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The role of quantum measurement in stochastic
thermodynamics
Cyril Elouard1, David A. Herrera-Martí1, Maxime Clusel2 and Alexia Auffèves1

This article sets up a new formalism to investigate stochastic thermodynamics in the quantum regime, where stochasticity and
irreversibility primarily come from quantum measurement. In the absence of any bath, we define a purely quantum component to
heat exchange, that corresponds to energy fluctuations caused by quantum measurement. Energetic and entropic signatures of
measurement-induced irreversibility are then explored for canonical experiments of quantum optics, and the energetic cost of
counter-acting decoherence is studied on a simple state-stabilizing protocol. By placing quantum measurement in a central
position, our formalism contributes to bridge a gap between experimental quantum optics and quantum thermodynamics, and
opens new paths to characterize the energetic features of quantum processing.
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INTRODUCTION
Thermodynamics arose in the 19th century as a powerful theory to
optimize thermal engines,1 i.e. the extraction and storage of energy
from thermal baths into batteries, by exploiting the transformations
of a driven working fluid (Fig. 1a). This initially applied area of
physics gave rise to fundamental concepts like thermodynamic
time arrow: The irreversibility of a transformation is quantified by
the entropy production, which must be positive according to the
second law of thermodynamics. In this classical framework,
irreversibility and work extraction are tightly related, optimal work
extraction being reached for reversible transformations.
Later on, stochastic thermodynamics extended these results at

the microscopic level; heat, work and entropy are now defined for
single trajectories followed by the system in its phase space.2, 3 In
particular, this framework accounts for the robustness of
thermodynamic irreversibility, despite the reversibility of the
physical laws at the microscopic scale;4, 5 because of the coupling
to a stochastic entity like the thermal bath, the system’s evolution
is randomly perturbed, which breaks its reversibility. Time reversal
leads to define the entropy produced in a single trajectory Δis, and
to the central Fluctuation Theorem (FT) he�Δisi¼ 1. The second law
of thermodynamics and other celebrated FTs such relations in
refs 6, 7 then appear as particular cases of this central FT,
highlighting the unifying strength of stochastic thermodynamics.
Recently, these results have started being revisited in the

quantum regime, where the working fluids, baths and batteries of
thermodynamics are quantum entities. This emerging framework
brings out new questions, e.g. related to the work value of
quantum coherence and entanglement,8–11 or the nature of
irreversibility at the quantum scale.12, 13 Extensions of the second
law, especially of FTs, to the quantum regime, have been studied
in various situations,14, 15 while quantum trajectories were
proposed as a promising operational tool to record such quantum
FTs.16–18 In this picture, quantum measurement most often plays
an informational role, such as in Maxwell’s demon setups.19

However quantum measurement is also a stochastic process that
randomizes a quantum system’s evolution, causing irreversibil-
ity.20 While in classical thermodynamics, irreversibility has a clear
energetic imprint, e.g. that alters the efficiency of heat engines, in
quantum thermodynamics, energetic signatures related to mea-
surement induced irreversibility and to the erasure of quantum
coherences have remained elusive so far.
Here we suggest a new framework for quantum thermody-

namics, where energetic aspects of such genuinely quantum
irreversibility become easily understandable in terms of operational
quantities. Our approach is based on the idea that a thermal bath in
classical thermodynamics and a measuring apparatus in quantum
mechanics play similar roles, i.e. are sources of stochasticity and
irreversibility in the system’s evolution. Our first goal is thus to build
a “thermodynamics without bath”, where stochasticity primarily
comes from quantum measurement: This corresponds to the
textbook situation of quantum mechanics where a driven system is
solely coupled to a measuring device (Fig. 1b). We introduce new
definitions for stochastic thermodynamic quantities, and especially
introduce the key concept of quantum heat, which is identified with
stochastic energy fluctuations taking place during a quantum
measurement. Building on this analogy, we then extend
our framework to the case of quantum open systems (Fig. 1c),
where quantum thermodynamics was originally developed.
Finally, we exploit this formalism to analyze energy, entropy and
information transfers in two standard situations of quantum optics:
The spontaneous emission of a Qubit and a state-stabilizing
protocol.

RESULTS
Measurement based stochastic thermodynamics
We first introduce new definitions for thermodynamic quantities,
considering the ideal situation pictured in Fig. 1b: A quantum
system S is studied between the initial time t0 and the final time
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tN. S is driven by the Hamiltonian Hs(t), and undergoes projective
measurements from the device M of eigenbasis f mKj ig and
eigenvalues fmKg. The set of eigenvalues is taken as discrete and
their number is bounded by the dimension of the system’s Hilbert
space N s. The measurements are performed at discrete times
{tn}1≤n≤N, defining a set of stochastic records fmKγðtnÞg. Finally, the
measurement basis can change in time, but we shall not explicitly
write this time-dependence. Let us suppose the initial state is a
known pure state |ψ0〉. If the measurement outcomes are read, the
system remains in a pure state |ψγ(t)〉 at any time: At time tn, the
system’s state is stochastically projected on the pure state
ψnj i ¼ jmKγðtnÞi, and until time tn+1, the system follows a
Hamiltonian evolution ψγðtÞ

�� �
¼ Gðt; tnÞ ψnj i. We have introduced

Gðv; uÞ ¼ T expð� i
�h

R v
udtHsðtÞÞ as the evolution operator between

time u and v, T being the time-ordering operator. |ψγ(t)〉 features
an elementary quantum trajectory γ, that is perfectly defined by
the measurement outcomes and the knowledge of the applied
Hamiltonian. This trajectory is the quantum analog of the classical
trajectories studied in stochastic thermodynamics, but in the
present case the stochasticity primarily comes from quantum
measurement.
If the measurements are not read, the system’s state is

described by the density matrix ρs(t), which is recovered by
averaging the system’s stochastic states over all possible
trajectories, at any time: ρsðtÞ ¼ hjψγðtÞihψγðtÞjiγ ¼

