21,31,34,38. This mixed picture is also
reflected in the few studies that have estimated multipollutant models4,30,39.

Variation in study context, exposuredurations, andoutcomemeasures likely
contributes to these discrepancies27,29. For example, studies have restricted
estimations to older age groups19,26 or younger4,16. Exposure over the short-
term (<8 days)23, medium-term (≈1 year)40, and long-term (>2 years)22 has
been analysed. Outcomes include self-reported PD cases, sometimes with
verification from neurologists16,21,31,38; PD drug prescriptions19,33; cases from
hospital or administrative databases4,21–24,26,30,32,37; and in one recent case, PD-
related mortality collected from mortality registries30. But research findings
have been mixed even within similar study types and contexts. Supple-
mentary Table 1 in the Supplemental Content provides further details.

In this paper, we studied this question using new data from a large and
nationally representative cohort tracked over an extended period. Specifi-
cally, we tracked a 28% representative sample of the Northern Ireland
population between 2009 and 2016, with complete address recordsmatched
to annual average data on PM2.5 and NO2 concentrations at the 1 km grid-
square level, with PD onset proxied by receipt of the first prescription for
PD-related medication. Because studies suggest sex differences in PD
pathophysiology (e.g., the role of oestrogen)41 and etiological differences in
early versus late PDonset42, we also analysed associations by age and sex38,40.
The study makes several distinctive contributions to the literature: it is the
first to examine this association within Northern Ireland, a comparatively
low-pollution context; our models account for delays in PD diagnoses,
typically thought to rangebetween11and13months43, but oftenoverlooked
in the existing literature; and it is one of very few studies to use prescription-
based outcome measures or include subsample analyses by age and sex in
the air pollution and PD literature.
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Results
Our main analysis sample was composed of a total of 292,925 individuals,
from which 3089 started receiving medication for PD during the analysis
period for our preferred model, i.e., at some point between 2012 semester 1
and 2016 semester 2 inclusive, or until such time as they attrited from the
sample through death or emigration.

There were clear differences in observed 2011 characteristics between
those who did and did not subsequently receive PD medication (see Table
1). For example, compared to those not experiencing PD onset over this
period, those experiencing PD onset were more likely to be older; female;
born inNorthern Ireland; without educational qualifications; to report poor
general health in the 2011 Census; to be inactive or unemployed; to be
divorced/separated/widowed or never married; to have no dependent
children in the household; to have no cars in the household; and to live in
more deprived neighbourhoods. In other words, there was a clear age/sex/
disadvantage contrast between the two groups. When comparing exposure
to pollutants over the analysis period, those experiencing PD onset were
found to be exposed to broadly similar levels of PM2.5 and NO2 on average
compared to those not experiencing PD onset, with only slightly higher
(lower) percentages in the highest (lowest) quartiles of the relevant exposure
distributions.

Table 2 presents our preferred Cox Proportional Hazard (CPH)model
estimates for the effects of medium-term exposure to PM2.5 (Panel A) and
NO2 (Panel B) on the onset of PD for the whole sample with 6-month
exposures lagged 1 year. Model 1 estimates are unadjusted with no con-
ditioning onmeasured characteristics, whileModel 2 estimates are adjusted
for measured individual, household and neighbourhood characteristics as
listed in Table 1. Full results for Model 2 are presented in Supplementary
Table 2.

Despite some evidence of an association between PD onset and lagged
PM2.5 exposure in the unadjustedmodels (Table 2,Model 1, Panel A), there
was no such evidence in the models adjusted for differences in measured
individual, household and neighbourhood factors (Table 2, Model 2), nor
for NO2 exposure in either unadjusted or adjusted models. In the linear
adjustedmodel, the estimated hazard ratios were 0.99 for a 1 μg/m3 increase
in PM2.5 and 0.99 for a 1 μg/m

3 increase in NO2 (95% confidence intervals
0.96–1.02 for PM2.5 and 0.98–1.00 for NO2), or 0.99 (0.92–1.06) for PM2.5

and 0.94 (0.89–1.00) for NO2 per IQR. EstimatedModel 2 hazard ratios for
exposure quartiles were also everywhere close to 1 and statistically insig-
nificant for both pollutants, with no suggestion of dose response.

Subsample analysis by sex and age
Tables 3 and 4 present equivalent estimates for the study population split by
sex (Table 3), and age (Table 4), respectively. In each case, we present
estimates for the linear and categorical exposure versions of themodels in a
single column to save space.

