Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Parkinson's Disease
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj parkinson's disease
  3. articles
  4. article
Testing an inverse link between limbic alpha-synucleinopathy and myelin markers in mice and humans
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Testing an inverse link between limbic alpha-synucleinopathy and myelin markers in mice and humans

  • Rachel N. Clark1,
  • Reese E. Landes1,
  • Muslim Abbas1,
  • Victoria G. Mistretta1,
  • Jhanvi R. Jhaveri1,
  • Kieran A. DeLoatch1,
  • Jonathan Franks2,
  • Jun Chen3,4,
  • Kelvin C. Luk5,
  • Xiaoming Hu3,4 &
  • …
  • Rehana K. Leak1 

npj Parkinson's Disease , Article number:  (2026) Cite this article

  • 503 Accesses

  • 15 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neurodegenerative diseases
  • Neuroscience
  • Olfactory system
  • Parkinson's disease

Abstract

In Lewy body disease, alpha-synucleinopathic inclusions tend to develop in brain regions that extend long, thin, and unmyelinated projection fibers, but it is not known if this selective vulnerability is caused by poor myelination status. Our objective was to investigate this link in the limbic forebrain. First, we observed that levels of insoluble, hyperphosphorylated alpha-synuclein correlated inversely with the myelin marker proteolipid protein (20 kDa isoform) in the amygdala of men (but not women) with Lewy body disease. Second, select oligodendrocytic markers were mildly suppressed in the amygdala of men with Lewy body disease. Third, preformed fibrils (PFFs) of alpha-synuclein tended to induce greater pathology in gray matter, even when infused into murine brain regions penetrated by myelinated fiber bundles. Given these correlative patterns, we tested the hypothesis that myelin disruption with pharmacologic or genetic tools will exacerbate the development of limbic alpha-synucleinopathy in mice of both sexes, using a full-factorial experimental design. In nontransgenic mice with retrobulbar infusions of PFFs, dietary exposure to the established myelin disruptor cuprizone modestly increased the fraction of Triton-insoluble alpha-synuclein that was hyperphosphorylated at serine 129 (pSer129). Contrary to our hypothesis, however, cuprizone did not induce systematic, robust worsening of most pSer129+ object attributes, behavior deficits, cellular toxicity measures (NeuN+/Hoechst+ object attributes), or pan-alpha-synuclein insolubility. Similarly, PFF-induced effects on the insolubility and hyperphosphorylation of alpha-synuclein, behavior measures, and pSer129+, NeuN+, and Hoechst+ object attributes were not markedly amplified in mice heterozygous for the shiverer mutation in myelin basic protein (Mbp+/shi), compared to wild-type littermates. Although alpha-synucleinopathy is negatively associated with select myelin markers in mice and men, the causal nature of this link thus remains to be verified, and its potential implications are discussed here.

Similar content being viewed by others

Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis

Article Open access 25 March 2023

Female mice exhibit resistance to disease progression despite early pathology in a transgenic mouse model inoculated with alpha-synuclein fibrils

Article Open access 22 February 2025

Novel tools to quantify total, phospho-Ser129 and aggregated alpha-synuclein in the mouse brain

Article Open access 08 November 2024

Data availability

Full datasets for the bulk RNA-seq analyses are available at NCBI’s Gene Expression Omnibus (ID number GSE297212). The underlying code for this study is available on GitHub and can be accessed via this link: https://github.com/RachelClarkDUQ/RC_Cuprizone-Shiverer-Paper?tab=readme-ov-file#rc_cuprizone-shiverer-paper Other data will be made available upon request. Please email leakr@duq.edu.

References

  1. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    Google Scholar 

  2. Braak, H. et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J. Neurol. 249, 1–5 (2002).

    Google Scholar 

  3. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Google Scholar 

  4. Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    Google Scholar 

  5. Angot, E., Steiner, J. A., Hansen, C., Li, J. Y. & Brundin, P. Are synucleinopathies prion-like disorders? Lancet Neurol. 9, 1128–1138 (2010).