P
γPd½γ�

ψγðtÞ
�� �

ψγðtÞ
� ��. We have introduced the probability of the

trajectory γ: Pd½γ� ¼ Pd½γjψ0�pdðψ0Þ, where Pd½γjψ0� ¼
QN�1

n¼0
jhψnþ1jGðtnþ1; tnÞjψnij2. pd(ψ0) stands for the probability of the
pure initial state, and equals 1 if the state is known. It fulfils pd(ψ0)
< 1 if the state is picked from a statistical mixture of orthogonal
states fψkgN s�1

k¼0 ¼ B0: Such mixture can be prepared, e.g. by
performing some projective measurement of an unknown state in
the basis B0 before the transformation starts. After a measurement

has been performed at time tk, the system’s mean density matrix is
diagonal in the eigenbasis of M. In particular at t = tN, it writes

ρsðtNÞ ¼
XN s

K¼1

πK mKj i mKh j: ð1Þ

Measurement induced irreversibility
The quantum trajectory picture highlights the irreversible
character of a quantum measurement: Starting from the pure
state |ψ0〉 and applying the above protocol, we end up in the final
state |ψγ(tN)〉 = |ψN〉. Other trajectories can lead to the same final
state, whose final probability equals πKγðtNÞ. Reciprocally, we
consider the reverse protocol defined by picking the initial state
|ψN〉 with probability prðψNÞ ¼ πKγðtNÞ, applying the time-reversed
Hamiltonian Hs(tN−t) of corresponding evolution operator Gr, and
performing discrete measurements at times tN−n: Such reverse
protocol generally does not prepare back the state |ψ0〉. The
irreversibility associated to γ is quantified by the entropy Δis[γ]
produced along the trajectory: Denoting Pr[γr] the probability of
the time-reversed trajectory γr: |ψγ(tN−t)〉 in the reverse protocol,
the entropy production is defined as

Δis½γ� ¼ logðPd½γ�=Pr½γr�Þ: ð2Þ

Averaged over all trajectories, Eq. 2 obeys by construction the
central FT he�Δis½γ�iγ ¼

P
γPd½γ�e�Δis½γ�¼ 1, and consequently the

Second Law by convexity of the exponential 〈Δis[γ]〉γ ≥ 0. Such
entropy production can always be split into two components
involving a boundary term Δb

i s½γ� and a conditional term Δc
i s½γ�,

with

Δb
i s½γ� ¼ log

pdðψ0Þ
prðψNÞ

� �
ð3Þ

a)

b)

c)

Fig. 1 a The scenery of thermodynamics: A system S deterministically exchanges work W with an operator/battery O and stochastically
exchanges heat Q with a bath/reservoirR. The system’s evolution is randomly perturbed by the thermal bath, which is symbolized by the dice
kb. b “Thermodynamics without bath”: a driven quantum system undergoes projective quantum measurements at discrete times. Here the
evolution of the system is randomized by the measuring device M, which is symbolized by the dice ħ. Energetic fluctuations induced by
quantum measurement are identified with some heat exchange of quantum nature Qq. In the case of a stabilizing protocol, this quantum heat
exchange must be exactly compensated by the work Wfb performed by a feedback source F . c Quantum open systems: a driven system S is
coupled to a Markovian reservoir R, itself monitored by a measuring device M. The exchanges of heat can be of classical (Qcl) or of quantum
nature (Qq), and respectively correspond to the classical and quantum energy fluctuations induced by the coupling to the reservoir
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and

Δc
i s½γ� ¼ log

Pd½γjψ0�
Pr½γr jψN�

� �
: ð4Þ

We have introduced the conditional probability Pr[γr|ψN] = Pr[γr]/
pr(ψN). As jhψnþ1jGðtnþ1; tnÞjψnij2 ¼ jhψnjGrðtn; tnþ1Þjψnþ1ij

2, the
conditional term reduces to 0. As stated above, pd(ψ0) = 1 as the
initial state is known, while prðψNÞ ¼ πKγðtNÞ. We get eventually
Δis½γ� ¼ � logðπKγðtNÞÞ. The expression for the mean entropy
production writes

ΔiS ¼ hΔis½γ�iγ ¼ SVN½ρsðtNÞ�; ð5Þ

where SVN½ρsðtNÞ� ¼ �
P

KπK logðπKÞ is the Von Neumann entropy

of the final mixed state.20 By relating the change of the system’s
Von Neumann entropy to a well-defined, thermodynamic entropy
production, Eq. 5 allows quantifying the degree of irreversibility of
a given measurement process. Contrary to the entropy produced
during the relaxation in some heat bath, which can diverge as
temperature approaches zero, here the measurement entropy is
bounded by ΔiSmax ¼ � lnN s. From this study, it appears that
quantum measurement is reversible, solely if the measurement
process preserves the Von Neumann entropy of the system. If the
outcomes are recorded, this means that measuring should not
have any effect on the system’s pure state. If the outcomes are not
recorded, measuring should not induce any decoherence in the
system’s state. From an information-theoretic point of view, this
result suggests that measuring a given quantum state is all the
more irreversible as the measurement outcomes are less
predictable. Reciprocally, a measurement is reversible if its result
is certain.

Thermodynamic quantities
We now investigate the energetic implications of measurement-
induced irreversibility. To do so, we introduce the quantum analog
to the system’s internal energy, as the expectation value of the
system’s Hamiltonian if the system is in the pure quantum state
|ψγ(t)〉