In line with Table 2, Table 3 shows no statistically significant asso-
ciations between PM2.5 or NO2 exposure and PD onset for either men or
women once estimates were adjusted for measured confounders, despite a
statistically significant associationbetweenPM2.5 exposure andPDonset for
females (but not males) in unadjusted models. Table 4 presents similar
evidence for those aged 50+ years in 2011, with no statistically significant
associations between pollution exposure andPDonset either in the adjusted
or unadjusted models, bar a statistically significant hazard ratio marginally
below 1 in the adjusted continuous model for NO2 exposure—statistically
significant at the 95% level but not the 99% level—which likely reflected
Type 1 error or residual confounding rather than a protective effect. In
contrast, positive associations between the estimated hazard rate for PD
onset and exposure to PM2.5 remained statistically significant at either the
95% or 99% level for the younger age group (under 50 years in 2011), after
adjusting for measured confounders, in both the linear and categorical
exposure models. The estimated hazard ratios were 1.05 (1.01–1.11) per
1 μg/m3 increase (1.13 (1.01–1.27) per IQR) in the adjusted linear exposure
model and 1.26 (1.01–1.56), 1.23 (0.97–1.55) and 1.30 (1.01–1.67) for
quartiles 2, 3 and 4 respectively, in the adjusted model with categorical

exposures. There was also tentative evidence of a positive association with
NO2 exposure, with the estimated hazard ratio for 3rd quartile exposure
statistically significant at the 95% level (hazard ratio 1.24, confidence
interval 1.00–1.54).

Sensitivity analysis
Our finding of no significant association between PM2.5 or NO2 exposure
and PD onset in the overall sample, after adjusting for confounders, was
robust to extensive sensitivity analysis. This included: dual-pollutantmodels
(Supplementary Fig. 1); imputing partially missing exposure data using
within-individual average exposure in adjacent periods (Supplementary
Table 3); extending the at-risk period back to 2010 semester 2 (Supple-
mentary Table 4); varying the exposure lag between 0 and 18 months with
the first at-risk period fixed at 2012 semester 1 (Supplementary Tables 5–7);
increasing the exposure lag to 18 and 24 months by varying the first at-risk
period while keeping the first exposure period fixed at 2011 semester 1
(Supplementary Tables 8 and 9); replacing six-monthly exposures with
2-year moving averages (Supplementary Tables 10–12); adopting an alter-
native onset definition requiring prescriptions in at least two consecutive
semesters (SupplementaryTable 13); re-estimation as a stratifiedCoxmodel
(by sex, age and education) to explore sensitivity to violations of the pro-
portional hazards assumption suggested by Schoenfeld residual testing
(Supplementary Table 14); and either dropping the covariates for general
health and limiting long-term illness (Supplementary Table 15) or supple-
menting these with additional covariates for chronic illness as of
2011 semester 1 or prescription-based measures for diabetes and cardio-
vascular disease as of 2011 semester 1 (Supplementary Table 16).

We also investigated age-related differences in associations by lag
length, re-estimating age-specificmodels with no lag, a 6-month lag, and an
18-month lag in pollution exposure (Supplementary Tables 17–19). Even
for the younger age group, most significant associations disappeared with
shorter lags (Supplementary Tables 17 and 18), consistent with diagnosis
delay per prior evidence43. Results were consistent with our primary model
(Table 3) when extending the lag to 18 months (Supplementary Table 19),
showing null associations for the older group and significant positive
associations for younger individuals, with some evidence of dose-response
for both pollutants. For older individuals, no positive association was found
even with longer lags, suggesting age-related differences in delays in diag-
nosis or prescription do not explain the age-group contrast. In addition,
robustness tests on age-group-specificmodels using 2-yearmoving averages
with a 1-year lag (Supplementary Table 20) and extending the analysis
window to earlier periods (Supplementary Table 21) yielded broadly con-
sistent results. Estimated PM2.5 effects remained similar to those in Table 3,
while NO2 effects were no longer statistically significant in these additional
analyses. Finally, estimated pollution effects for the younger age group were
no longer statistically significant at the 95% level when using the alternative
two-consecutive-period-prescription onset measure, although key esti-
matedHRswere similar inmagnitude (e.g. an estimatedhazard ratio of 1.06
(0.99–1.14) per 1 μg/m3 increase in PM2.5 (see Supplementary Table 22)).

Discussion
Our analysis aligns with prior studies that suggest a positive unadjusted
association between medium-term PM2.5 exposures and PD onset23–25.
However, pre-onset differences in characteristics such as age, sex and social
disadvantage necessitated statistical adjustment, after which no positive
associations with exposure to PM2.5 (nor NO2) were found, consistent with
around half of the existing studies listed in Supplementary Table 115,16,21,31.