    Google Scholar 

  6. Burre, J., Sharma, M. & Sudhof, T. C. Cell Biology And Pathophysiology Of Alpha-synuclein. Cold Spring Harb. Perspect. Med. 8, https://doi.org/10.1101/cshperspect.a024091 (2018).

  7. Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).

    Google Scholar 

  8. Leak, R. K., Frosch, M. P., Beach, T. G. & Halliday, G. M. Alpha-synuclein: prion or prion-like? Acta Neuropathol. 138, 509–514 (2019).

    Google Scholar 

  9. Tamguney, G. & Korczyn, A. D. A critical review of the prion hypothesis of human synucleinopathies. Cell Tissue Res. 373, 213–220 (2018).

    Google Scholar 

  10. Volpicelli-Daley, L. & Brundin, P. Prion-like propagation of pathology in Parkinson's disease. Handb. Clin. Neurol. 153, 321–335 (2018).

    Google Scholar 

  11. Rey, N. L., Wesson, D. W. & Brundin, P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol. Dis. https://doi.org/10.1016/j.nbd.2016.12.013 (2016).

  12. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 318, 121–134 (2004).

    Google Scholar 

  13. Orimo, S. et al. Unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve in Parkinson’s disease. Neuropathol. Appl. Neurobiol. 37, 791–802 (2011).

    Google Scholar 

  14. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    Google Scholar 

  15. Hattori, T. et al. Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum. Brain Mapp. 33, 727–739 (2012).

    Google Scholar 

  16. Auning, E. et al. White matter integrity and cognition in Parkinson’s disease: a cross-sectional study. BMJ Open 4, e003976 (2014).

    Google Scholar 

  17. Braak, H. et al. Parkinson’s disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol. 99, 489–495 (2000).

    Google Scholar 

  18. Braak, H. & Del Tredici, K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol. Aging 25, 19–23 (2004).

    Google Scholar 

  19. Hatton, C. et al. Prion-like alpha-synuclein pathology in the brain of infants with Krabbe disease. Brain 145, 1257–1263 (2022).

    Google Scholar 

  20. Agarwal, D. et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat. Commun. 11, 4183 (2020).

    Google Scholar 

  21. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat. Genet 52, 482–493 (2020).

    Google Scholar 

  22. Reynolds, R. H. et al. Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson’s disease heritability. NPJ Parkinsons Dis. 5, 6 (2019).

    Google Scholar 

  23. Smajic, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain, https://doi.org/10.1093/brain/awab446 (2021).

  24. Adams, L., Song, M. K., Yuen, S., Tanaka, Y. & Kim, Y. S. A single-nuclei paired multiomic analysis of the human midbrain reveals age- and Parkinson’s disease-associated glial changes. Nat. Aging 4, 364–378 (2024).

    Google Scholar 

  25. Bae, E. J., Perez-Acuna, D., Rhee, K. H. & Lee, S. J. Changes in oligodendroglial subpopulations in Parkinson’s disease. Mol. Brain 16, 65 (2023).

    Google Scholar 

  26. Martirosyan, A. et al. Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution. Mol. Neurodegener. 19, 7 (2024).

    Google Scholar 

  27. Gallagher, C. et al. White matter microstructural integrity and executive function in Parkinson’s disease. J. Int. Neuropsychol. Soc. 19, 349–354 (2013).

    Google Scholar 

  28. Camacho, M. et al. Exploiting macro- and micro-structural brain changes for improved Parkinson’s disease classification from MRI data. NPJ Parkinsons Dis. 10, 43 (2024).

    Google Scholar 

  29. Bercury, K. K. & Macklin, W. B. Dynamics and mechanisms of CNS myelination. Dev. Cell 32, 447–458 (2015).

    Google Scholar 

  30. min, Y. et al. Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc. Natl. Acad. Sci. USA 106, 3154–3159 (2009).

    Google Scholar 

  31. Jahn, O. et al. The CNS Myelin Proteome: Deep Profile and Persistence After Post-mortem Delay. Front. Cell Neurosci. 14, 239 (2020).

