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Probing quantum features of photosynthetic organisms
Tanjung Krisnanda 1, Chiara Marletto 2, Vlatko Vedral2,3, Mauro Paternostro4 and Tomasz Paterek1,5

Recent experiments have demonstrated strong coupling between living bacteria and light. Here we propose a scheme capable of
revealing non-classical features of the bacteria (quantum discord of light–bacteria correlations) without exact modelling of the
organisms and their interactions with external world. The scheme puts the bacteria in a role of mediators of quantum
entanglement between otherwise non-interacting probing light modes. We then propose a plausible model of this experiment,
using recently achieved parameters, demonstrating the feasibility of the scheme. Within this model we find that the steady-state
entanglement between the probes, which does not depend on the initial conditions, is accompanied by entanglement between
the probes and bacteria, and provides independent evidence of the strong coupling between them.
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INTRODUCTION
There is no a priori limit on the complexity, size or mass of objects
to which quantum theory is applicable. Yet, whether or not the
physical configuration of macroscopic systems could showcase
quantum coherences has been the subject of a long-standing
debate. The pioneers of quantum theory, such as Schrödinger1

and Bohr,2 wondered whether there might be limitations to living
systems obeying the laws of quantum theory. Wigner even
claimed that their behaviour violates unitarity.3

A striking way to counter such claims on the implausibility of
macroscopic quantum coherence would be the successful
preparation of quantum superposition states of living objects. A
direct route towards such goal is provided by matter–wave
interferometers, which have already been instrumental in obser-
ving quantum interference from complex molecules,4 and are
believed to hold the potential to successfully show similar results
for objects as large as viruses in the near future.
However, other possibilities exist that do not make use of

interferometric approaches. An instance of such alternatives is to
interact a living object with a quantum system in order to
generate quantum correlations. Should such correlations be as
strong as entanglement, measuring the quantum system in a
suitable basis could project the living object into a quantum
superposition. Furthermore, requesting the establishment of
entanglement is, in general, not necessary as the presence of
quantum discord, that is a weaker form of quantum correlations,
would already provide evidence that the Hilbert space spanned by
the living object must contain quantum superposition states.5–9

For example, by operating on the quantum system alone one
could remotely prepare quantum coherence in the living object.10

A promising step in this direction, demonstrating strong
coupling between living bacteria and optical fields and suggesting
the existence of entanglement between them,11 has recently been
realised.12 (See also refs 13–23 for a broader picture of quantum
effects in photosynthetic organisms.) However, the experimental

results reported in ref. 12 can as well be explained by a fully
classical model,11,12,24,25 which calls loud for the design of a
protocol with more conclusive interpretation.
In this paper, we make a proposal in such a direction by

designing a thought experiment in which the bacteria are
mediating interactions between otherwise uncoupled light
modes. This scheme fits into the general framework of ref. 26

which shows in the present context that quantum entanglement
between the light modes can only be created if the bacteria are
non-classically correlated with them during the process. It is
important to realise that in this way we bypass the need of exact
modelling of the living organisms and their interactions with
external world. Indeed, experimenters are never asked to directly
operate on the bacteria, it is solely sufficient to observe the light
modes. A positive result of this experiment, i.e. observation of
quantum entanglement between the light modes, provides an
unambiguous witness of quantum correlations, in the form of
quantum discord, between the light and bacteria.
In order to demonstrate that there should be observable

entanglement in the experiment we then propose a plausible
model of light–bacteria interactions and noises in the experiment.
We focus on the optical response of the bacteria and model their
light-sensitive part by a collection of two-level atoms with
transition frequencies matching observed bacterial spectrum.12