Comparing our own findings to those of other studies is complicated
by variation in factors such as exposure levels and durations studied, the
extent to which exposures are lagged, PD measures employed, population
studied, and the extent of statistical adjustment for potentially confounding
measurable factors. For example, our study took place in a relatively low
pollution context compared to most existing studies reported in Supple-
mentary Table 1. Exceptions to this include Salimi et al.21, which similarly
found no statistically significant association between exposure to both NO2
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Table 1 | Characteristics and exposures of the study
population by PD onset

Without
PD onset

With
PD
onset

Main
analysis
sample

Full NILS
sample aged
28+ in 2011
census

Number of individuals
Individual
Characteristics (%)

289,836 3089 292,925 303,467

Age in 2011

28–30 6.3 1.6 6.3 6.3

31–35 10.3 3.8 10.2 10.1

36–40 11.1 6.1 11.1 11.9

41–45 11.9 7.2 11.8 11.6

46–50 11.8 8.3 11.8 11.5

51–55 10.5 8.8 10.5 10.3

56–60 8.9 9.1 8.9 8.7

61–65 8.5 12.3 8.5 8.4

66-70 7.1 12.5 7.1 7.1

71–75 5.4 12.2 5.4 5.5

76–80 4.0 10.7 4.1 4.3

80+ 4.2 7.4 4.3 5.2

Sex

Male 47.5 40.3 47.4 47.3

Female 52.5 59.7 52.6 52.7

Country of birth

Northern Ireland 88.1 91.4 88.1 87.7

Rest of the UK 5.2 4.7 5.2 5.3

Republic of Ireland 2.7 2.7 2.7 2.8

Born Elsewhere 3.9 1.4 3.9 4.2

Educational attainment

No educational
qualifications

32.3 54.1 33.0 33.3

Below degree or
equivalent

37.7 28.0 37.1 36.9

Degree, equivalent
or above

30.0 17.9 29.8 29.8

General health in 2011

Very good/
Good/Fair

92.1 80.7 92.0 91.5

Very Bad/Bad 7.9 19.3 8.0 8.4

Long term AL illness in 2011

No long-term AL
illness

71.9 41.6 71.6 70.4

Has a long-term AL
illness

28.1 58.4 28.4 29.6

Economic activity in 2011

Employed/Self-
Employed

57.0 28.1 56.7 55.6

Inactive/
Unemployed

43.0 71.9 43.4 44.4

Religion

Catholic 38.5 36.8 38.5 38.3

Protestant/Other 46.7 50.9 46.7 46.8

No religion or none
stated

14.8 12.3 14.8 15.0

Marital status in 2011

Never married 19.6 13.8 19.6 19.9

Table 1 (continued) | Characteristics and exposures of the
study population by PD onset

Without
PD onset

With
PD
onset

Main
analysis
sample

Full NILS
sample aged
28+ in 2011
census

Married 60.7 57.6 60.6 59.7

Separated/
Divorced/Widowed

19.5 28.6 19.6 20.2

2011 household characteristics (%)

Dependent children in HH

0 64.2 80.8 64.4 63.8

1 14.1 8.9 14.0 13.7

2 13.5 5.9 13.5 13.2

3+ 8.2 4.4 8.2 8.0

# of Cars in HH

0 15.1 22.6 15.2 15.3

1 37.9 44.9 38.0 37.6

2 34.1 23.2 34.1 33.3

3+ 12.8 9.1 12.7 12.4

# of persons per room in HH

Max 1 person 97.9 98.5 97.9 96.6

More than 1 person 2.1 1.5 2.1 2.1

Neighbourhood characteristics (%)

SOA deprivation (MDM) 2011

1 (Most Deprived) 9.3 11.4 9.3 9.4

2 9.6 10.8 9.6 9.6

3 10.1 11.9 10.1 10.6

4 10.4 11.9 10.4 10.8

5 10.5 11.1 10.6 11.2

6 10.5 9.0 10.4 10.8

7 10.3 9.2 10.3 10.5

8 10.0 9.8 10.0 9.9

9 9.9 8.1 9.8 9.2

10 (Least Deprived) 9.4 7.8 9.4 8.0

Pollution exposures (μg/m³)

PM2.5 (Mean[SD]) 7.5 [1.5] 7.6 [1.5] 7.5 [1.5]

NO2 (Mean[SD]) 9.0 [4.7] 9.1 [4.6] 9.0 [4.7]

PM2.5 quartiles (%)

<6.49 25.6 24.6 25.6

6.49–7.55 22.9 21.5 22.3

7.55–8.83 31.4 31.5 31.4

>8.83 18.0 20.3 18.0

NO2 quartiles (%)