    Google Scholar 

  32. Ruskamo, S. et al. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol. Life Sci. 79, 419 (2022).

    Google Scholar 

  33. Miner, K. M. et al. The variance in phosphorylated, insoluble α-synuclein in humans, rats, and mice is not mainly driven by biological sex. Acta Neuropathol. 146, 651–654 (2023).

    Google Scholar 

  34. Bhatia, T. N. et al. Heat Shock Protein 70 as a Sex-Skewed Regulator of alpha-Synucleinopathy. Neurotherapeutics 18, 2541–2564 (2021).

    Google Scholar 

  35. Miner, K. M. et al. alpha-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog. Neurobiol. 216, 102307 (2022).

    Google Scholar 

  36. Harauz, G. & Boggs, J. M. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J. Neurochem 125, 334–361 (2013).

    Google Scholar 

  37. Akiyama, K., Ichinose, S., Omori, A., Sakurai, Y. & Asou, H. Study of expression of myelin basic proteins (MBPs) in developing rat brain using a novel antibody reacting with four major isoforms of MBP. J. Neurosci. Res. 68, 19–28 (2002).

    Google Scholar 

  38. Boggs, J. M. Myelin basic protein: a multifunctional protein. Cell Mol. Life Sci. 63, 1945–1961 (2006).

    Google Scholar 

  39. Rasband, M. N. & Macklin, W. B. in Basic Neurochemistry (Eighth Edition) (eds Scott T. Brady, George J. Siegel, R. Wayne Albers, & Donald L. Price) 180-199 (Academic Press, 2012).

  40. Harauz, G. et al. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35, 503–542 (2004).

    Google Scholar 

  41. Johns, T. G. & Bernard, C. C. The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem. 72, 1–9 (1999).

    Google Scholar 

  42. Zhuo, Z. et al. Brain structural and functional alterations in MOG antibody disease. Mult. Scler. 27, 1350–1363 (2021).

    Google Scholar 

  43. Solly, S. K. et al. Myelin/oligodendrocyte glycoprotein (MOG) expression is associated with myelin deposition. Glia 18, 39–48 (1996).

    Google Scholar 

  44. Paumier, K. L. et al. Intrastriatal injection of pre-formed mouse alpha-synuclein fibrils into rats triggers alpha-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol. Dis. 82, 185–199 (2015).

    Google Scholar 

  45. Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Google Scholar 

  46. Bullock, D. N. et al. A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century. Cereb. Cortex 32, 4524–4548 (2022).

    Google Scholar 

  47. Sacino, A. N. et al. Amyloidogenic alpha-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol. 127, 645–665 (2014).

    Google Scholar 

  48. Uemura, N. et al. Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (alpha-Syn) Pathology in Synthetic alpha-Syn Fibril-Induced Mouse Models of Synucleinopathy. J. Neuropathol. Exp. Neurol. 78, 877–890 (2019).

    Google Scholar 

  49. Nouraei, N. et al. Critical appraisal of pathology transmission in the alpha-synuclein fibril model of Lewy body disorders. Exp. Neurol. 299, 172–196 (2018).

    Google Scholar 

  50. Leak, R. K. & Moore, R. Y. Identification of retinal ganglion cells projecting to the lateral hypothalamic area of the rat. Brain Res. 770, 105–114 (1997).

    Google Scholar 

  51. Leak, R. K. et al. Current insights and assumptions on alpha-synuclein in Lewy body disease. Acta Neuropathol. 148, 18 (2024).

    Google Scholar 

  52. Mason, J. L. et al. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res. 61, 251–262 (2000).

    Google Scholar 

  53. Mason, J. L. et al. Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am. J. Pathol. 164, 1673–1682 (2004).

    Google Scholar 

  54. Skripuletz, T., Gudi, V., Hackstette, D. & Stangel, M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol. Histopathol. 26, 1585–1597 (2011).

    Google Scholar 

  55. Kipp, M. How to Use the Cuprizone Model to Study De- and Remyelination. Int. J. Mol. Sci. 25, https://doi.org/10.3390/ijms25031445 (2024).