UγðtÞ ¼ hψγðtÞjHsðtÞjψγðtÞi: ð6Þ

This quantity is generally understood as the average of some
energy measurement performed on identical copies of the system.
Energy fluctuations of quantum nature appear if the system is in a
superposition of energy eigenstates. Consequently, the energy is
said to be well defined, solely if the system’s state is an energy
eigenstate, to which the above definition is thus usually
restricted.14, 15 Here we extend this definition to any quantum
state of the system’s Hilbert space. It is still an operational
quantity, as it can be fully reconstructed provided that the
system’s quantum trajectory and the applied Hamiltonian are
known. In what follows, we use this quantity as our thermo-
dynamic potential: As Uγ(t) is homogeneous to an energy and
characterizes the system alone, we shall simply call it internal
energy. Let us underline that reconstructing quantities is often
required in stochastic thermodynamics, e.g. heat and work
exchanged during classical trajectories are inferred from the
record of the system’s evolution.21 Using Eq. 6, the system’s
internal energy is defined for any quantum superposition of
energy eigenstates, at any time of the quantum trajectory. In
particular, it now takes a definite value after and before a
quantum measurement, a mandatory condition to observe any
energetic imprint related to the measurement process.
“Heat” and “work” are then defined by analogy with the classical

situation: The work exchanged along the trajectory W[γ] (resp. the
heat Q[γ]) is identified with deterministic energy changes during
the Hamiltonian evolution (resp. stochastic energy changes

induced by measurement):

W½γ� ¼
X

0�n�N�1

Uγðt�nþ1Þ � Uγðtþn Þ ð7Þ

Q½γ� ¼
X

1�n�N

Uγðtþn Þ � Uγðt�n Þ: ð8Þ

tþn (resp. t�n ) stands for the time immediately after (resp. before)
the time tn of the measurement. Work quantifies the energy
exchanged with the driving source and vanishes if the Hamilto-
nian is time-independent. The elementary work performed during
time dt corresponds to a system’s Hamiltonian variation dHs(t) and
writes:

δWγðtÞ ¼ hψγðtÞjdHsðtÞjψγðtÞi: ð9Þ
On the other hand, “heat” solely appears if the measurement

process induces some evolution of the system’s state, such that
Ψγðt�n Þ
�� �

¼ Gðtn; tn�1Þ ψnj i differs from Ψγðtþn Þ
�� �

¼ mKγðtnÞ
�� E

. Note
that this quantity has no classical equivalent, it is solely due to
genuinely quantum energy fluctuations, which can take place at
zero temperature. Therefore we shall simply call it “quantum heat”,
denoted in the following Qq[γ]. This quantity already appears in,20

its physical origin being qualified as “obscure”. Actually, each
situation can give rise to a detailed energy balance accounting for
the quantum heat contribution (see the Supplementary for an
example of such analysis). But more simply, the quantum heat
appears as a natural byproduct of the standard quantum
formalism, as soon as Eq. 6 is used. In this sense, it can be seen
as a straightforward thermodynamic consequence of the mea-
surement postulate, by which a quantum system coupled to a
measuring device is actually an open system. In what follows, we
shall therefore not search for further microscopic justifications of
the quantum heat, but rather treat it as an energetic imprint of
measurement induced wave-function collapse, and a key concept
to reveal genuine quantum features.

Properties of quantum heat
For the sake of clarity we consider the case where the driving
source is switched off, such that the system’s Hamiltonian Hs is
constant and no work is exchanged. A two-points trajectory γ is
defined by preparing the system in the arbitrary state |ψ0〉 of
internal energy U0 and measuring it in the basis f mKj ig. During
the measurement, the system eventually jumps to the state mKγ

�� �
of energy UKγ

; provided that the eigenstates f mKj ig have
different internal energies, a jump can give rise to different
quantum heat contributions Qq½γ� ¼ UKγ

� U0. Repeating this
experiment many times allows reconstructing a normalized
distribution of quantum heat P½Qq� ¼

P
γPd½γ�δ

DðQq � Qq½γ�Þ
where δD stands for the Dirac distribution. The example of a
Qubit is pictured in Fig. 2. The distributions of quantum heat P[Qq]
and entropy production P½Δis� ¼

P
γPd½γ�δ

DðΔis� Δis½γ�Þ have
non zero components, solely if |ψ0〉 has coherences in the basis
f mKj ig, such that quantum measurement induces some finite
evolution of the system’s state. On the contrary, both distributions
are delta-peaked at zero if |ψ0〉 is randomly picked from a
statistical ensemble of eigenstates f mKj ig. Non zero components
in the distributions of quantum heat and entropy production are
therefore contemporary phenomena, that can be seen as the
energetic and entropic signatures of measurement induced
irreversibility. Formal relations between the two distributions can
be drawn, e.g. in the case of the quantum Jarzynski’s equality
(See Supplementary).
If the measured observable M commutes with the system’s

Hamiltonian, we obviously have hUKγ
i
γ
¼ U0, such as the average

quantum heat vanishes: hQq½γ�iγ ¼
P

γPd½γ�Qq½γ�¼ 0. On the
contrary, if M and H do not commute, performing a measurement
changes the system’s average internal energy (Fig. 2d). Remarkably
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here, measuring can provide energy to the system, strengthening
the analogy between a heat bath and a measuring apparatus. Such
mechanism can be further exploited, e.g. to develop genuinely
quantum engines, driven by quantum measurement.22

Generalized measurements and quantum open systems
The framework presented above can be extended to generalized
measurements, such as weak or destructive measurements. Here
the number of measurement outcomes is not bounded by the
dimension of the system’s Hilbert space, in particular their set can
be continuous. Recording the outcome mK results in applying the
so-called Kraus operator MK on the system’s quantum state |ψ〉.23

This event occurs with a probability pK ¼ hψjMy
KMKjψi, and the

set of Kraus operators fMKg satisfies
P

KM
y
KMK¼ 1. If the

outcomes are not read, the system’s state becomes mixed, and
its evolution under the measurement process is described by the
completely positive trace-preserving map ρs !

P
KMKρsM

y
K.