All processes responsible for keeping the organisms alive are thus
effectively put into the environment of these atoms. We argue
that standard Langevin approach gives a sensible treatment of
this environment due to its quasi-thermal character, low energies
compared to optical transitions and no evidence for finite-size
effects. Within this model we find scenarios with non-zero steady-
state entanglement between the light modes which is always
accompanied by light–bacteria entanglement (in addition to
quantum discord), which is in turn empowered by the strong
coupling between such systems.
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RESULTS
Thought experiment
Our idea is to design a setup which, on one hand, is close to what
has already been realised with bacteria and light, in order to utilise
their strong coupling, and whose description, on the other hand,
can be phrased within the framework of ref. 26 It was shown there
that two physical systems, A and B, coupled via a mediator C, i.e.
described by a total Hamiltonian of the form HAC+ HBC, can
become entangled only if quantum discord DAB|C is generated
during the evolution. This also holds if each system is allowed to
interact with its own local environment. Therefore, observation of
quantum entanglement between A and B is a witness of quantum
discord DAB|C during the evolution if one can ensure the following
conditions:

(i) A and B do not interact directly, i.e. there is no term HAB in
the total Hamiltonian.

(ii) All environments are local, i.e. they do not interact with each
other.

(iii) The initial state is completely unentangled (otherwise
entanglement between A and B can grow via classical C26).

We now propose a concrete scheme for revealing non-
classicality of the bacteria and argue how it meets these
conditions. Consider the arrangement in Fig. 1. The bacteria are
inside a driven single-sided multimode Fabry–Perot cavity where
they interact independently with a few cavity modes. The cavity
modes are divided into two sets which play the role of systems A
and B in the general framework. The bacteria are mediating the
interaction between the modes and hence they represent system
C. Condition (i) above can be realised in practice in at least two
ways. An experimenter could utilise the polarisation of electro-
magnetic waves and group optical modes polarised along one
direction to system A and those polarised orthogonally to system
B. Another option, which we will study in detail via a concrete
model below, is to choose different frequency modes and
arbitrarily group them into systems A and B. Condition (ii) holds
under typical experimental circumstances where the environment
of the cavity modes is outside the cavity whereas that of the
bacteria is inside the cavity or even part of bacteria themselves.
The electromagnetic environment outside the cavity is a large
system giving rise to the decay of cavity modes but having no
back-action on them. Therefore, each cavity mode decays
independently and cannot get entangled via interactions with
the electromagnetic environment. Finally, condition (iii) is satisfied
right before placing the bacteria into the cavity, because at this
time all three systems A, B, and C are in a completely uncorrelated
state ρA ⊗ ρB ⊗ ρC.

We note again that this discussion is generic with almost no
modelling of the involved systems. In particular, nothing has been
assumed regarding the physics of the bacteria and their
interactions with light and the external world. This makes our
proposal experimentally attractive. Note also that one can think of
the bacteria as a channel between the cavity modes A and B. The
method then detects non-classicality of this channel.27,28

In order to make concrete predictions about the amount of
intermodal entanglement EA:B we now study a specific model for
the energy of the discussed system. This additional assumption
about the overall Hamiltonian will allow us to demonstrate that
the entanglement EA:B is accompanied by light–bacteria entangle-
ment EAB:C. This independently confirms the presence of
light–bacteria discord as entanglement is a stronger form of
quantum correlations than discord.7–9 In the remainder of the
paper we will therefore only calculate entanglement.

Model
We consider a photosynthetic bacterium, Chlorobaculum tepidum,
that is able to survive in extreme environments with almost no
light.29 Each bacterium, which is ~2 μm× 500 nm in size, contains
200–250 chlorosomes, each having 200,000 bacteriochlorophyll c
(BChl c) molecules. Such pigment molecules serve as excitons that
can be coupled to light.12,30 The extinction spectrum of the
bacteria (BChl cmolecules) in water shows two pronounced peaks,
at wavelengths λI= 750 nm and λII= 460 nm (see Fig. 1b of ref. 12).
We therefore model the light-sensitive part of the bacteria by two
collections of N two-level atoms with transition frequencies (ΩI,
ΩII)= (2.5, 4.1) × 1015 Hz. Simplification of this model to atoms
with a single transition frequency was already shown to be able to
explain the results of recent experiments.12,30 This simplification
was adequate because only one cavity mode was relevant in the
previous experiments. In contrast, several cavity modes are
required for the observation of intermodal entanglement and it
is correspondingly more accurate to include also all relevant
transitions of BChl c molecules. We assume that the molecules
(two-level atoms in our model) are coupled through a dipole-like
mechanism to each light mode. For N≫ 1, such collections of two-
level systems can be approximated to spin N/2 angular momenta.
In the low-excitation approximation (which we will justify later),
such angular momentum can be mapped into an effective
harmonic oscillator through the use of the Holstein–Primakoff
transformation.31 This allows us to cast the energy of the overall
system as