  56. Matsushima, G. K. & Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 11, 107–116 (2001).

    Google Scholar 

  57. Lindner, M., Fokuhl, J., Linsmeier, F., Trebst, C. & Stangel, M. Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci. Lett. 453, 120–125 (2009).

    Google Scholar 

  58. Franco-Pons, N., Torrente, M., Colomina, M. T. & Vilella, E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol. Lett. 169, 205–213 (2007).

    Google Scholar 

  59. Liu, L. et al. Myelin repair is accelerated by inactivating CXCR2 on nonhematopoietic cells. J. Neurosci. 30, 9074–9083 (2010).

    Google Scholar 

  60. Sachs, H. H., Bercury, K. K., Popescu, D. C., Narayanan, S. P. & Macklin, W. B. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro 6, 1759091414551955 (2014).

    Google Scholar 

  61. Steelman, A. J., Thompson, J. P. & Li, J. Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci. Res. 72, 32–42 (2012).

    Google Scholar 

  62. Stidworthy, M. F., Genoud, S., Suter, U., Mantei, N. & Franklin, R. J. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol. 13, 329–339 (2003).

    Google Scholar 

  63. Skurnack, A. M. E. et al. Voluntary Wheel Running an Effective Intervention in the Management of Excessive Food Usage in CD-1 Mice (Mus musculus). J. Am. Assoc. Lab Anim. Sci. 63, 504–512 (2024).

    Google Scholar 

  64. Zhan, J. et al. The Cuprizone Model: dos and do nots. Cells 9, https://doi.org/10.3390/cells9040843 (2020).

  65. McMurran, C. E., Zhao, C. & Franklin, R. J. M. Toxin-Based Models to Investigate Demyelination and Remyelination. Methods Mol. Biol. 1936, 377–396 (2019).

    Google Scholar 

  66. Goldberg, J., Clarner, T., Beyer, C. & Kipp, M. Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice. J. Mol. Neurosci. 57, 166–175 (2015).

    Google Scholar 

  67. Hubner, N. S. et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. NeuroImage 146, 1–18 (2017).

    Google Scholar 

  68. Silvestroff, L. et al. Cuprizone-induced demyelination in CNP::GFP transgenic mice. J. Comp. Neurol. 518, 2261–2283 (2010).

    Google Scholar 

  69. Vega-Riquer, J. M., Mendez-Victoriano, G., Morales-Luckie, R. A. & Gonzalez-Perez, O. Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases. Curr. Neuropharmacol. 17, 129–141 (2019).

    Google Scholar 

  70. Yang, H. J. et al. Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res. 1270, 121–130 (2009).

    Google Scholar 

  71. Yu, Q. et al. Strain differences in cuprizone induced demyelination. Cell Biosci. 7, 59 (2017).

    Google Scholar 

  72. Hiremath, M. M. et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 92, 38–49 (1998).

    Google Scholar 

  73. Rey, N. L. et al. Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. https://doi.org/10.1084/jem.20160368 (2016).

  74. Brunjes, P. C., Kay, R. B. & Arrivillaga, J. P. The mouse olfactory peduncle. J. Comp. Neurol. 519, 2870–2886 (2011).

    Google Scholar 

  75. Bagchi, B. et al. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination. PLoS One 9, e87736 (2014).

    Google Scholar 

  76. Ikeda, M. & Oka, Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration. Brain Behav. 2, 382–390 (2012).

    Google Scholar 

  77. Bhatia, T. N. et al. A 14-day pulse of PLX5622 modifies alpha-synucleinopathy in preformed fibril-infused aged mice of both sexes. Neurobiol Dis, 106196, https://doi.org/10.1016/j.nbd.2023.106196 (2023).

  78. Silveira-Moriyama, L. et al. Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci. Lett. 453, 77–80 (2009).

    Google Scholar 

  79. Adler, C. H. & Beach, T. G. Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov. Disord. 31, 1114–1119 (2016).

    Google Scholar 

  80. Mason, D. M. et al. The center of olfactory bulb-seeded alpha-synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathol. 29, 741–770 (2019).