Generalized measurements provide fruitful insights into the
physics of quantum open systems. Such systems are at the core of
most physical situations currently studied in quantum thermo-
dynamics, e.g. the coupling of a quantum system to a thermal
bath,14, 15 or the continuous measurement of a Qubit,24 on which
we shall focus from now on. The most general equation describing
the average evolution of such open system is the Lindblad master
equation

_ρsðtÞ ¼ � i
�h
½HsðtÞ; ρs� þ L½ρs�: ð10Þ

We have introduced the Lindbladian superoperator
L½ρ� ¼

PN 2
s�1

k¼1 ΓkðLkρsL
y
k � 1

2 fρs; L
y
kLkgÞ expressed in term of at

mostN 2
s � 1 Lindblad operators {Lk} acting on the system’s Hilbert

space and rates γk. Because of the driving source, the Lindbladian
may also depend on time,25–27 but we shall not systematically
write this time-dependence in the following. It is always possible
to rewrite the evolution generated by Eq. 10 as some generalized
measurement performed on the quantum system at each time
step dt, that involves a set of Kraus operators fMKg:

ρsðt þ dtÞ ¼
X
K

MKρsðtÞM
y
K ð11Þ

This process can be interpreted as the result of some
unrecorded, continuous measurement performed on a Markovian
reservoir weakly coupled to the system, with stochastic outcomes
mK (Fig. 1c). The choice of a given detection scheme unambigu-
ously fixes the set of Kraus operators and the so-called unraveling
of the master equation. For a Quantum Jump (QJ) unraveling, the
set of measurement outcomes is discrete and bounded to N 2

s . In
this case the set of Kraus operators consists of at most N 2

s � 1
“jump” operators, corresponding to a macroscopic evolution of
the system’s state, i.e., a QJ. Each jump is described by one of the
Lindblad operator Lk and fulfils:

Mk ¼
ffiffiffiffiffiffiffiffiffi
Γkdt

p
Lk ð12Þ

The set of Kraus operators also contains a “no-jump”
operator ensuring trace conservation M0(t) = 1 − idtHeff(t), where

a)

c)

b)

d)

Fig. 2 Distributions of quantum heat P[Qq] for simple protocols defined by the preparation and measurement of a Qubit in arbitrary bases
{|+θ〉;|−θ〉}, with þθj i ¼ cosðθ=2Þ ej i þ sinðθ=2Þ gj i and �θj i ¼ � sinðθ=2Þ ej i þ cosðθ=2Þ gj i. |e〉 and |g〉 are the excited and ground states of the
Qubit of respective internal energies Ue ¼ ħω0=2, and Ug ¼ �ħω0=2. a, b Energetic and entropic signatures of quantum measurement. a The
Qubit is either prepared in the pure state |ψ0〉= | + θ〉 of internal energy Uþθ

¼ ħω0
2 cos2ðθÞ (dark blue arrow) or picked from a mixture ρ0 of the

states |e〉 and |g〉 with respective probabilities cos2ðθ=2Þ and sin2ðθ=2Þ (red arrow). The Qubit is then measured in the {|e〉;|g〉} basis. b
Normalized distribution of entropy production P[Δis] and of quantum heat P[Qq] for θ= π/3. P[Qq] has non zero components if the initial state
is |ψ0〉, corresponding to Ue � Uþθ

¼ sin2ðθ=2Þ (if the Qubit is measured in |e〉), and to Ug � Uþθ
¼ �cos2ðθ=2Þ (if the Qubit is measured in |g〉). In

the same case, entropy production distribution also features two peaks. P[Qq] and P[Δis] are delta-peaked at zero (red bar) if the initial state is
randomly picked from ρ0. In both cases, the average quantum heat 〈Qq〉γ is zero. c The Qubit is prepared in the pure state |ψ0〉= |e〉 (dark blue arrow)
and measured in the {|+θ〉, |−θ〉} basis. d Average quantum heat 〈Qq〉γ (solid blue) and average entropy production 〈Δis〉γ as a function of θ. The mean
quantum heat is null, solely if the measurement and Hamiltonian eigenbases commute (θ= 0). In all plots, we took �h ¼ 1
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HeffðtÞ ¼ HsðtÞ � ðdt=2Þ
PN 2

s�1
k¼1 ΓkL

y
kLk is the effective (non-hermi-

tian) system’s Hamiltonian.
Reciprocally, the readout of some continuous observable of the

reservoir corresponds to the quantum state diffusion (QSD)
unraveling. In this case, the set of Kraus operators is also continuous:
The record of some outcome between K and Kþ dK gives thus
rise to some infinitesimal evolution of the system’s state captured
by MK:

28, 29

MKðtÞ ¼ ð1� i
�h
dtHeffðtÞ þ

XN 2
s�1

k¼1

ffiffiffiffiffi
Γk

p
dwK

k ðtÞLkÞ ´
Y
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðdwK

k ðtÞÞ
q

:

ð13Þ
In this situation, all the jumps described by Lk take place with a

weight determined by the so-called Wiener increment dwK
k ðtÞ,

whose distribution over all possible trajectories satisfies

hdwK
k ðtÞiγ¼ 0 ð14Þ

hdwK
k ðtÞ

�dwK
l ðt′Þiγ ¼ dtδDðt � t′Þδkl: ð15Þ

Whatever the unraveling, knowing the initial state |ψ0〉 of the
system and the complete measurement record mKγðtÞ allows the
full reconstruction of the system’s quantum trajectory |ψγ(t)〉:
The state |ψγ(t + dt)〉 is obtained by applying the operator MKγðtÞ to
the system’s state, and then renormalizing. The evolution of |ψγ(t)〉
can be formulated in terms of a stochastic Schrödinger equation
(see Methods). Again the density matrix solution of Eq. 10 is
recovered by averaging over the trajectories: ρs(t) = 〈|ψγ(t)〉
〈ψγ(t)|〉γ. Such interpretation is the historical way in which
quantum trajectories were introduced.30 Remarkably in this
picture, the reservoir is seen as a part of some monitoring
channel extracting information on the system, and the stochas-
ticity in the system’s evolution primarily comes from quantum
measurement, just like in the ideal situation presented above.
Owing to impressive progresses in detection efficiencies, experi-
mental reconstruction of quantum trajectories is nowadays state
of the art, as demonstrated by series of pioneering results
obtained with trapped ions,31 and later on in Cavity Quantum
ElectroDynamics ref. 32 and circuit QED.33–36

Thermodynamic quantities for quantum open systems
The system’s internal energy Uγ(t) and work increment δWγ(t)
during time dt are still defined by Eq. 6 and 9, respectively, while
the heat increment is defined as δQγ(t) = dUγ(t)−δWγ(t). Both the
work and the heat increment can be expressed as the expectation
value of some work/heat operator, taken in the system’s quantum
state ψγðtÞ

�� �
¼
PN s

i¼1ψiðtÞ ij i (see Methods). The choice of a specific
basis B ¼ f ij ig to write |ψγ(t)〉 allows splitting the heat and work
increments into a classical and a quantum contribution, the later
vanishing if the coherences ψ�

i ψj of the system’s state are zero.
While the work component still quantifies the energy

exchanged with the driving source, the heat contribution now
involves two mechanisms by which the system’s energy can
change: The deterministic non-Hermitian evolution and the
stochastic QJs. These two mechanisms catch an essential
difference with respect to classical thermodynamics, namely, that
the reservoir plays a double role: it does not only exchange energy
with the system like a regular bath, but it also extracts information
on the system’s state, erasing its coherences like a measuring
apparatus. In this spirit, B can always be chosen, such that the
classical and quantum heat respectively reflect the classical and
quantum energy fluctuations induced by the reservoir.
To fix the ideas, let us consider a QJ unraveling, where each

jump operator MK ðK � 1Þ is defined as

MK ¼
ffiffiffiffiffiffiffiffiffiffi
ΓKdt

p
jðKÞj i iðKÞh j: ð16Þ

The set of orthogonal states f iðKÞj ig of respective internal
energies ϵiðKÞ defines a natural basis B. Each jump consists in a
projection on the state iðKÞj i, followed by the transition
iðKÞj i ! jðKÞj i, such that the whole process can be seen as a
destructive measurement of the state iðKÞj i. In this spirit, let us
consider the pure initial state |ψ0〉 of internal energy U0. The jump
K occurs with a probability ΓKdtjhiðKÞjψ0ij2 and gives rise to a
total heat exchange Q ¼ ϵjðKÞ � U0. This heat exchange can
always be rewritten as QclðKÞ þ Qq, where Qq ¼ ϵiðKÞ � U0 is the
quantum energy fluctuation induced by the projection on the
state iðKÞj i, and QclðKÞ ¼ ϵjðKÞ � ϵiðKÞ is usually interpreted as
the classical energy exchange with the reservoir. The value of
QclðKÞ is fixed by the jump, while Qq can take any value. Just like
in the ideal situation, the quantum heat solely shows up if the
initial state |ψ0〉 carries coherences in the basis B.

Irreversibility of quantum trajectories
The entropy produced by the trajectory γ is still defined by Eq. 2,
where the reverse protocol consists in applying the time-reversed
Hamiltonian Hs(tN−t) while the reservoir is continuously mon-
itored. The conditional terms Pd[γ|ψ0] and Pr[γr|ψN] now equal the
probability of the sequence of jumps corresponding to the
direct/reverse protocol respectively:28

Pd½γjψ0� ¼ jhψNj
YN
n¼0

MKγðtnÞ

 !
jψ0ij2: ð17Þ

Pr½γrjψN� ¼ jhψ0j
YN
n¼0

Mr
KγðtN�nÞ

 !
jψNij2: ð18Þ

We have discretized the time interval and defined the times
tn = t0 + ndt at which the measurements are performed on the
reservoir. |ψN〉 stands for the final state of the direct trajectory. So
far quantum FTs have systematically involved protocols including
some final projective measurement,14, 20 where |ψN〉 is the
corresponding eigenstate. In the present framework, the con-
sidered trajectories do not necessarily end up with such a
projective measurement: Then |ψN〉 is the final state of the
stochastic quantum trajectory.
We have introduced the time-reversed Kraus operators Mr

K.
Their definition is well established in the case of thermal
fluctuations induced by some heat bath of inverse temperature
β. This situation is usually described by a QJ unraveling.
Introducing the thermal equilibrium state πs ¼ Z�1 expð�βHsÞ
where Z is the canonical partition function, the time-reversed
Kraus operators giving rise to a jump ðK � 1Þ write ref. 37

Mr
K ¼ ffiffiffiffiffi

πs
p

My
K

ffiffiffiffiffiffiffiffi
π�1
s

q
; K � 1; ð19Þ

which simplifies into

Mr
K ¼ e

βQclðKÞ
2 My

K: ð20Þ

The time-reversed Kraus “no-jump” operator is

Mr
0ðtnÞ¼ 1þ i

�h
dtHy

effðtnÞ: ð21Þ

These expressions guarantee that if the system is at equilibrium,
a sequence of two consecutive jumps in the direct protocol occurs
with the same probability as the reverse sequence of time-
reversed jumps in the reverse protocol. If the temperature is finite,
this set of time-reversed operators allows deriving the quantum
Jarzynski’s equality for quantum open systems (see Supplemen-
tary). In what follows we rather focus on the less investigated zero
temperature case: In this case only the jumps giving rise to a
negative classical heat contribution can occur, and lead to a
divergence of entropy production. This characterizes for instance
the spontaneous emission of a Qubit (see below).
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Equation 19 can also be used to derive the time-reversed
operators corresponding to the continuous monitoring of
some system’s observable X, in the absence of any thermal bath.
Here πs is a state invariant under the measurement process,
verifying [πs, X] = 0. Such continuous measurement is described
by a QSD unraveling involving a single Lindblad operator
X = L1 characterized by the Wiener increment dw(t) = dw1(t).

38

The direct and reverse Kraus operators corresponding to the
outcome K write

MK ¼ ½1� i
�h
dtHeffðtÞ þ

ffiffiffiffiffi
Γ�

p
dwKðtÞX�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðdwKðtÞÞ

q
; ð22Þ

and

Mr
K ¼ ½1þ i

�h
dtHy

effðtÞ þ
ffiffiffiffiffi
Γ�

p
ðdwKðtÞÞ�X�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðdwKðtÞÞ

q
: ð23Þ

We have introduced the decoherence rate Γ*, which quantifies
the strength of the measurement per unit of time. These
expressions allow in particular quantifying the irreversible
character of a continuous measurement. Just like in the case of
projective measurements, the conditional term Δc

i s½γ� appearing in
Eq. 2 vanishes. In the standard case where projective measure-
ments are performed in the beginning and at the end of the
protocol, the mean entropy production writes

hΔis½γ�iγ ¼ SVN½ρs½tN�� � SVN½ρs½t0��: ð24Þ

We now exploit our formalism to analyze two typical situations
of quantum optics: The spontaneous emission of a Qubit prepared
in a coherent superposition of energy eigenstates, and the
stabilization of a quantum state by feedback protocol.