<5.24 24.5 23.4 24.5

5.24–8.10 25.0 24.9 25.0

8.10–11.92 24.8 25.2 24.8

>11.92 23.6 24.4 23.6

Themain analysis sample consists of all NILSmembers present in the 2011 Censuswhowere aged
28 years or older at the time, had full address records, andwere not in receipt of PDmedication prior
to January 2012, and not living in a communal establishment. The last column reports statistics for
the full NILS sample aged 28+, returned at the 2011Census, but similarly excluding those receiving
PD medication prior to January 2012. The table reports the percentage of each sample reporting
each characteristic in 2011. All variables are from Census 2011 except pollution exposures which
are averaged over the whole exposure period. Pollutant quartiles are constructed using their
distributions over the whole exposure period. Statistics are unweighted. MDM refers to the 2010
Multiple Deprivation Measure linked to 2011 Census address.
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and PM2.5 and self-reported PD in New South Wales, Australia; Rumrich
et al.15 which similarly found no association between PM2.5 exposures and
PD onsets in Finnish data; and Cole-Hunter et al.30 which found a positive
and statistically significant association between PD mortality and PM2.5

exposure across six European countries, in contrast to our own finding.
Note, however, that Salimi et al.21 and Rumrich et al.15 used diagnosis-based
outcome measures (closer to our own prescriptions-based measure),
whereas Cole-Hunter et al.30 used a measure of PD mortality.

Among the few studies in the overall pollution-PD literature that have
used prescription-based outcome measures, conclusions appear similarly
mixed. For example, Cerza et al.19 (who combine drug registry data with
other outcome measures) found no statistically significant association
between PD and PM2.5 exposure. In contrast, Lee at al.33 reported a statis-
tically significant positive association, albeit for pollutants other than PM2.5

and NO2 (e.g., CO and NOx).
This study is one of few to have examined evidence for heterogeneity in

the effect of exposure to pollution onPDonset. In linewith our estimates for
the overall cohort, we found no evidence of PM2.5 or NO2 effects on PD
onset in subsamples by sex and for those aged 50+ years based on Census
2011. But we found some evidence suggesting a positive and statistically
significant association between PM2.5 and PD onset among those aged
under 50 years at that point, with a more tentative (and less robust) indi-
cation of an association with NO2 exposure. Again, existing evidence in

these respects is mixed. By sex, Lee et al.40 report a significant association
with PM2.5 exposure for males but not females, and Liu et al.38 report no
significant association for either males or females (although they report a
significant associationwithPM10 exposure for females butnotmales). These
two studies took contrasting approaches in other respects, however, with the
former paper using hospital admission records in cohort data and the latter
using self-reported measures in case-control data, for example. Lee et al.40

also estimated associations by age group, reporting a significant association
withPM2.5 exposure among studyparticipants over-65butnot among those
under-65. Though not directly comparable, the former finding appears at
odds with our own finding of a significant association for under-50s but not
for over-50s.

Our finding—unique in the literature to date—that exposure to pol-
lution (particularly PM2.5 pollution) is associated, albeit tentatively, with the
onset of PD among <50s but not with onset of PD among those aged 50+
years in the NILS-EPD cohort might reflect a genuine difference in the
etiology of PD across age cohorts. There is some existing evidence for
etiologic differences in early versus late onset of PD42. However, given that
PD has several clinical subtypes, pathogenic genes and putative causative
environmental agents44, reaching a fuller understanding of such differences
remains a challenge for the wider literature.

There may also be one or more non-etiological explanations for this
contrast. We conjecture here that one such potential explanation is

Table 2 | Hazard ratios (95% CI) for the association between
medium-term exposure to PM2.5 and NO2 and Parkinson’s
disease onset, 1 year lag, overall sample

Model 1 (Unadjusted) Model 2 (Adjusted)

(a) Linear (b) Quartiles (a) Linear (b) Quartiles

Panel A (PM2.5, μg/m
3)

Linear model 1.03**
(1.01–1.06)

0.99
(0.96–1.02)

Quartiles model

1st (reference)

2nd 1.04
(0.93–1.16)

1.01
(0.90–1.13)

3rd 1.04
(0.92–1.17)

0.98
(0.87–1.11)

4th 1.18*
(1.03–1.34)

1.01
(0.88–1.16)

Observations 2,688,153 2,688,153 2,688,153 2,688,153

Covariates No No Yes Yes

Panel B (NO2, μg/m
3)

Linear model 1.00
(1.00–1.01)

0.99
(0.98–1.00)

Quartiles model

1st (reference)

2nd 0.95
(0.85–1.06)

0.96
(0.86–1.07)

3rd 1.00
(0.89–1.12)

0.95
(0.84–1.07)

4th 1.07
(0.96–1.19)

0.94
(0.83–1.06)

Observations 2,688,153 2,688,153 2,688,153 2,688,153

Covariates No No Yes Yes

Each model is a Cox Proportional Hazard (CPH) model with standard error clustered by SOA. Each
cell presents the estimated hazard ratio for a 1 μg/m3 increase in PM2.5 (Panel A) and NO2 (Panel B)
along with the 95% confidence interval in parentheses. The table reports a medium-term exposure
effect definedasexposure topollutionover the semesterwith1 year lag.Covariates are at individual,
household and neighbourhood levels as listed in Table 1.
*p < 0.05; **p < 0.01; ***p < 0.001.