    Google Scholar 

  81. Parra-Rivas, L. A. et al. Serine-129 phosphorylation of alpha-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron 111, 4006–4023.e4010 (2023).

    Google Scholar 

  82. Ramalingam, N. et al. Dynamic physiological alpha-synuclein S129 phosphorylation is driven by neuronal activity. NPJ Parkinsons Dis. 9, 4 (2023).

    Google Scholar 

  83. Killinger, B. A. et al. Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis. NPJ Parkinsons Dis. 9, 43 (2023).

    Google Scholar 

  84. Harding, A. J., Stimson, E., Henderson, J. M. & Halliday, G. M. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 125, 2431–2445 (2002).

    Google Scholar 

  85. Hsieh, L. S., Wen, J. H., Miyares, L., Lombroso, P. J. & Bordey, A. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neurosci. Lett. 637, 142–147 (2017).

    Google Scholar 

  86. Dues, D. J., Nguyen, A. P. T., Becker, K., Ma, J. & Moore, D. J. Hippocampal subfield vulnerability to alpha-synuclein pathology precedes neurodegeneration and cognitive dysfunction. NPJ Parkinsons Dis. 9, 125 (2023).

    Google Scholar 

  87. Dean, D. C. et al. Alterations of Myelin Content in Parkinson’s Disease: A Cross-Sectional Neuroimaging Study. PLoS One 11, e0163774 (2016).

    Google Scholar 

  88. Yang, K. et al. White matter changes in Parkinson’s disease. NPJ Parkinsons Dis. 9, 150 (2023).

    Google Scholar 

  89. Ibarretxe-Bilbao, N. et al. Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: A voxel-based diffusion tensor imaging study. Mov. Disord. 25, 1888–1894 (2010).

    Google Scholar 

  90. Chiang, P. L. et al. White matter damage and systemic inflammation in Parkinson’s disease. BMC Neurosci. 18, 48 (2017).

    Google Scholar 

  91. Zhang, K. et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur. J. Radio. 77, 269–273 (2011).

    Google Scholar 

  92. Joki, H. et al. White matter hyperintensities on MRI in dementia with Lewy bodies, Parkinson’s disease with dementia, and Alzheimer’s disease. J. Neurol. Sci. 385, 99–104 (2018).

    Google Scholar 

  93. Bozzali, M. et al. Brain tissue damage in dementia with Lewy bodies: an in vivo diffusion tensor MRI study. Brain 128, 1595–1604 (2005).

    Google Scholar 

  94. Nedelska, Z. et al. White matter integrity in dementia with Lewy bodies: a voxel-based analysis of diffusion tensor imaging. Neurobiol. Aging 36, 2010–2017 (2015).

    Google Scholar 

  95. Maass, F. et al. Myelin basic protein and TREM2 quantification in the CSF of patients with Multiple System Atrophy and other Parkinsonian conditions. J. Neurol. 272, 52 (2024).

    Google Scholar 

  96. Wang, Q. et al. Molecular profiling of human substantia nigra identifies diverse neuron types associated with vulnerability in Parkinson’s disease. Sci. Adv. 10, eadi8287 (2024).

    Google Scholar 

  97. Salazar Campos, J. M., Burbulla, L. F. & Jakel, S. Are oligodendrocytes bystanders or drivers of Parkinson’s disease pathology? PLoS Biol. 23, e3002977 (2025).

    Google Scholar 

  98. Fitzgerald, J. C. et al. Interactions of Oligodendrocyte Precursor Cells and Dopaminergic Neurons in the Mouse Substantia Nigra. J. Neurochem 169, e16298 (2025).

    Google Scholar 

  99. Grace, A. A. & Bunney, B. S. Nigral dopamine neurons: intracellular recording and identification with L-dopa injection and histofluorescence. Science 210, 654–656 (1980).

    Google Scholar 

  100. Geertsma, H. M. et al. A topographical atlas of alpha-synuclein dosage and cell type-specific expression in adult mouse brain and peripheral organs. NPJ Parkinsons Dis. 10, 65 (2024).