Thermodynamics of spontaneous emission
At the initial time t0, a Qubit of respective ground and excited states
|g〉 and |e〉 with transition frequency ω0 is prepared in the quantum
superposition þxj i ¼ ð ej i þ gj iÞ=

ffiffiffi
2

p
. The Qubit is coupled to a zero

temperature reservoir monitored with a photo-counter. This
corresponds to a QJ unraveling involving a single jump operator
M1 ¼

ffiffiffiffiffiffiffi
Γdt

p
σ�, where σ− = |g〉〈e| is the lowering operator and Γ the

spontaneous emission rate.23 The effective Hamiltonian writes
Heff ¼ ħðω0 � iΓ=2Þσþσ�, where σþ ¼ σy

�. The Qubit’s trajectories
are computed between t0 = 0 and tN = t, the typical monitoring time
dt verifying dt � Γ�1.
There are two classes of trajectories giving rise to two possible

final states |ψN〉. In the “jump” trajectories, the Qubit relaxes
to the ground state by emitting a photon, such that |ψN〉 = |g〉,
which happens with a probability pj(t) = (1−e−γt)/2. Reciprocally
the “no-jump” trajectory occurs with the probability
pnj(t) = (1 + e−γt)/2: The Qubit deterministically evolves under
Heff until t = tN, such that the final state writes
ψNj i ¼ ψnjðtÞ

�� �
¼ ðe�ðΓþiω0Þt=2 ej i þ eiω0t=2 gj iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�Γt

p
. Remark-

ably for t � Γ�1, the Qubit also ends up in the ground state,
while no photon has been emitted: Just like recording a click, not
detecting a photon increases the knowledge on the system’s state.
Eventually, the whole process of spontaneous emission at large times
t � Γ�1 can be seen as a measurement of the Qubit in its energy
basis, recording (resp. not recording) a click boiling down to
measuring the Qubit in |e〉 (resp. |g〉). Such measurement process is
destructive as the Qubit always ends up in |g〉. Remarkably at finite
times the measurement is performed between two non-orthogonal
states, i.e. |e〉 (if a click is recorded) and |ψnj(t)〉 (if no click is recorded).
We have analyzed the energetic and entropic signatures of this

non-ideal measurement process (See Methods and Fig. 3). The jump
induces an exchange of classical heat Qcl ¼ �ħω0, which remains
null for the no-jump trajectory. After the jump, the quantum heat
equals Qq ¼ ħω0=2, which is consistent with the Qubit being
measured in |e〉. Reciprocally along the no-jump trajectory, Qq

converges towards �ħω0=2 for t � Γ�1, which corresponds to a

measurement in |g〉. Entropy production is computed using Eqs 2, 3
and 4. As long as no jump takes place, the conditional term
Δc
i s½γ�ðtÞ defined by Eq. 4 equals 0 as the evolution is deterministic.

It diverges as soon as a click is recorded, which is typical of
spontaneous emission as argued above.
Interestingly, the boundary term remains finite in any

case, verifying Δb
i s½γ�ðtÞ ¼ � log½pnjðtÞ� (resp −log[pj(t)]) for the

no-jump trajectory (resp. for any jump trajectory). The
average boundary term for entropy creation therefore writes
Δb
i SðtÞ ¼ hΔb

i s½γ�iγðtÞ ¼ H½pnjðtÞ�, where H½p� ¼ �p logðpÞ � ð1�
pÞ logð1� pÞ stands for the Shannon’s entropy. This entropy
quantifies the information acquired at time t, i.e. the measurement
into one of the two non-orthogonal states |e〉 or |ψnj(t)〉. For
t � Γ�1, |ψnj(t)〉 converges towards |g〉 and the two states become
orthogonal, such that Δb

i S converges towards SVN½ρsðtÞ� ¼ logð2Þ.

Work cost of a feedback protocol
We now investigate the energetic requirements to perform a
state-stabilization protocol. A Qubit prepared in |+x〉 is weakly
monitored in the {|e〉, |g〉} basis, giving rise to a continuous,
stochastic measurement record yγ(t). Under the monitoring, the
system’s state evolves by infinitesimal QJs towards |e〉 or |g〉 within
a typical decoherence time Γ*−1. Here the coupling to a thermal
bath is neglected and we solely consider the stochastic
perturbation induced by the decoherence process. This situation
is described by a QSD unraveling involving a single Lindblad
operator Lz ¼

ffiffiffiffiffi
Γ�

p
σz .

39 Introducing the Wiener increment
dwγðtÞ ¼ yγðtÞ

ffiffiffiffiffiffiffi
4Γ�

p
dt,38 the system’s evolution is ruled by the

stochastic Schrödinger equation:

d ψγ

�� �
¼ ½�i

ω0dt
2

σz �
1
2
Γ�dtðσz � hσziÞ2 þ

ffiffiffiffiffi
Γ�

p
dwγðtÞ

ðσz � hσziÞ� ψγ

�� �
:

ð25Þ

During a time step, the increment of internal energy writes (See
Methods)

dUγðtÞ ¼ δQq½γ�ðtÞ¼ 4
ffiffiffiffiffi
Γ�

p
ħω0dwγðtÞjhσ�ij2: ð26Þ

Such energy fluctuations are all the larger as the measurement
strength Γ* and the Qubit’s coherences |〈σ−〉| are large. They
vanish when the Qubit’s state has converged into one of the
stable points |e〉 or |g〉 where measurement is completed. Once
integrated between 0 and t � Γ��1, the quantum heat and
internal energy change converge towards ΔU½γ� ¼ Qq½γ� ¼
± ħω0=2 as the Qubit’s state is approaching |e〉 or |g〉.
In order to counteract decoherence, the measurement record is

continuously sent to a feedback source F , which subsequently
stabilizes the state ψþðtÞ

�� �
¼ e�iω0tσz=2 þxj i by driving the Qubit

with the Hamiltonian Hfb = g(t)σy. We assume the response time τfb
of the feedback loop is much shorter than the typical monitoring
time, τfb � dt. We have studied the trajectories followed by the
Qubit under monitoring and feedback, between the initial time
t0 = 0 and tN = t. Each jump at time tk gives rise to a quantum heat
increment δQq[γ](tk), which must be compensated by some work
increment δWfb[γ](tk) for the state to be stabilized. The trajectory γ
thus gives rise to two normalized distributions

Pγ½δQq� ¼
XN
n¼0

δDðδQq � δQq½γ�ðtnÞÞ=Qq½γ�; ð27Þ

and

Pγ½δW fb� ¼
XN
n¼0

δDðδW fb � δW fb½γ�ðtnÞÞ=W fb½γ�; ð28Þ

which perfectly match if the feedback is optimal. Just like the
energy fluctuations (Eq. 26), the quantum heat distribution
quantifies the strength of the measurement performed by the
reservoir: Its typical support |δQ|max is all the larger as the rate of
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decoherence Γ* or the Qubit’s coherences 〈σ−〉 are increased. This
puts physical constraints on the feedback source, which must be
able to provide a power P = |δQ|max/τfb to stabilize the state.
Reciprocally, a finite source power Pmax leads to a cutoff in the work
distribution’s support |δWfb|

max = Pmaxτfb, eventually altering the
stabilization (See Fig. 4). In this spirit we have also studied
the dependence of the feedback’s performances, as a function of
the state to stabilize |ψtarg.〉. As expected, the support of the
quantum heat distribution is all the smaller as the state approaches
the poles of the Bloch sphere, which are stable under the
monitoring process. Therefore the feedback requires less and less
power (See Fig. 5). Just like the response time (here taken as
infinitely short), the quantum heat distribution appears as an
essential tool to evaluate the quality of a feedback loop.

DISCUSSION
It has for long been known that quantum measurement is an
essential cause of stochasticity and irreversibility in a quantum
system’s evolution, just like the coupling to a thermal bath
randomizes the evolution of classical systems. Building on this
analogy, we have identified the energetic quantum fluctuations
induced by measurement with a genuinely quantum component of
heat exchanges, and suggested a consistent framework for
quantum thermodynamics, that is entirely based on standard
quantum formalism. We have then used this framework to
investigate energetic aspects of measurement induced irreversi-
bility, and to provide a new thermodynamic perspective on
textbook situations of quantum optics. By the way, we have shown
that the concept of quantum heat is a real, physical quantity having

Fig. 3 Thermodynamics of spontaneous emission. A Qubit is prepared in the |+x〉 state and coupled to a zero-temperature reservoir
monitored with a photo-counter. a, b Quantum trajectories of the Qubit’s state in the Bloch sphere, in the case of a jump trajectory (a) and no-
jump trajectory (b). c, d Internal energy, classical and quantum heat contributions in units of ω0 as a function of time. We took �h ¼ 1. e, f two
contributions to entropy production: Δc

i s½γ� and Δb
i s½γ�, in unit of bits
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clear operational consequences, e.g. that can be used to define new
merit criteria to measure the quality of a feedback loop.
As it focuses on the energetic aspects of quantum measure-

ment and decoherence, this framework brings new tools to
understand and investigate the energetic cost of quantum
processes, which have systematically involved a thermal bath so
far. In particular, we have addressed the work cost of fighting
against decoherence on a simple physical example, that can be
generalized to more complex algorithms of quantum computing.
The analogy between a measuring device and a Markovian bath
can also be fruitfully exploited in the context of quantum engines,
where the measuring apparatus can be treated as some genuinely
quantum energy source.22 In such engines, work extraction is
altered by measurement induced irreversibility, just like classical
irreversibility decreases the efficiency of classical heat engines.

METHODS
Stochastic Schrödinger equation in QJ and QSD
In the QJ unraveling, the norm-preserving stochastic Schrödinger equation
writes:39

d ψγðtÞ
�� �

¼ � i
�h
dtHðQJÞ

eff ðtÞ þ
X
k

dNkðtÞ
Lkffiffiffiffiffiffiffiffiffiffiffiffi
hLykLki

q � 1

0
B@

1
CA

2
64

3
75 ψγðtÞ
�� �

;

where 〈·〉 = 〈ψγ(t)|·|ψγ(t)〉. We have introduced the non-hermitian Hamilto-
nian

HðQJÞ
eff ðtÞ ¼ HsðtÞ �

i�hdt
2

X
k

ΓkðLykLk � hLykLkiÞ;

and the Poisson process dNk(t) equal to 1 if the outcome KγðtÞ ¼ k is
recorded at time t, and 0 otherwise.
In the QSD unraveling, the norm-preserving stochastic Schrödinger

equation writes:28

d ψðtÞj i ¼ � i
�h
dtHðQSDÞ

eff ðtÞ þ
X
k

ffiffiffiffiffi
Γk

p
dwK

k ðtÞðLk � hLkiÞ
" #

ψðtÞj i:

Fig. 5 Efficiency of the feedback protocol depending on the state to
stabilize |ψtarg.〉. a: Standard deviation of the quantum heat increment
δQq[γ](t) depending on the latitude θ on the Bloch sphere of the state
|ψtarg.(t)〉. b: Average fidelity of the final state |ψγ(t)〉 to the target state |
ψtarg.(t)〉 as a function of the latitude θ, for different values of the feed-
back work cutoff |δWfb|

max. The error bars stand for the 99% confidence
interval. In all plots, we took �h ¼ 1. The trajectories last for t= 20/Γ*