Table 3 | Hazard ratios (95% CI) for the association between
medium-term exposure to PM2.5 and NO2 and Parkinson’s
disease onset, 1 year lag, by sex

Male Female

Model 1 Model 2 Model 1 Model 2

Panel A (PM2.5, μg/m
3)

Linear model 1.01
(0.97–1.06)

0.99
(0.95–1.04)

1.05**
(1.01–1.08)

0.99
(0.95–1.03)

Quartiles model

1st (reference)

2nd 1.16
(0.97–1.39)

1.16
(0.97–1.39)

0.95
(0.82–1.11)

0.91
(0.79–1.05)

3rd 1.16
(0.96–1.40)

1.14
(0.94–1.38)

0.95
(0.81–1.12)

0.88
(0.75–1.04)

4th 1.17
(0.95–1.44)

1.09
(0.88–1.36)

1.16
(0.98–1.37)

0.95
(0.80–1.13)

Observations 1,265,787 1,265,787 1,422,366 1,422,366

Covariates No Yes No Yes

Panel B (NO2, μg/m
3)

Linear model 1.00
(0.99–1.01)

0.99
(0.98–1.01)

1.01
(1.00–1.02)

0.99
(0.98–1.00)

Quartiles model

1st (reference)

2nd 0.96
(0.81–1.14)

0.98
(0.82–1.17)

0.94
(0.81–1.08)

0.93
(0.80–1.07)

3rd 0.97
(0.82–1.14)

0.94
(0.81–1.18)

1.01
(0.88–1.16)

0.95
(0.82–1.10)

4th 1.01
(0.86–1.19)

0.94
(0.78–1.13)

1.10
(0.95–1.26)

0.93
(0.80–1.10)

Observations 1,265,787 1,265,787 1,422,366 1,422,366

Covariates No Yes No Yes

Each model is a Cox Proportional Hazard (CPH) model with standard error clustered by SOA. Each
cell presents the estimated hazard ratio for a 1 μg/m3 increase in PM2.5 (Panel A) and NO2 (Panel B)
along with the 95% confidence interval in parentheses. The table reports a medium-term exposure
effect definedasexposure topollutionover the semesterwith1 year lag.Covariates are at individual,
household and neighbourhood levels listed in Table 1.
*p < 0.05; **p < 0.01; ***p < 0.001.
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differences in the delay between onset of symptoms and PD diagnosis and/
or first prescription for PD medication, given existing evidence of higher
diagnostic delays for PD at older ages. Such delays introduce uncertainty
regarding the relevant lag structure for exposureswithinmodels of PDonset
and, crucially, might also differentially attenuate estimated associations at a
given lag length by age group. Most of the PD-pollution literature ignores
this potential source of bias4,16,19,21,23,38, although it is acknowledged by some
studies25,26. In the absence of data on the onset of symptoms, we have been
unable to examine this issue explicitly here. Nevertheless, we have shown
that our conclusions, and crucially the contrast between estimated pollution
effects for under-50s and over-50s, are robust to extending the lag of
exposures beyond 12 months, although less so to shortening the lag below
12 months. The suggestion is that diagnostic delays and/or gaps between
diagnosis and first prescription are unlikely to fully explain the contrasting
findings for the younger and older age groups, although we cannot rule out
some role.

Another explanation for the age contrast suggested here is the possi-
bility that our prescriptions-based measure disproportionately over-
estimates PD onsets among under-50s, as these drugsmay be used for other
health conditionswith overlapping symptoms, e.g. RLS andDystonia. These
conditions share some aspects of etiology with PD, involving dopaminergic
dysfunction, and thus their treatment can include enhancing dopamine
activity in the brain, like the treatment of PD. Indeed, comparing our own
estimate of PD incidence with the figures implied by statistics from the

National Institute for Health andCare Excellence (NICE)45 suggests that we
may overcount PDcases in our dataset, and by a factor of around 1.5 (NICE
suggested an incidence rate of 144 per 100,000 person-years in 2016). Based
on that rate, we should expect approximately 2160 incidences of PD across
our sample over 5 years, which is lower than the 3089 incidences we
identified.) Additionally, considering a recent meta-analysis of gender-
specific PD incidence46, the overcounting of PD onsets may be more pro-
nounced in our younger age group. Therefore, a more cautious inter-
pretation of our research is that it suggests a tentative association between
exposure to air pollution and the onset of conditions—including, but not
limited to, Parkinson’s disease (PD)—for which these drugs are prescribed
in younger age groups. In support of this more cautious interpretation,
sensitivity analysis using a stricter two-consecutive-period-prescription
measure of PD onset returned non-significant estimated hazard ratios for
both age groups. Given the limitations of our dataset, a more detailed
investigation is beyond the scope of this paper. However, this is an
important avenue for further research.

In addition to the potential measurement errors stemming from our
prescriptions-based proxy for PD onset, this study has other limitations,
including the inability to assess indoor pollution effects, despite growing
evidence of the importance of indoor air pollution in health outcomes47–49,
and reliance on modelled annual outdoor pollution averages. Furthermore,
we could not examine short-term pollution events or exposures longer than
2 years, leaving the most appropriate exposure duration for modelling PD
onset unclear. Finally, characterising the nature of the pollutants involved
would add value to the study, since some components of particulate matter
may have different effects on health than others50,51. Unfortunately, suitable
speciation data do not exist for Northern Ireland. Despite these limitations,
our findings contribute to the growing PD-pollution literature, highlighting
potential but tentative associations at younger ages even in low-pollution
contexts like Northern Ireland.

It is crucial to emphasise that our overall null finding should not
undermine the importance of reducing population exposures to PM2.5 or
NO2. Reducing these exposures remains vital due to robust evidence linking
pollution to various health outcomes and emerging evidence of its asso-
ciation with PD in specific contexts9,52–59. Our data also tentatively suggest
there may be an association with PD, or perhaps a broader class of condi-
tions for which PD-related drugs are sometimes prescribed, among
under-50s.

In conclusion, this study examines the link between medium-term air
pollution exposure and PD onset using a large, nationally representative
cohort from Northern Ireland. It benefits from complete address records
which enable linkage to pollutant concentrations at the local level over an
extended time frame, detailed Census data for statistical adjustment, and
primary care prescription data, reducing the scope for the kinds of mea-
surement errors associated with self-reports or hospital-based outcome
measures60–62. The study also explores potential differences by sex and age.
Overall, no significant associations were found between PM2.5, NO2 expo-
sure, and PD onset for this cohort, or inmales, females, and those aged 50+
years. However, we found some evidence of a statistically significant asso-
ciation between air pollution exposure and PD onset, using our
prescriptions-based proxy, among under-50s. In the absence of alternative
measures ofPDonset for this cohort, it remainsunclearhow to interpret this
estimated association. But it clearly warrants further research.

Methods
Data
We used data from a new linkage between the Northern Ireland Long-
itudinal Study (NILS), pollution data at the 1 km grid-square level, and the
Enhanced Prescribing Database (EPD). The NILS is a longitudinal study
that follows a 28%representative sample of theNorthern Irelandpopulation
drawn from the NI Health Card Registration System, which contains
address histories updated biannually. The NILS is linked to several other
administrative datasets including Census records for 2011, which provided
rich information on socioeconomic and demographic characteristics and

Table 4 | Hazard ratios (95% CI) for the association between
medium-term exposure to PM2.5 and NO2 and Parkinson’s
Disease onset, 1 year lag, by age

Age in 2011 <50 years Age in 2011 ≥50 years

Model 1 Model 2 Model 1 Model 2

Panel A (PM2.5, μg/m
3)

Linear model 1.12***
(1.07–1.17)

1.05*
(1.00–1.11)

1.00
(0.97–1.03)

0.97
(0.94–1.01)

Quartiles model

1st (reference)

2nd 1.32*
(1.06–1.64)

1.26**
(1.01–1.56)

0.94
(0.82–1.07)

0.93
(0.82–1.06)

3rd 1.33*
(1.05–1.68)

1.23
(0.97–1.55)

0.93
(0.81–1.07)

0.91
(0.79–1.05)

4th 1.65***
(1.30–2.08)

1.30*
(1.01–1.67)

1.02
(0.87–1.18)

0.93
(0.79-1.09)

Observations 1,413,737 1,413,737 1,274,416 1,274,416

Covariates No Yes No Yes

Panel B (NO2, μg/m
3)

Linear model 1.02***
(1.01–1.04)

1.00
(0.99–1.02)

0.99
(0.99–1.01)

0.99*
(0.98–1.00)

Quartiles model

1st (reference)

2nd 1.01
(0.82–1.24)

1.01
(0.81–1.24)

0.93
(0.82–1.06)

0.94
(0.82–1.06)

3rd 1.31**
(1.08–1.60)

1.24*
(1.00–1.54)

0.89
(0.78–1.01)

0.86*
(0.75–0.98)

4th 1.41***
(1.15–1.72)

1.19
(0.94–1.51)

0.95
(0.83–1.07)

0.86*
(0.75–1.00)

Observations 1,413,737 1,413,737 1,274,416 1,274,416

Covariates No Yes No Yes

Each model is a Cox Proportional Hazard (CPH) model with standard error clustered by SOA. Each
cell presents the estimated hazard ratio for a 1 μg/m3 increase in PM2.5 (Panel A) and NO2 (Panel B)
along with the 95% confidence interval in parentheses. The table reports a medium-term exposure
effect definedasexposure topollutionover the semesterwith1 year lag.Covariates are at individual,
household and neighbourhood levels listed in Table 1.
*p < 0.05; **p < 0.01; ***p < 0.001.
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contexts for sample members63. The pollution data, matched at the resi-
dential property level to NILS participants, provided annual 1 km grid-
square modelled pollution data from 2009–2016 for both PM2.5 and NO2.
These data were produced by Ricardo Energy & Environment for the UK
Government’s air quality assessments64. These data were then linked to the
EPD, which contains detailed information relating to all primary care
prescriptions dispensed in Northern Ireland since March 200865, made
available to us at six-monthly frequency from January 2010 onwards. From
this we extracted data on prescriptions in each 6-month period
(January–June (hereafter semester 1) and July–December (hereafter seme-
ster 2)) of each year, from a defined list of items covering drugs that,
according to the British National Formulary (BNF) classification system,
were prescribed for PD at the time. (Note that, in the Northern Ireland
health system the PD diagnostic process typically begins with a general
practitioner (GP) conducting an initial assessment, followed by referral to a
specialist—usually a neurologist or consultant with expertise in movement
disorders—who is responsible for making the diagnosis.) All data were
anonymized. Analysis was conducted in a trusted research environment
under strict confidentiality and security protocols by ONS-accredited
researchers. Researchers did not have access to addresses or other sensitive
information.

Analysis sample
Our main analysis sample—used for our preferred models—included all
NILSmembers present in the 2011 Census who were aged 28 years or older
at the time, had full address records, and were not in receipt of PD medi-
cation prior to the semester January–June 2012, whichwe treated as the first
at-risk period for the purposes of modelling PD onset. The first at-risk
period and associated sample exclusion condition was varied in sensitivity
analysis. Compared to the fullNILS sample returned in the 2011Census and
aged 28+ years at that time (but similarly excluding those with PD pre-
scriptions prior to 2012 semester 1), our analysis sample was slightly
(around 3.5%) smaller, mainly due to missing information on exposure to
pollution at some point during the analysis period due to incomplete
address records. In terms of measured characteristics, however, the two
samples were very similar (see Table 1).

Outcome variable
The outcome variable, drawn from the EPD, was set to 1 from the semester
at which the individual had received any prescription for PD-related
medication, including dopaminergic drugs, antimuscarinic drugs, and
treatments for tremor, chorea, tics, and related disorders, and 0 otherwise
(see Supplementary Table 23). Prescription data is commonly used in stu-
dies on air pollution and health66–68, but has rarely been used in the pollution
and PD literature19,33.

Such prescription-based measures have advantages and disadvantages
as proxies for the onset of PD. These measures are objective, requiring a
prior PD diagnosis, but may undercount or overcount PD onsets. Under-
counting is possible in caseswhere patients do not receive or delay receiving
prescriptions, or where initial treatment occurs in hospitals rather than
primary care. Such undercounting or delays could bias estimates if affected
individuals were disproportionately exposed to higher or lower pollution
levels. Sensitivity analysis varying exposure lag lengths was conducted to
address these concerns, particularly relevant given evidence of longer
diagnostic and prescription delays with increasing age of PD onset43.
Alternatively, wemayovercount PDonsets if prescriptions for drugs used to
treat PD are sometimes issued to treat other conditions with overlapping
symptoms, e.g. Restless Leg Syndrome (RLS) and Dystonia (For further
information seeNICEBNFonline https://bnf.nice.org.uk/drug/ andhttps://
bnfc.nice.org.uk/treatment-summaries/dystonias-and-related-disorders/#
dopaminergic-drugs-used-in-dystonias, as well as, NHS website: https://
www.nhs.uk/conditions/restless-legs-syndrome/treatment/). The direction
of any resulting bias will depend on the extent to which these other con-
ditions are themselves associated with air pollution exposure, which given a
lack of existing evidence, remains unknown. Comparing the estimated

incidence of PD using our prescriptions-basedmeasure to that estimated by
other methods suggested that overcounting was more likely an issue than
undercounting, at least at younger ages. We assess this evidence and its
implications for the interpretation of our estimates, particularly thosewhere
we split the sample by age group, in the discussion section.

Exposure variables
Our exposure variables were derived from annual average PM2.5 and NO2

concentrations modelled at the 1 km grid-square level across Northern
Ireland produced by Ricardo Energy & Environment for the UK Govern-
ment’s air quality assessments. These concentrations were themselves
derived from the aggregation of values from a variety of large and small
point sources, as well as area and distance sources, using various datasets,
including the UK National Atmospheric Emissions Inventory64. Modelled
concentrations were calibrated with data from the UK national monitoring
network and evaluated using data from monitoring sites not used in the
calibration process prior to their publication. These data have been used in
several existing studiesof thehealth effects of ambient air pollution exposure
within the UK69,70, including specifically in Northern Ireland71. Similar
modelled pollution data have also been used extensively in the international
literature72–75, including in the specific literature on the association between
ambient air pollution and PD16,32,34. The trade-off for the population cov-
erage that such data offer is the potential formeasurement error in pollution
concentrations. For an analysis of potential implications for estimated
health effects of exposure see Samoli et al.76.

PM2.5 and NO2 are the two pollutants which have attracted most
interest in the air pollution-PD literature to date, and our focus on these
pollutants reflected this. All individuals in the sample were assigned expo-
sure values for PM2.5 and NO2, via their residential address, for every
6-month period from January–June 2009 (2009 semester 1) through to
July–December 2016 (2016 semester 2), although in our preferred models
we use exposure data only from 2011 semester 1 onwards. Addresses are
updated every 6months in the NILS, in April andOctober of each year.We
used April addresses to determine exposures for semester 1 and October
addresses to determine exposures for semester 2 of each year. In other
words, six-monthly exposures were assigned according to address at
approximately the mid-point of each semester. Note that although the
underlying pollution data were annual frequency, there was within-year
variation in exposure in our analysis sample where (and only where) indi-
viduals changed residential address between April and October in any
given year.

These data are best suited for studying medium-term exposures,
initially defined as exposure over a 6-month period. Exposures are lagged by
1-year, reflecting evidence on the average delay between symptomonset and
PD diagnosis43. Medium-term exposure durations in the literature range
fromweeks toyears77,78. Sensitivity analysis included2-yearmovingaverages
and varied lags for both 6-month and 2-year moving average exposures
from zero (contemporaneous exposures) to 6 and 18 months.

Covariates
The 2011 Census link allowed adjustment for a rich set of individual and
household socio-economic and demographic covariates, each measured in
March 2011. These variables are listed in Table 1, along with their
(unweighted) sample means, both overall and separately for those in our
analysis sample who did and did not experience PD onset. Approximately
0.1% of the sample had non-response (missing/edited) across multiple
covariates, primarily from individuals in communal establishments during
the 2011Census, andwere excluded from the sample. Table 1 also compares
the analysis sample to the equivalent full sample of NILS members present
in 2011 Census. We supplemented these covariates with neighbourhood
deprivation indicators corresponding to 2011 Census residential address.
These give the deprivation rank decile of the individual’s residential super
output area (SOA) according to the 2010 multiple deprivation measure
(MDM) index79. Note there are 890 SOAs inNI with an average population
of 790 households.
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Model
Weused time-dependentCPHmodels,with calendar timeas theunderlying
time scale, to examine the associations between pollution exposures and the
onset of PD, as is typical in existing cohort studies of air pollution and
PD4,19,30,34.We estimated hazard ratios for the association betweenmedium-
term exposure to ambient PM2.5 and NO2 and receiving a first prescription
for PD. Following Jo et al.4 exposure to ambient air pollution was modelled
both in continuous/linear form and in categorical form (as quartiles) to
allow for non-linearity. We estimated unadjusted models as well as models
adjusted for covariates at individual, household and neighbourhood level.
Note that 7.1% of individuals are right censored at some point during the
analysis period due to death or emigration.

In our preferred model specification, our analysis of PD onset starts in
the period 2012 semester 1 with exposures measured from the corre-
sponding semester 1 year previously (2011 semester 1). This ensured that
measured exposures did not precede measurement of the covariates. In
sensitivity analysis we relaxed this restriction,modelling PDonsets from the
first available data point (2010 semester 2) with corresponding exposures
prior to the 2011 Census date, in addition to examining sensitivity to the
length and lag of the exposure period. Standard errors were clustered at the
SOA level. Analysis was performed in the trusted research environment of
the Northern Ireland Statistics and Research Agency (NISRA) using
STATA 17.

Data availability
The datasets analysed in the current study are not publicly available per our
data use agreement. The data, however, can be requested by accredited
researchers fromNorthern IrelandStatistics andResearchAgency (NISRA).
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