    Google Scholar 

  101. Asi, Y. T. et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 62, 964–970 (2014).

    Google Scholar 

  102. Reyes, J. F. et al. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia 62, 387–398 (2014).

    Google Scholar 

  103. Wenning, G. K., Stefanova, N., Jellinger, K. A., Poewe, W. & Schlossmacher, M. G. Multiple system atrophy: a primary oligodendrogliopathy. Ann. Neurol. 64, 239–246 (2008).

    Google Scholar 

  104. Kon, T. et al. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol. Dis. 198, 106551 (2024).

    Google Scholar 

  105. Rieker, C. et al. Neuropathology in mice expressing mouse alpha-synuclein. PLoS One 6, e24834 (2011).

    Google Scholar 

  106. Giasson, B. I. et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34, 521–533 (2002).

    Google Scholar 

  107. Ferreira, N. et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol. Commun. 9, 31 (2021).

    Google Scholar 

  108. van der Putten, H. et al. Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 20, 6021–6029 (2000).

    Google Scholar 

  109. Arai, T. et al. Argyrophilic glial inclusions in the midbrain of patients with Parkinson’s disease and diffuse Lewy body disease are immunopositive for NACP/alpha-synuclein. Neurosci. Lett. 259, 83–86 (1999).

    Google Scholar 

  110. Stevenson, T. J. et al. alpha-synuclein inclusions are abundant in non-neuronal cells in the anterior olfactory nucleus of the Parkinson’s disease olfactory bulb. Sci. Rep. 10, 6682 (2020).

    Google Scholar 

  111. Brunjes, P. C., Illig, K. R. & Meyer, E. A. A field guide to the anterior olfactory nucleus (cortex). Brain Res. Brain Res Rev. 50, 305–335 (2005).

    Google Scholar 

  112. Collins, L. N., Hill, D. L. & Brunjes, P. C. Myelination of the developing lateral olfactory tract and anterior commissure. J. Comp. Neurol. 526, 1843–1858 (2018).

    Google Scholar 

  113. Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s The mouse brain in stereotaxic coordinates. Fourth edition. edn, (Academic Press, an imprint of Elsevier, 2013).

  114. Beach, T. G. et al. Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 117, 169–174 (2009).

    Google Scholar 

  115. Ubeda-Banon, I. et al. alpha-Synucleinopathy in the human olfactory system in Parkinson’s disease: involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathol. 119, 723–735 (2010).

    Google Scholar 

  116. Pearce, R. K., Hawkes, C. H. & Daniel, S. E. The anterior olfactory nucleus in Parkinson’s disease. Mov. Disord. 10, 283–287 (1995).

    Google Scholar 

  117. Mason, D. M. et al. Transmission of alpha-synucleinopathy from olfactory structures deep into the temporal lobe. Mol. Neurodegener. 11, 49 (2016).

    Google Scholar 

  118. Mattson, M. P. & Leak, R. K. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab. 36, 315–337 (2024).

    Google Scholar 

  119. Kimura, M. et al. Restoration of myelin formation by a single type of myelin basic protein in transgenic shiverer mice. Proc. Natl. Acad. Sci. USA 86, 5661–5665 (1989).

    Google Scholar 

  120. Chernoff, G. F. Shiverer: an autosomal recessive mutant mouse with myelin deficiency. J. Hered. 72, 128 (1981).

    Google Scholar 

  121. Readhead, C. & Hood, L. The dysmyelinating mouse mutations shiverer (shi) and myelin-deficient (shimld). Behav. Genet. 20, 213–234 (1990).

    Google Scholar 

  122. Poggi, G. et al. Cortical network dysfunction caused by a subtle defect of myelination. Glia 64, 2025–2040 (2016).

    Google Scholar 

  123. Barbarese, E., Nielson, M. L. & Carson, J. H. The effect of the shiverer mutation on myelin basic protein expression in homozygous and heterozygous mouse brain. J. Neurochem. 40, 1680–1686 (1983).