Fig. 4 Analysis of a feedback protocol stabilizing the state ψtargetðtÞ
�� �

¼ expð�iω0σzt=2Þ þxj i. Left: Trajectory in the Bloch sphere in the case of
perfect feedback (green), imperfect feedback (blue) and without feedback (red). Right: Normalized distributions of quantum heat increments
Pγ[δQq] (dashed black) and feedback work Pγ[δWfb] (bars) performed by the feedback source F . The work distribution Pγ[δWfb] is defined like in
Eq. 28. Top right: The two distributions match, such that the state is perfectly stabilized. Bottom right: The distribution of Pγ[δWfb] is bounded and
the feedback is not perfect. Parameters: �h ¼ 1, evolution time T= 1.5/ω0, pure dephasing rate Γ*= 0.1ω0, feedback work cutoff:
jδW fbjmax¼ 0:05ω0
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We have introduced the non-hermitian Hamiltonian

HðQSDÞ
eff ðtÞ ¼ HsðtÞ þ i�h

X
k

Γk hLykiLk � 1
2L

y
kLk � 1

2jhLkij
2

� 	
:

and the set of Wigner increments fdwK
k ðtÞg1�k�N 2

s�1 verifying Eqs 14–15.

Expressions of work and heat increment operators
The work increment operator is defined by δWγ ¼ hψγðtÞj dŴðtÞjψγðtÞi. For
any unraveling, it corresponds to the Hamiltonian variation during dt:

dŴðtÞ ¼ dHsðtÞ:

The heat increment operator is defined as δQγ ¼ hψγðtÞj dQ̂ðtÞjψγðtÞi ¼
dUðtÞ � δW and depends on the unraveling. For QJ, it reads:

dQ̂ðtÞ ¼
X
k

½dNkðtÞ
LykΔsðtÞLk
hLykLki

� Γkdt
2

ðLykLkΔsðtÞ þ H:c:Þ�;

where H.c. stands for hermitic conjugate and Δs(t) = Hs(t)−Uγ(t). For QSD it
takes the form:

dQ̂ðtÞ ¼
X
k

h ffiffiffiffiffi
Γk

p
dwK

k ðtÞðL
y
kΔsðtÞ þ ΔsðtÞLkÞ þ Γkdt



LykHsðtÞLk

�1
2fL

y
kLk ;HsðtÞg

�i
:

Spontaneous emission of a qubit
Heat. As the system Hamiltonian is time-independent, the work increment is
null at any time: δW = 0. Using the heat operator for QJ unraveling, we find
that during a jump (measurement outcome mKðtÞ ¼ m1), the heat increment
is δQ ¼ �ħω0PeðtÞ, with Pe(t) = 〈ψγ(t)|σ

†σ|ψγ(t)〉 the population of the excited
atomic level. Using the decomposition presented under Eq. 16, we can write
δQ=ħ ¼ �ω0 þ ω0ð1� PeðtÞÞ, where the first term is the classical heat Qcl(1)
carried by the emitted photon, and the second quantifies the energy
fluctuation (quantum heat) due to the Qubit’s measurement in |e〉. When no
jump occurs ðmKðtÞ ¼ m0Þ, we find δQ ¼ �ħω0dtPeðtÞð1� PeðtÞÞ ¼ δQq .

Entropy production. The direct trajectory starts in |+x〉 with probability
pd(+x) = 1. The conditional probability Pd[γ|+x] is computed using Eq. 17.
For the no-jump trajectory γnj, it writes:

pnjðtÞ ¼ hψnjðtÞj
YN
n¼1

ð1� idtω0σþσ� � Γdtσþσ�=2Þjþxi
�����

�����
2

ð29Þ

¼
���hψnjðtÞj expð�ðiω0 þ ΓÞtσþσ�=2Þjþxi

���2; ð30Þ

leading to pnj(t) = (1 + e−γt)/2. The time-reversed no jump trajectory starts in
|ψnj(tN)〉 with probability pr(ψN) = Pd[γnj|+x] and ends in |+x〉, yielding
eventually:

Pr½γrnjjψf � ¼ jhþx j expððiω0 � ΓÞtσyσ=2ÞjψnjðtNÞij
2 ¼ pnjðtÞ: ð31Þ

Therefore Δc
i s½γnj�¼ 0, and Δb

i s½γnj� ¼ Δis½γnj� ¼ logð2=ð1þ e�ΓtÞÞ. For a
trajectory γj featuring a jump at time tj, with tj≤ t, the probability of the
trajectory reads:

Pd½γj jþx � ¼ Γdt ´ jhgje�ðiωþΓÞðt�tjÞσþσ�=2σe�ðiωþΓÞðtjÞσþσ�=2jþxij2: ð32Þ

leading to pjðtÞ ¼ Γdte�Γtj=2. The time-reversed trajectory γrj starts in state
|g〉 with probability pj(t) = 1−pnj(t) and involves the time-reversed operator of
σ−, which is given by Eq. 20, with QclðKÞ ¼ �ħω0. In the zero temperature
limit considered in this example, Mr

K¼ 0: Therefore Pr½γrj jþx �¼ 0, and Δc
i s½γj �

diverges. The boundary term reads: Δb
i s½γj� ¼ logð2=ð1� e�ΓtÞÞ.

Weak monitoring of a qubit
The increment of internal energy can be computed using d(〈ψγ(t)|H|ψγ(t)〉)
= d〈ψγ(t)|H|ψγ(t)〉 + 〈ψγ(t)|Hd|ψγ(t)〉 + d〈ψγ(t)|Hd|ψγ(t)〉, where the last term
has to be computed up to order dt using Ito’s rules, i.e. dwγ(t)

2 = dt, dwγ(t)
dt = 0. The Hamiltonian of the Qubit writes H ¼ ħω0σz=2, such that

dUγ ¼ ħω0

ffiffiffiffiffi
Γ�

p
dwγðtÞð1� ðhψγðtÞjσzjψγðtÞiÞ2Þ ¼

4ħω0

ffiffiffiffiffi
Γ�

p
dwγðtÞjhψγðtÞjσ�jψγðtÞij2;

ð33Þ

where we have used the identity 1−〈σz〉
2 = 4|〈σ−〉|

2.
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