H¼ P
m
�hωmâ

y
mâm þP

n
�hΩnb̂

y
nb̂n

þP
m;n

�hGmn âm þ âym
� �

b̂n þ b̂yn
� �

þP
m
i�hEm âyme�iΛmt � âmeiΛmt

� �
:

(1)

Here, m= 1,…,M is the label for the mth cavity mode, whose

annihilation (creation) operator is denoted by âm âym
� �

and

having frequency ωm. Moreover, both harmonic oscillators

describing the bacteria are labelled by n= I,II with b̂n b̂yn
� �

denoting the corresponding bosonic annihilation (creation)
operator. Each oscillator is coupled to the mth cavity field at a
rate Gmn. The collective form of the coupling allows us to write
Gmn ¼ gmn

ffiffiffiffi
N

p
with gmn ¼ μn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=2�hεrε0Vm

p
, where μn is the

dipole moment of the nth two-level transition, εr relative
permitivity of medium, and Vm the mth mode volume24 (see also
refs 32,33 for similar treatments). The cavity is driven by a
multimode laser, each mode having frequency Λm, amplitude
Em ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pmκm=�hΛm

p
, power Pm, and amplitude decay rate of the

corresponding cavity mode κm. It is important to notice that in Eq.

Fig. 1 Experimental setup revealing quantum features of photo-
synthetic organisms. We consider a driven single-sided multimode
Fabry–Perot cavity embedding green sulphur bacteria. Here, R1 is
the reflectivity of the input mirror, while the end mirror is perfectly
reflecting with R2 ≈ 1. A few cavity modes individually interact with
the bacteria, but not with each other. Both the bacteria and cavity
modes are open systems. In particular, the interaction between the
bacteria and their environment results in the energy decay rate 2γn.
The mth cavity field mode experiences energy dissipation at a rate
2km
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(1) we have not invoked the rotating-wave approximation but
actually retained the counter-rotating terms âmb̂n and âymb̂

y
n. These

cannot be ignored in the regime of strong coupling and we will
show that they actually play a crucial role in our proposal.
We assume the local environment of the light-sensitive part of

the bacteria to give rise to Markovian open-system dynamics,
which is modelled as decay of the two-level systems. For
justification we note that in actual experiments the bacteria are
surrounded by water which can be treated as a standard heat bath
and although the environment of interest cannot be in a thermal
state (because the bacteria are alive) its state is expected to be
quasi-thermal. Given that the bacterial environment of the BChl c
molecules is of finite size we should also justify the Markovianity
assumption. To the best of our knowledge there is no
experimental evidence against this assumption. Likely this is due
to the fact that all excitations arriving at this environment are
further rapidly dissipated to the large thermal environment of
water, whose energy is small compared to the optical transitions.
We treat the environment of the cavity modes as the usual

electromagnetic environment outside the cavity.34,35 This results
in independent decay rates of each mode. Taken all together, the
dynamics of the optical modes and bacteria can be written using
the standard Langevin formulation in Heisenberg picture. This
gives the following equations of motion, taking into account noise
and damping terms coming from interactions with the local
environments

_̂am ¼ �ðκm þ iωmÞâm � i
P
n
Gmn b̂n þ b̂yn

� �
þ Eme�iΛmt

þ ffiffiffiffiffiffiffiffi
2κm

p
F̂m;

_̂bm ¼ � γn þ iΩnð Þb̂n � i
P
m
Gmn âm þ âym

� �
þ ffiffiffiffiffiffiffi

2γn
p

Q̂n;

(2)

where γn is the amplitude decay rate of the bacterial system. F̂m
and Q̂n are operators describing independent zero-mean Gaussian
noise affecting the mth cavity field and the nth bacterial mode,
respectively. The only nonzero correlation functions between
these noises are hF̂mðtÞF̂ym0 ðt0Þi ¼ δmm0δðt � t0Þ and
hQ̂nðtÞQ̂y

n0 ðt0Þi ¼ δnn0δðt � t0Þ.34,35 We note that in this model the
light-sensitive part of the bacteria is treated collectively, i.e. all its
two-level atoms are indistinguishable. This assumption is stan-
dardly made in present-day literature, see e.g. refs 12,30 where
modelling of the bacteria/chlorosomes as a harmonic oscillator fits
observed experimental results. But it should be stressed that this
assumption deserves an in-depth experimental assessment.
We express the Langevin equations in terms of mode

quadratures. In particular, by using x̂m � ðâm þ âymÞ=
ffiffiffi
2

p
and ŷm �

ðâm � âymÞ=i
ffiffiffi
2

p
one gets a set of Langevin equations for the

quadratures that can be written in a matrix equation _uðtÞ ¼
KuðtÞ þ lðtÞ with the vector u ¼ ðx̂1; ŷ1; � � � ; x̂M; ŷM; x̂I; ŷI; x̂II; ŷIIÞT .
Here, K is a square matrix with dimension 2(M+ 2) describing the
drift and l is a 2(M+ 2) vector containing the noise and pumping
terms (see the Methods section for explicit expressions). The
solution to the Langevin equations is given by

uðtÞ ¼ WþðtÞuð0Þ þWþðtÞ
Z t

0
dt0W�ðt0Þlðt0Þ; (3)

where W±(t)= exp(±Kt).
One can construct the covariance matrix as a function of time

V(t) from Eq. (3) (cf. Methods section). Time evolution of important
quantities can then be calculated from the covariance matrix, e.g.
entanglement and excitation number (cf. Methods section). We
shall only be interested in the steady state, which is guaranteed
when all real parts of the eigenvalues of K are negative. In this case
the covariance matrix satisfies Lyapunov-like equation

K Vð1Þ þ Vð1ÞKT þ D ¼ 0; (4)

where D= Diag[κ1, κ1,…,κM, κM, γI, γI, γII, γII]. Note that the steady-
state covariance matrix does not depend on the initial conditions,
i.e. V(0). Moreover, as the Langevin equations are linear and due to
the gaussian nature of the quantum noises, the dynamics of the
system is preserving gaussianity. Therefore the steady state is a
continuous variable gaussian state completely characterised by
V(∞).

Results of calculations
We now calculate the steady-state entanglement using, wherever
possible, parameters from the experiments of ref. 12 We place the
bacteria in a single-sided Fabry–Perot cavity of length L= 518 nm
(cf. Fig. 1). The refractive index due to aqueous bacterial solution
embedded in the cavity is nr ¼ ffiffiffiffi

εr
p � 1:33, which gives the

frequency of the mth cavity mode ωm=mπc/nrL ≈ 1.37m× 1015 Hz.
The reflectivities of the mirrors are engineered such that R2=
100% and R1= 50%. We assume the reflectivities are the same for
all the optical modes, giving κm ≈ 7.5 × 1013 Hz through the finesse
F ¼ �2π=ln R1R2ð Þ ¼ πc=2κmnrL. The decay rate of the excitons
can be calculated as γn= 1/2τn, where τn= 2h/Γn is the coherence
time with Γn being the full-width at half-maximum (FWHM) of the
bacterial spectrum.36 We approximate the spectrum in Fig. 1b of
ref. 12 as a sum of two Lorentzian functions centred at ΩI and ΩII

having FWHM of (ΓI, ΓII)= (130, 600) meV, giving (γI, γII) ≈ (0.78,
3.63) × 1013 Hz, respectively. Note that the decay rate solely
depends on the coherence time, i.e. we assume only homogenous
broadening of the spectral lines.
All the spectral components of the driving laser are assumed to

have the same power Pm= 50mW and frequency Λm=ωm. By

Fig. 2 Steady-state entanglement (logarithmic negativity). Entanglement between the cavity modes, panel (a), is always accompanied by
considerable light–bacteria entanglement, panel (b), and for stronger couplings also by entanglement between the bacterial modes, panel (c).
In all cases, base coupling strengths are varied as ~GI ¼ ½0; 0:2�1015 Hz (horizontal axis) and ~GII ¼ 0 (red lines), 0.05 (green lines), 0.1 (blue lines),
0.15 (magenta lines), and 0.2 (black lines) in 1015 Hz. We have also indicated the experimentally realised coupling strength ~GI ¼ 3:9 ´ 1013 Hz
from ref. 12 and the corresponding ~GII ¼ 6 ´ 1013 Hz as black dots
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using the mode volume Vm= 2πL3/m(1− R1),
37 we can express

the interaction strength as Gmn ¼ m~Gn, where we define
~Gn � μn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1� R1ÞN=4�hn3r ε0L4

p
. This quantity is a rate that

characterises the base collective interaction strength of the cavity
mode and the nth bacterial mode. Instead of fixing the value of
~Gn, we vary this quantity ~Gn ¼ ½0; 0:2�1015 Hz, which is within
experimentally achievable regime (cf. refs 11,12).
Logarithmic negativity is chosen as entanglement quantifier

and the Methods section provides the details on how this quantity
is calculated. We consider four cavity modes as the addition of
higher modes shows negligible effects to the steady-state
entanglement. In the steady-state regime, we calculate entangle-
ment between the cavity modes E12:34, between the cavity modes
and bacteria E1234:I II, and between the bacterial modes EI:II, cf.
Figure 2. This steady-state regime is reached in ~100 fs (see
Methods), which is faster than relaxation processes (~ps) occuring
within green sulphur bacteria.30 Our results show that the steady-
state entanglement E12:34 is always accompanied by E1234:I II, i.e.
the bacteria are non-classically correlated with the cavity modes.
This is in agreement with the general detection method of ref. 26

as entanglement is a stronger type of quantum correlation than
discord, i.e. nonzero E1234:I II implies nonzero cavity modes-bacteria
discord D1234|I II. Our results also show that the entanglement
dynamics of E12:34 is dominated by modes 2 and 3 since other
modes are further off resonance with the bacterial modes.
Moreover, there is entanglement generated within the bacteria.
This requires both ~GI and ~GII to be nonzero and relatively high. We
see that the bacteria can be strongly entangled with the cavity
modes, much stronger than entanglement between the cavity
modes. While the latter is in the order of 10−2−10−3, we note that
entanglement in the range 10−2 has already been observed
experimentally between mechanical motion and microwave cavity
fields.38 We have also indicated, as black dots in Fig. 2, the
coupling strengths ~GI ¼ 3:9 ´ 1013 Hz from ref. 12 and the
corresponding ~GII ¼ 6 ´ 1013 Hz, which is estimated as follows.
From the relation μ2n /

R
f ðωÞdω=ωn,

39 where f is the extinction
coefficient, one can obtain the ratio ~GII=~GI ¼ μII=μI � 1:53.

DISCUSSION
We point out that the covariance matrix V(t), and hence the
entanglement, does not depend on the power of the lasers. This is
a consequence of the dipole–dipole coupling and classical
treatment of the driving field (see Methods). Therefore, the
system gets entangled also in the absence of the lasers. There is
no fundamental reason why this entanglement with vacuum
could not be measured, but practically it is preferable to pump the
cavity in order to improve the signal-to-noise ratio. (See also, e.g.,
ref. 40 for efficient processing of post-measurement data.) Of
course quantities other than entanglement may depend on
driving power, for example the light intensity inside the cavity as
shown in the Methods section.
This finding is quite different from results in optomechanical

system where the covariance matrix depends on laser power.26,41

The origin of this difference is the nature of the coupling. For
example, in an optomechanical system consisting of a single cavity
mode â and a mechanical mirror b̂ the coupling is proportional to
âyâx̂b, which is a third-order operator.42 This results in the effective
coupling strength being proportional to the classical cavity field
intensity α after linearisation of the Langevin equations. This classical
signal enters the covariance matrix via the effective coupling
strength and introduces the dependence on the driving power.
In order to justify the low atomic excitation limit we first note

that the number of steady-state photons for the mth cavity mode
without the presence of the bacteria is given by E2m=κ

2
m / Pm.

When one considers the bacteria in the cavity having the base
interaction strength ~Gn and a decay rate γn in the same order as

the cavity decay rate, the number of excitation of the bacterial
modes would also be in the order of E2m=κ

2
m, which in our case is

103. With ~108 actively coupled dipoles in the cavity,12 this gives
~10−3% excitation, which justifies the low-excitation approxima-
tion. We also plotted the evolution of excitation numbers of the
bacterial modes (together with the number of photons in different
cavity modes) within our model (see Methods). It shows that
excitation numbers are oscillating in the “steady state”. The
oscillations are caused by the combination of interactions
between the light and bacteria (Rabi-like oscillations) and the
time-dependent driving laser. Setting the interactions Gmn= 0 or
the driving off (Pm= 0) indeed produces constant steady-state
value. We observe that the excitation number of the bacterial
system is always bellow 2000, which is in agreement with the
statement above.
We also performed similar calculations in which we neglected

the counter rotating terms in Eq. (1), the model known as
Tavis–Cummings. This resulted in no entanglement generated in
the steady state and can be intuitively understood as follows.
Since the steady-state covariance matrix does not depend on the
initial state and on the power of the driving lasers, we might start
with all atoms in the ground state, vacuum for the light modes,
and no driving. Under such circumstances there is no interaction
between bacterial modes and light modes as every term in the
interaction Hamiltonian contains an annihilation operator. In
physical terms, since we begin with the lowest energy state and
the interaction Hamiltonian preserves energy, the ground state
will be the state of affairs at any time. Therefore, nonzero
entanglement observed in experiments will provide evidence of
the counter rotating terms in the coupling.

METHODS
Evolution of quadratures
The Langevin equations for the quadratures can be written in a simple
matrix equation _uðtÞ ¼ KuðtÞ þ lðtÞ, with the vector u ¼
ðx̂1; ŷ1; � � � ; x̂M; ŷM; x̂I; ŷI; x̂II; ŷIIÞT and

K ¼

I1 0 � � � 0 L1I L1II
0 I2 � � � 0 L2I L2II

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � IM LMI LMII

L1I L2I � � � LMI II 0

L1II L2II � � � LMII 0 III

0
BBBBBBBBB@

1
CCCCCCCCCA
; (5)

where the components are 2 × 2 matrices given by

Im ¼ �κm ωm

�ωm �κm

� �
; Lmn ¼

0 0

�2Gmn 0

� �
;

In ¼
�γn Ωn

�Ωn �γn

� �
; (6)

and 0 is a 2 × 2 zero matrix. Note that we have used the indexm= 1,2,…,M
for the cavity modes and n= I,II for the bacterial modes. We split the last
term in the matrix equation into two parts, representing the noise and
pumping, respectively, i.e. l(t)= η(t)+ p(t) where

ηðtÞffiffiffi
2

p ¼

ffiffiffiffiffi
κ1

p
X̂1ðtÞffiffiffiffiffi

κ1
p

Ŷ1ðtÞ
..
.

ffiffiffiffiffiffi
κM

p
X̂MðtÞffiffiffiffiffiffi

κM
p

ŶMðtÞffiffiffiffiffi
γ I

p
X̂ I ðtÞffiffiffiffiffi

γ I
p

Ŷ I ðtÞffiffiffiffiffiffi
γ II

p
X̂ II ðtÞffiffiffiffiffiffi

γ II
p

Ŷ II ðtÞ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;
pðtÞffiffiffi
2

p ¼

E1cosΛ1t

�E1sinΛ1t

..

.

EMcosΛMt

�EMsinΛMt

0

0

0

0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: (7)
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We have also used quadratures for the noise terms, i.e. through F̂m ¼
ðX̂m þ iŶmÞ=

ffiffiffi
2

p
and Q̂n ¼ ðX̂n þ iŶnÞ=

ffiffiffi
2

p
.

The solution to the Langevin equations is given by

uðtÞ ¼ WþðtÞuð0Þ þWþðtÞ
Z t

0
dt0W�ðt0Þlðt0Þ; (8)

where W±(t)= exp(±Kt). This allows numerical calculation of expectation
value of the quadratures as a function of time, i.e. 〈ui(t)〉 is given by the ith
element of

WþðtÞhuð0Þi þWþðtÞ
Z t

0
dt0W�ðt0Þpðt0Þ; (9)

which is obtained as follows. Since every component of p(t) is not an
operator, we have 〈pk(t)〉= tr(pk(t)ρ)= pk(t). Also, we have used the fact
that the noises have zero mean, i.e. 〈ηk(t)〉= 0.

Covariance matrix
Covariance matrix of our system is defined as Vij(t)≡ 〈{Δui(t), Δuj(t)}〉/2=
〈ui(t)uj(t)+ uj(t)ui(t)〉/2− 〈ui(t)〉〈uj(t)〉, where we have used Δui(t)= ui(t)−
〈ui(t)〉. This means that p(t) does not contribute to Δui(t) (and hence the
covariance matrix) since 〈pk(t)〉= pk(t). We can then construct the
covariance matrix at time t from Eq. (8) without considering p(t) as follows:

VijðtÞ ¼ huiðtÞujðtÞ þ ujðtÞuiðtÞi=2� huiðtÞihujðtÞi
VðtÞ ¼ WþðtÞVð0ÞWT

þðtÞ þWþðtÞ
R t
0dt

0W�ðt0ÞDWT
�ðt0ÞWT

þðtÞ;
(10)

where D= Diag[κ1, κ1,…,κM, κM, γI, γI, γII, γII] and we have assumed that the
initial quadratures are not correlated with the noise quadratures such that
the mean of the cross terms are zero. A more explicit solution of the
covariance matrix, after integration in Eq. (10), is given by

KVðtÞ þ VðtÞKT ¼ �Dþ KWþðtÞVð0ÞWT
þðtÞ

þWþðtÞVð0ÞWT
þðtÞKT

þWþðtÞDWT
þðtÞ;

(11)

which is linear and can be solved numerically.
The steady state is guaranteed when all real parts of the eigenvalues of K

are negative, i.e. W+(∞)= 0. In this case the covariance matrix satisfies
Eq. (4).

Entanglement from covariance matrix
The covariance matrix V describing our system can be written in block
form

V ¼

B11 B12 � � � B1Z
BT12 B22 � � � B2Z

..

. ..
. . .

. ..
.

BT1Z BT2Z � � � BZZ

0
BBBB@

1
CCCCA; (12)

where Z is the total number of modes, which is M+ 2 in our case. The
block component, here denoted as Bjk, is a 2 × 2 matrix describing local
mode correlation when j= k and intermodal correlation when j ≠ k. A Z-
mode covariance matrix has symplectic eigenvalues fνkgZk¼1 that can be
computed from the spectrum of matrix |iΩZV|

43 where

ΩZ ¼
Z

�
k ¼ 1

0 1

�1 0

� �
: (13)

For a physical covariance matrix 2νk ≥ 1.
Entanglement is calculated as follows. For example, the calculation in

the partition 12:34 only requires the covariance matrix of modes 1, 2, 3,
and 4:

V ¼

B11 B12 B13 B14
BT12 B22 B23 B24
BT13 BT23 B33 B34
BT14 BT24 BT34 B44

0
BBB@

1
CCCA; (14)

that can be obtained from Eq. (12). If the covariance matrix ~V , after partial
transposition with respect to mode 3 and 4 (this is equivalent to flipping
the sign of the operator ŷ3 and ŷ4 in V) is not physical, then our system is
entangled. This unphysical ~V is shown by its minimum symplectic
eigenvalue ~νmin<1=2. Entanglement is then quantified by logarithmic
negativity as follows E12:34 ¼ max½0;�lnð2~νminÞ�.44,45 Note that the
separability condition, when ~νmin � 1=2, is sufficient and necessary when
one considers bipartitions with one mode on one side,46 e.g. partition
between bacterial modes I:II.

Dynamics of entanglement and excitation numbers
Let us consider as initial the time right before the bacteria are inserted into
the cavity. Then all the cavity modes and the bacteria are completely
uncorrelated and do not interact. The dynamics is then started by placing
the bacteria in the cavity. In what follows, as an example of the dynamics

Fig. 3 Exemplary dynamics. a Bipartite entanglement between the cavity modes E12:34 taking into account up to 4, 5, and 6 cavity modes,
showing that higher modes do not contribute to steady-state entanglement. b Entanglement in the partition 12:34 with varying interaction
strengths. c Entanglement between the cavity modes and bacteria, showing faster growth and much higher steady-state values than
entanglement between the cavity modes. d Evolution of photon number of the cavity modes N1, N2, N3 , N4 and excitation of the bacteria NI,
NII (solid lines). Dashed lines represent the evolution when the interactions between the bacteria and light are absent (Gmn= 0). ~GII has been
fixed to be 6 × 1013 Hz for (a) and (d) while ~GI ¼ 3:9 ´ 1013 Hz for all graphs. We considered four cavity modes in (b)–(d). In all cases above,
steady-state entanglement is reached in ~100 fs
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we start with vacuum state for the cavity modes and ground state for the
bacteria. The initial state of the bacteria is justified by the fact that
�hΩn 	 kBT , even at room temperature.
Figure 3a–c show the resulting entanglement dynamics. Panel (a)

displays existence of steady-state entanglement between cavity modes 1,
2 and 3, 4, which is not altered heavily if the calculations take into account
five and six cavity modes in total. Therefore, we consider four cavity modes
in all other calculations. In recent experiments, the rate ~GI was shown to be
3.9 × 1013 Hz12 and the corresponding ~GII ¼ 6 ´ 1013 Hz. In our calculations
we vary this rate as in panels (b) and (c) (also see Fig. 2). As expected the
higher the rate the more entanglement gets generated. It is also apparent
that entanglement between the cavity modes and bacteria E1234:I II grows
faster than entanglement between the cavity modes. More precisely,
nonzero E12:34 implies nonzero E1234:I II.
The excitation number of the cavity modes and bacteria as a function of

time can be calculated from 〈ui(t)〉 and Vii(t). For example, the mean
excitation number for the first cavity mode is given by

N1ðtÞ ¼ hây1ðtÞâ1ðtÞi ¼
1
2
ðV11ðtÞ þ V22ðtÞ þ hu1ðtÞi2 þ hu2ðtÞi2 � 1Þ: (15)

We present the evolution of photon number of the cavity modes and
excitation of the bacterial modes in Fig. 3d. Note that photon number of
the third cavity mode (solid magenta line) is showing oscillations well
bellow its “off-interaction” value (dashed magenta line). This is because ω3

is almost in resonance with the frequency of the atomic transition ΩII.
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