    Google Scholar 

  124. Martin, M. et al. Myelin deficiencies visualized in vivo: visually evoked potentials and T2-weighted magnetic resonance images of shiverer mutant and wild-type mice. J. Neurosci. Res. 84, 1716–1726 (2006).

    Google Scholar 

  125. Cammer, W., Kahn, S. & Zimmerman, T. Biochemical abnormalities in spinal cord myelin and CNS homogenates in heterozygotes affected by the shiverer mutation. J. Neurochem. 42, 1372–1378 (1984).

    Google Scholar 

  126. Taylor, L. C., Puranam, K., Gilmore, W., Ting, J. P. & Matsushima, G. K. 17beta-estradiol protects male mice from cuprizone-induced demyelination and oligodendrocyte loss. Neurobiol. Dis. 39, 127–137 (2010).

    Google Scholar 

  127. Taylor, L. C., Gilmore, W., Ting, J. P. & Matsushima, G. K. Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J. Neurosci. Res. 88, 391–402 (2010).

    Google Scholar 

  128. Van Loo, P. L. P. et al. Strain-specific aggressive behavior of male mice submitted to different husbandry procedures. Aggress. Behav. 29, 69–80 (2003).

    Google Scholar 

  129. Cum, M. et al. A Multiparadigm Approach to Characterize Dominance Behaviors in CD1 and C57BL6 Male Mice. eNeuro 11, https://doi.org/10.1523/ENEURO.0342-24.2024 (2024).

  130. Lidster, K., Owen, K., Browne, W. J. & Prescott, M. J. Cage aggression in group-housed laboratory male mice: an international data crowdsourcing project. Sci. Rep. 9, 15211 (2019).

    Google Scholar 

  131. Polinski, N. K. et al. Best practices for generating and using Alpha-synuclein pre-formed fibrils to Model Parkinson’s disease in rodents. J. Parkinsons Dis. 8, 303–322 (2018).

    Google Scholar 

  132. Volpicelli-Daley, L. A., Luk, K. C. & Lee, V. M. Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat. Protoc. 9, 2135–2146 (2014).

    Google Scholar 

  133. Arbuckle, E. P., Smith, G. D., Gomez, M. C. & Lugo, J. N. Testing for odor discrimination and habituation in mice. JoVE (J. Vis. Exp.), e52615 (2015).

  134. Dellu, F., Contarino, A., Simon, H., Koob, G. & Gold, L. Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol. Learn. Mem. 73, 31–48 (2000).

    Google Scholar 

  135. Gross, M. & Pinhasov, A. Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav. Brain Res. 298, 25–34 (2016).

    Google Scholar 

  136. Watson, R. E. Jr., Wiegand, S. J., Clough, R. W. & Hoffman, G. E. Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7, 155–159 (1986).

    Google Scholar 

  137. Dorph-Petersen, K. A. & Lewis, D. A. Stereological approaches to identifying neuropathology in psychosis. Biol. Psychiatry 69, 113–126 (2011).

    Google Scholar 

  138. Petersen, M. S., Petersen, C. C., Agger, R., Hokland, M. & Gundersen, H. J. A simple method for unbiased quantitation of adoptively transferred cells in solid tissues. J. Immunol. Methods 309, 173–181 (2006).

    Google Scholar 

  139. Gundersen, H. J., Jensen, E. B., Kieu, K. & Nielsen, J. The efficiency of systematic sampling in stereology-reconsidered. J. Microsc 193, 199–211 (1999).

    Google Scholar 

  140. Beirowski, B. et al. Metabolic regulator LKB1 is crucial for Schwann cell–mediated axon maintenance. Nat. Neurosci. 17, 1351–1361 (2014).

    Google Scholar 

  141. Cognat, E., Cleophax, S., Domenga-Denier, V. & Joutel, A. Early white matter changes in CADASIL: evidence of segmental intramyelinic oedema in a pre-clinical mouse model. Acta Neuropathol. Commun. 2, 49 (2014).

    Google Scholar 

  142. Beirowski, B., Wong, K. M., Babetto, E. & Milbrandt, J. mTORC1 promotes proliferation of immature Schwann cells and myelin growth of differentiated Schwann cells. Proc. Natl. Acad. Sci. 114, E4261–E4270 (2017).

    Google Scholar 

  143. Goebbels, S. et al. Elevated phosphatidylinositol 3, 4, 5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964 (2010).

    Google Scholar 

  144. Sharon, R. et al. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. USA 98, 9110–9115 (2001).

    Google Scholar 

Download references

Acknowledgements

We are grateful for support by the NIH (1R15NS130532-01 and 1R21NS141002-01 to RKL). MA was supported by a Fulbright Scholarship from the Institute of International Education. We thank Walter Clark for outstanding assistance with the RStudio script. We are grateful to Drs. Johnnie Anderson and Torbjørn Kristensen at VisioPharm for their support with stereological measurements. We thank the Animal Care Facility (Rachel Barr, Ashley Yuhouse, Peyton Jackson, and Lindsay Hudson), the Center for Biologic Imaging at the University of Pittsburgh, the Graduate School of Pharmaceutical Sciences, and the Duquesne University Office of Research and Innovation for their kind support. We are grateful to Dr. Brian Popko for shipping us the shiverer breeders. JC is the Richard King Mellon Professor of Neurology at the University of Pittsburgh and supported by the VA Senior Research Career Scientist Award (821-RC-NB-30556) and Merit Review awards (I01BX005290 and I01BX003377) from the Department of Veterans Affairs.

Author information

Authors and Affiliations

  1. Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA

    Rachel N. Clark, Reese E. Landes, Muslim Abbas, Victoria G. Mistretta, Jhanvi R. Jhaveri, Kieran A. DeLoatch & Rehana K. Leak

  2. Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

    Jonathan Franks

  3. Center of Cerebrovascular Disease Research and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

    Jun Chen & Xiaoming Hu

  4. Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA

    Jun Chen & Xiaoming Hu

  5. Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

    Kelvin C. Luk

Authors
  1. Rachel N. Clark
    View author publications

    Search author on:PubMed Google Scholar

  2. Reese E. Landes
    View author publications

    Search author on:PubMed Google Scholar

  3. Muslim Abbas
    View author publications

    Search author on:PubMed Google Scholar

  4. Victoria G. Mistretta
    View author publications

    Search author on:PubMed Google Scholar

  5. Jhanvi R. Jhaveri
    View author publications

    Search author on:PubMed Google Scholar

  6. Kieran A. DeLoatch
    View author publications

    Search author on:PubMed Google Scholar

  7. Jonathan Franks
    View author publications

    Search author on:PubMed Google Scholar

  8. Jun Chen
    View author publications

    Search author on:PubMed Google Scholar

  9. Kelvin C. Luk
    View author publications

    Search author on:PubMed Google Scholar

  10. Xiaoming Hu
    View author publications

    Search author on:PubMed Google Scholar

  11. Rehana K. Leak
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.N.C. contributed to the methodology, software, validation, formal analysis, investigation, resources, visualization, and writing the original draft as well as review and editing. R.E.L. contributed to the methodology, formal analysis, investigation, writing the original draft as well as reviewing and editing the manuscript. M.A. and J.R.J contributed to methodology, investigation, and formal analysis. V.G.M., K.A.D., and J.F. contributed to formal analysis and investigation. J.C., K.C.L., and X.H. contributed to reviewing and editing the manuscript. R.K.L. contributed to the conceptualization, methodology, validation, formal analysis, investigation, resources, writing the original draft as well as review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Rehana K. Leak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, R.N., Landes, R.E., Abbas, M. et al. Testing an inverse link between limbic alpha-synucleinopathy and myelin markers in mice and humans. npj Parkinsons Dis. (2026). https://doi.org/10.1038/s41531-026-01278-y

Download citation

  • Received: 18 April 2025

  • Accepted: 19 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41531-026-01278-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner
  • 5 Questions with Our Editor-in-Chief

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Parkinson's Disease (npj Parkinsons Dis.)

ISSN 2373-8057 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing