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A double-slit proposal for quantum annealing
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We formulate and analyze a double-slit proposal for quantum annealing, which involves observing the probability of finding a two-
level system (TLS) undergoing evolution from a transverse to a longitudinal field in the ground state at the final time t. We
demonstrate that for annealing schedules involving two consecutive diabatic transitions, an interference effect is generated akin to
a double-slit experiment. The observation of oscillations in the ground state probability as a function of t; (before the adiabatic limit
sets in) then constitutes a sensitive test of coherence between energy eigenstates. This is further illustrated by analyzing the effect
of coupling the TLS to a thermal bath: increasing either the bath temperature or the coupling strength results in a damping of these
oscillations. The theoretical tools we introduce significantly simplify the analysis of the generalized Landau-Zener problem.
Furthermore, our analysis connects quantum annealing algorithms exhibiting speedups via the mechanism of coherent diabatic
transitions to near-term experiments with quantum annealing hardware.
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INTRODUCTION
Feynman famously wrote that the double-slit interference
experiment “... has in it the heart of quantum mechanics. In

A

reality, it contains the only mystery”." Here we propose a double-
slit experiment for quantum annealing (QA). In analogy to
Feynman'’s particle-wave double-slit, the proposed experiment
can only be explained by the presence of interference and would
break down upon either an intermediate measurement or strong
decoherence. We are motivated by the recent resurgence of
interest in quantum annealing using the transverse field Ising
model,>* which has led to major efforts to build physical quantum
annealers for the purpose of solving optimization and sampling
problems,”” and significant debate as to whether quantum
effects are at play in the performance of such devices.®® The
mechanisms by which QA might achieve a speedup over classical
computing remain hotly contested, and while tunneling is often
promoted as a key ingredient'® and entanglement is often viewed
as a necessary condition which must be demonstrated,'"'? a
consensus has yet to emerge. Yet, an explicit example is known
where QA theoretically provides an oracle-based exponential
quantum speedup over all classical algorithms,'® and other
examples are known where QA provides a speedup over classical
simulated annealing.'*"'® An essential feature in all these cases are
diabatic transitions which circumvent adiabatic ground state
evolution to enable the speedup, in the spirit of the idea of
shortcuts to adiabaticity.?>?' When these transitions result in a
coherent recombination of the ground state amplitude (a
phenomenon known as a diabatic cascade'®??), the result is a
wave-like interference pattern in the ground state probability as
the anneal time is varied.>>>> We thus conjecture that coherent
recombination of ground state amplitudes after coherent evolu-
tion between diabatic transitions can play a critical role in
enabling quantum speedups in QA. The double-slit proposal we

formulate and analyze here is designed to test for the presence of
quantum interference due to such coherent evolution.

Viewed from a different perspective, our double-slit proposal
joins a family of protocols designed to probe the dynamics of
what Berry called the “simplest non-simple quantum problem”,%® a
driven TLS near level crossings.”” The two-level paradigm was
introduced long ago by Landau and Zener (L2)%%?° The
corresponding Hamiltonian for the generalized LZ problem is

Hs(t) = —a(t)X — b(t)Z, (M

where X, Y and Z are the Pauli matrices. In the original protocol
which LZ solved analytically, a(t) is constant, b(t) is linear in t, and t
runs from —oo to oo. The problem has since been studied under
numerous variations, including Landau-Zener-Stueckelberg inter-
ferometry where b(t) is periodic,>*®>? the subject of various
experiments.333% Complete analytical solutions were limited until
recently to certain particular functional forms of b(t) with constant
a(t),*” a finite-range linear schedule for both a(t) and b(t),*® and
periodic a(t) and b(t).3° An analytical solution for general b(t) but
constant a(t) was found in ref.“’, which was then extended to
general (but implicitly specified) a(t) as well.*'*? Here we consider
the case of general schedules a(t) and b(t), and develop a simple
to interpret, yet surprisingly accurate, low-order time-dependent
perturbation theory approach, that allows us to identify a class of
schedules exhibiting “giant” (relative to linear schedules) inter-
ference oscillations of the ground state population as a function of
the total annealing time. Our proposal should in principle be
straightforward to implement using, e.g., flux qubits, and toward
this end we also study the effects of coupling to a thermal
environment.

The structure of this paper is as follows. In the first section we
analyze the TLS quantum annealing problem in the closed system
limit. We first transform to an adiabatic interaction picture and
perform a Magnus expansion, which allows us to give a simple
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expression for the ground state probability in terms of the Fourier
transform of a key quantity we call the angular progression. We
then analyze both the LZ problem (with a linear schedule) and a
“Gaussian angular progression” schedule which gives rise to large
interference oscillations. We explain how these oscillations can be
interpreted in terms of a double-slit experiment generating
interference between ground state amplitudes. In the second
section we analyze the problem in the presence of coupling to a
thermal environment. We consider the weak-coupling limit both
without and with the rotating wave approximation, and find the
range of coupling strengths and temperatures over which the
interference oscillations are visible, using parameters relevant for
superconducting flux qubits. We find a simple semi-empirical
formula that accurately captures all our open-system simulation
results in terms of three physically intuitive quantities: the
oscillation period, rate of convergence to the adiabatic limit, and
damping due to coupling to the thermal environment. We express
all three are in terms of the input parameters of the theory.
Conclusions and the implications of our results are discussed in
the final section. A variety of supporting technical calculations and
bounds are provided in the Supplementary Information.

RESULTS

We present our results by first considering the closed system
setting, followed by the open system case.

Closed system analysis

We first consider the closed system setting. Consider a two-level
system (TLS) quantum annealing Hamiltonian in the standard form
(1), where the annealing schedules af(t), b(t)=0 respectively
decrease/increase to/from 0 with time t € [0, t{, where tf is the
duration of the anneal. The schedules need not be monotonic,
and our analysis thus includes “reverse annealing”**™*" as a special
case. The TLS can be a single qubit or the two lowest energy levels
of a multi-qubit or multi-level system separated by a large gap
from the rest of the spectrum. Key to our analysis is a series of
transformations designed to arrive at a conveniently reparame-
trized interaction picture. First, we rewrite Eq. (1) in the form

Hs(s) = — %EO IA()Z + B(s)Y), @)

where A(s) = 2a(t)/E, and B(s) = 2b(t)/E, are dimensionless sche-
dules parametrized by the dimensionless time s = t/t; and E; > 0 is
the energy scale of the Hamiltonian. We have cyclically permuted
the Pauli matrices for later convenience. The ground states of Hs(0)
and Hs(1) are |0) and |—i), respectively. Second, we parametrize
the annealing schedules in the angular form

A(s) = Q(s) cosB(s), B(s) = Q(s)sinB(s), (3)

where 6(0) =0 and 6(1) =n/2. Under this parametrization the
eigenvalues of Hs(s) are +E£xQ(s)/2, so the gap is A(s) = EoQ(s). Thus,
any non-trivial time-dependence of the gap is encoded in the
time-dependence of Q(s), which we refer to as the dimensionless
gap. The quantity

s
7(s) = / ds'Q(s) 4
0
is the cumulative dimensionless gap. Third, changing variables
from s to 7 to absorb Q(s), the system satisfies the Schrodinger
equation
. d 1 .
/EW)) = —EEotf[COS 0(1)Z + sin 6(1)Y]|y) ()
(we work in h=1 units throughout). The Hamiltonian is

diagonalized at each instant by the rotation Ry(6) = e "®2. Thus,
fourth, we change into the adiabatic frame*®“° with
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|W.q) = Rx(0)|y), yielding:
1 /d6

.d
’a W’ad> = Had|wad>7 Had(T) = 5 (EX - Eoth). (6)

We call % the angular progression of the anneal.
Finally, we transform into the interaction picture with respect to

the free Hamiltonian Ho= —EotZ/2 and its propagator
Uo(t) = eT, Letting S.= (X + i¥)/2 denote the spin raising
and lowering operators we have
Xi(t) = U(T)XUp(1) = e ™S, 4 h.c., and obtain

. d

il = H@w), () =20X(), )
where ) = U$|t/)ad) and A(1) = 19, Therefore, we see that in this

adiabatic interaction picture the dynamics of the annealed TLS is a

rotation about the time-dependent X; axis with a rate equal to the

angular progression.
The  corresponding U(r) =

T+e7ifodT/H'<T/) can be calculated in time-dependent perturbation
theory using the Magnus expansion (see Methods) for the
Hermitian operator K™ (t) = SN . K, (). The resulting Ul(N) ()=
exp[—iK™(1)] converges to Uj(1) uniformly with growing N, and is
unitary at all orders.*® To first order:

time-ordered  propagator

Ki (T) = / dT1 H|(T1) = ¢T(E0tf) -+ h.C../ (8)
0
where
,1 ’ dé —iwty
(/)T((U) = El dT] Re . (9)

To systematically go beyond first order we note that the K,(1)
are nth order nested commutators, and hence closure of the su(2)
Lie algebra guarantees that at all orders K™ (1) =
M (@)AaMN (1) - G, where n"™(1) >0, AM(1) is a unit vector, and
d = (X,Y,Z). It thus follows that

UM (1) = 1cosn™ (1) — in®™ (1) - Gsinn™ (7).

We will be concerned primarily with the probability of
remaining in the ground state at the final time, denoted py.o.
Since |y(5)) = Uj(1(s))Rx(6(5))9(s)), we have [i5(0)) = [0) and
|y,(1)) o —i|0). Thus, to Nth order:

N N
polo =1-p{"y = [(0]u™ (17)[0)

(10)

(2 (11a)

2

I

— |eosn™ (1) — in? ) s x) 11b)

where the states |0) and |1) are the initial ground and excited
states, and where 1= 1(1). To first order we find (see Methods for
the explicit form of U™):

Py o = [(0]e”1#¥|0) 2 = cos?(|¢]), ¢ = ¢, (Eotr).

This conceptually elegant result already indicates that quite
generally one may expect the ground state probability to oscillate
as a function of the anneal time t; before the adiabatic limit sets
in, a conclusion also reached in ref.?> on the basis of either a
large-gap (near-adiabatic limit) or very small gap (stationary phase
approximation)  assumption. Our analysis applies for
arbitrary gaps.

Having set up the general analysis framework, let us now first
consider the simplest annealing schedule, namely a linear
interpolation of the type considered in the original LZ pro-
blem:?4%° A(s)=1—s5 and B(s) =s. To evaluate Eq. (9) we can
change the integration variable to s and approximate (s) = 15 in

the exponent, yielding ¢, (w) =1 [;ds sZ+(Ls)Z e~ for the first-

order Magnus expansion. We compare this to the numerically

(12)
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Fig. 1 The numerically exact (dotted) and first order Magnus
expansion (solid) ground state probabilities of the linear (orange)
and two-step Gaussian progression (blue) at £; = 0.25 GHz. For the
two-step Gaussian we set a = 32 and u = 101/800. Insert: zoomed-in
view of the linear schedule results. Here and in other plots we use
parameters compatlble with quantum annealing using flux qubits.*”’
Also shown is the prediction of a simplified double-slit type analysis
(dashed, red). Both the latter and the first order Magnus expansion
result are in excellent agreement with the numerically exact
solution. The effect of strong dephasing in the instantaneous
energy eigenbasis is shown as well (dashed, black), obtained using a
phenomenological noise model with dephasing parameter I’
described in Methods. In this case the interference oscillations are
strongly damped

exact solution in Fig. 1, which shows remarkably good agreement.
The simplicity of our Magnus expansion approach should be
contrasted with the analytical solution for linear schedules in
terms of parabolic cylinder functions.®® Also notable is that while a
quantum interference pattern is visible, the oscillations are very
weak and not controllable (see the insert of Fig. 1). This motivates
us to introduce schedules with strong and controllable quantum
interference.

Our goal is to identify a family of annealing schedules that
generate strong interference between the paths leading to the
final ground state, such that “giant” oscillations of the ground
state probability can be observed. Therefore we now introduce
Gaussian angular progressions.

Suppose that the angular progression is two-step Gaussian,
namely, a sum of two Gaussians centered at 1/2 + u (with y < 17/2):

do _ alt—(tr/2-+1) a(t— (1 /2-)?

e c<e o W yert ]). (13)
Note that [¢/dt 9 = 6(1) — 6(0) = Z, which fixes c. If we assume

that a > 1 then we may approximate [ by [*  (we bound the

approximation error in the Supplementary Informatlon) Thus ¢ =

aym/4 and Eq. (9) yields ¢, (w)="Te w7/ 2e "0/ cos(pw).

Using Eq. (12), to first order the ground state probability is then

pV ) = cos? [ge7<"/tm>2COS(ﬂtf/tcoh)} (14a)

tag = 2(1/E07 tecoh = TT/([JE()) (14b)

The ground state probability thus approaches its adiabatic limit
of 1 on a timescale of t,y (set by the Gaussian width), while
undergoing damped oscillations with a period of t.n. The
oscillations are overdamped when t,q < t.oh. In particular, a single
Gaussian (u = 0) can thus not give rise to oscillations.

We plot the ground state probability pg(t) = po_o in Fig. 1, for a
two-step Gaussian progression with parameters chosen to
represent the underdamped case; the associated annealing
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Fig. 2 Top: Example annealing schedules A(s) (blue) and B(s)
(orange) for a two-step Gaussian progression with a =32 and U=
101/800, subject to the dimensionless gap Q(s) = 0.99cos?(27s) +

0.01, which is shown as well (dashed, green). Bottom: Equivalent
interferometer model in the adiabatic interaction picture. The
system starts in the ground state |0). At s; ~ .25 the first Gaussian
splits the amplitude, some of which evolves in the excited state |1),
where it acquires a relative phase § « tr. The second Gaussian at s, ~
0.75 returns part of the excited state amplitude to the ground state
where it recombines. The total ground state amplitude is a® + e~ b2
Each Gaussian acts as an unbalanced (a, b) beamsplitter (purple),
where a = cos (ge*<t’/‘ad>z), b= —isin(%e*“f/‘ad)z) (see Methods for

details)

schedules are shown in Fig. 2 (top). The amplitude of the resulting
pre-adiabatic oscillations seen in Fig. 1 is, as desired, much larger
than that associated with the linear schedule. The accuracy of the
first-order Magnus expansion is again striking, especially given its
simplicity compared to the analytical solution approaches.*®*? We
give a bound on the first-order Magnus expansion approximation
error in the Supplementary Information.

What is the origin of the oscillations? The answer is an
interference effect between the two paths created by the two-
step schedule, which enforces a double-slit or an unbalanced
Mach-Zender interferometer scenario, with 71/4 beam-splitters: see
Fig. 2 (bottom). The first step is a perturbation that generates
amplitude in the excited state, while the second step allows for
some of this amplitude to recombine with the ground state The
relative phase between the two paths is = Eotfj Q(s') ds/,
which results in oscillations. In Methods we derive this result V|a a
simple interferometer-type model that predicts the curve marked
DS =0 in Fig. 1, which is in excellent agreement with the
numerically exact result.

A natural question is whether the observation of interference
oscillations as a function of t; implies the existence of quantum
coherence in the computational basis at t. We give a formal proof
that the answer is affirmative in Methods. An illustration is given in
Fig. 1, for the case of dephasing in the instantaneous energy
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eigenbasis, which is equivalent to performing a measurement in
this basis between the two Gaussian steps. The final ground state
probability is then the sum of classical conditional probabilities
through each beam-splitter, and as expected, the oscillations
disappear.

We emphasize that the angular progression

%( - B'(s)A(s) — A'(s)B(s)
o Ty

is the sole quantity needed to determine the ground state
probability, per Eqs (9) and (12). In particular, per Eq. (15), any
transformation of A(s), B(s) and Q(s) that leaves % invariant will not
affect Pg in the closed-system setting.

Note, furthermore, that specifying the angular progression does
not uniquely determine the annealing schedules A(s) and B(s). This
is advantageous for practical purposes, since such schedules are
typically implemented via arbitrary waveform generators (AWGs)
with bandwidth constraints that can be incorporated into the
schedule design process. To determine these schedules we need
to specify the dimensionless gap Q(s) and the angular progression
%. We can determine 1(s) by solving the differential equation % =
Q(s) subject to the boundary condition 1(0) = 0. Then 6(s) can be
determined by solving the differential equation

Lo
ds drf

) (15)

(16)

subject to appropriate boundary conditions. Together, Q(s) and 6
(s) determine the annealing schedules A(s) and B(s) via Eq. (3). In
the two-step Gaussian case this means integrating Eq. (13), which,
for a constant gap, yields 6(s) as a sum of erf functions.

A particularly interesting example of a dimensionless gap
schedule is one that represents the presence of two avoided level
crossings, a significant feature of the glued trees problem.”® An
example is shown in Fig. 2 (top), representing an example of the
procedure outlined above for numerical determination of the
schedule. It is clear from Eq. (15) that the main contribution to the
angular progression is the near-vanishing of the gap. In contrast,
when Q(s) is constant, the main contribution to the angular
progression is the suddenness of the schedule, i.e., a large A’(s) or
B'(s).

Open system analysis

While a phenomenological model of dephasing in the instanta-
neous energy eigenbasis already shows clearly how the inter-
ference pattern disappears under decoherence (Fig. 1 and
Methods), this is not a realistic model of decoherence. We thus
examine the effect of coupling the TLS to a thermal environment
that corresponds more closely to experiments, e.g., with super-
conducting flux qubits.

We consider a dephasing model wherein the total system-bath
Hamiltonian is H = Hs(t) + Hg + gY ® B, where B is the dimension-
less bath operator in the system-bath interaction, Hs(t) is given in
Eq. (2), Hg is the bath Hamiltonian, and g is the coupling strength
with units of energy. We assume a separable initial state ps(0) ®
ps. With pg = exp(—BH;p)/Z the Gibbs state of the bath at inverse
temperature 3 and partition function Z=Trlexp(—BHp)l. We
transform to the interaction picture with respect to Hg, so that
H—H(t) = Hs(t) + g¥ ® B(t), with  B(t) = Uj(t)BUs(t), and
Us(t) = e~™&, The same series of transformations as those leading
to Eq. (6) can be summarized as: Y ®B(t)— tY @ B(s)
— trRx(0)YRx(—6) ® B(s) = tr[cos(0)Y + sin(0)Z] @ B(s). After the
final transformation to the Hg-interaction picture, the total
Hamiltonian replacing H(1) in Eq. (7) becomes

Hua(5) = 2 0X(5) + gte(5) - & B(s). 17)
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where [i = (sin ¢ cos 6, cos ¢ cos 6, sin ) is a unit vector in polar
coordinates, with ¢(s) = —Eot¢T(s), and henceforth the dot denotes
4. The time-convolutionless (TCL) expansion®' provides a conve-
nient and systematic way to derive master equations (MEs) without
requiring an adiabatic or Markovian approximation. With the
detailed derivation given in Methods, the 2nd order TCL (TCL2)
ME in the adiabatic-frame can be written as:

ps(s) = —i[H. (5)s PS(S)}

(gt [i(5)- 3. As)ps(s)] + he. 18

where
A(s) = / ds'C(s, s')Ui(s, s)i(s) Ui (s, s') - G, (19)
0

and C(s,s') = Tr[B(s)B(s')pg] = C*(s',5) is the bath correlation
function. We assume that the bath is Ohmic with spectral density
J(w) = nwe/%, To ensure the validity of the TCL2 approximation
—which is also known as the Redfield ME—we derive a general
error bound in the Supplementary Information, and apply this
bound to the Ohmic case. We find the condition t; < g%, which is

always satisfied in our simulations.

In general, the Redfield ME (18) does not generate a completely
positive map, which can result in non-sensical results such as
negative probabilities.>*** Although this is not necessary for
complete positivity,®* a further rotating wave approximation
(RWA) is usually performed. The resulting Lindblad-type ME also
lends itself to a simpler physical interpretation. As detailed in
Methods, this leads to

ps = *"[%éxl + HL&PS]
— GtVa(Ppalb) (al + pgpla) (b)) (20)
+ Gtr: (Paa — € F2py) (1) (b] — a) (al),

where pg, = (dlps|b), all quantities except g, t; and B are s-
dependent, and the effective dephasing and thermalization rates
Y4 and y,, respectively, and the basis {|a), |b)}, are given by

|a(s)) = Ui(s)e-(s)), [b(s)) = Ui(s)[e+(5)) (21a)

1 _
Va(s) =5 ve(s)(1 +eP4), yi(s) = v(A(s))- (21b)
Here |e. (s)) = Uf)(s)| +) are the instantaneous eigenvectors of
H,(s). The Lamb shift is:

His(s) = g*te(S(A(s))[b)(b] + S(~A(s))|a) (al). (22)

The functions y(w)/2 and S(w) are the real and imaginary parts of
the one-sided Fourier transform of the bath correlation function,
and are implicitly B-dependent (see Methods, where we also
discuss the validity conditions for the RWA).

The numerical solutions of Eqs (18) and (20) are shown in Fig. 3
for the two-step Gaussian schedule with parameters as in Fig. 1
and for the gap schedule plotted in Fig. 2 (top). The main message
conveyed by this figure is that oscillations are visible over a wide
range (an order of magnitude) of temperatures and system-bath
coupling strengths. We also note that for these parameter values
the Redfield ME produces physically valid solutions, despite the
concerns about complete positivity mentioned above. The Red-
field ME results in consistently higher ground state probabilities
than the RWA.

These numerical results are accurately reproduced in terms of a
simple semi-empirical formula, also shown in Fig. 3, and derived in
Methods:

Ps(tr) = (Ps(tr) — Pe(B))e " + Pe(B) (23)

where P's(t) and Pg(t) denote the open and closed system

Published in partnership with The University of New South Wales



0.9
—~ 08
=
O
S 07
\ —T=0mK —TCL2
0.6 WY/ —T =10mK ----RWA
T =40 mK -e-TCL2'(0)
—T = 100 mK ~¢-TCL2'(8)
1
0.9
—~ 08
ay
]
S 07
0.6
ng* =5 x 1074 ~e~-TCL2'(0)
—ng®? =107  -0-TCL2'(3)
0 10 20 30 40 50 60
ty (ns)

Fig. 3 Ground state probability as a function of total annealing time
in the open system setting. Shown are the numerical results of the
TCL2 master equation without the RWA [Eq. (18), Redfield] and with
the RWA [Eq. (20), Lindblad], and the semi-empirical Eq. (23). The
bath is Ohmic with a cutoff frequency w. = 4 GHZ. Top: ng®> =2 x
10~* for a range of temperatures. Bottom: T= 20 mK for a range of
coupling values. TCL2/(0) is the case Pg(0), and is an excellent
agreement with the RWA results. TCL2/(8) is the case PL1/T") with
fitted 7~ values. From top to bottom: a T = {13.68, 44.06, 104.50}mK
and b T' ={23.72, 24.22, 24.95}mK. Parameter values were chosen to
be consistent with quantum annealing using flux qubits and the

necessary condition tf < %

success probabilities, respectively, where

1
V=9 dsvsls) 29
0
is the average thermalization rate, and where
ePEo/2
Pe(B) = 2= 2 cosh(BE,/2) (25)

is the ground state probability in the adiabatic limit, given by the
thermal equilibrium value associated with Hs(1) [Eq. (2)]. As seen in
Fig. 3, the agreement is excellent with both the RWA result when
we use Pg0) =1/2 (the infinite temperature limit), and with the
TCL2 results when we use Pg(f) and fit 3; we find that the fitted S is
consistently slightly lower than the actual 8 values used in our
simulations.

DISCUSSION

We have proposed a double-slit approach to quantum annealing
experiments, exhibiting “giant” interference patterns, motivated
by the role of coherent diabatic evolution in enabling quantum
speedups. Our analytical approach based on a simple time-
dependent expansion in the adiabatic interaction picture accu-
rately describes the associated dynamics. The experimental
observation of such interference oscillations then becomes a

Published in partnership with The University of New South Wales
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clear and easily testable signature of coherence in the instanta-
neous energy eigenbasis. The test is simple in principle: it involves
a quantum annealing protocol that employs the proposed
schedules, with a measurement of only the ground state
population as a function of the anneal time t. When the relative
phase between the upper and lower paths to the ground state is
randomized, the interference effect is weakened.

To explain these results we proposed an effective model that
accurately explains the interference oscillations in terms of a few
si(q;ple parameters. Namely, upon replacing Pgs(t) in Eq. (23) by
Po.o(tr) as given in Eq. (14a), the three timescales tcon, taq, and
1/¥4 respectively characterize the oscillation period, Gaussian
damping due to approach to the adiabatic limit, and exponential
damping due to coupling to the thermal bath. We expressed all
three timescales in terms of the input physical parameters of the
problem [Eqs (14b) and (24)], and together they completely
characterize the oscillations and their damping. It is an interesting
problem to try to generalize these results to multi-level systems.
We do not expect that the general multi-level system case will be
amenable to an analytical treatment of the type we developed
here, but under the assumption of a timescale separation which
would effectively embed a TLS in a multi-level system due to a
large gap to higher excited states, we still expect many of our
conclusions and analysis methods to hold. Alternatively, high-
contrast interference oscillations have been obtained numerically
in multi-level systems with a high degree of symmetry.>®

We expect that an experimental test of our “double-slit”
proposal will reveal the predicted interference oscillations for
qubits that are sufficiently coherent, such as aluminum-based flux
qubits,>”’ Rydberg atoms,*®*” or trapped ions.*®**° Such an
experiment can be viewed as a necessary condition for quantum
annealing implementations of algorithms exhibiting a quantum
speedup, e.g., the glued trees problem,'® which rely on coherence
between energy eigenstates. It appears relevant (if not essential)
to use such coherence in order to bypass the common objection
that stoquastic quantum annealing or adiabatic quantum comput-
ing are subject to, which is that they can be efficiently simulated
using the quantum Monte Carlo algorithm when restricted to
ground-state evolution (with some known exceptions®®®"), due to
the absence of a sign problem.5%®* Therefore an experimental
observation of the quantum interference pattern predicted here
will bolster our confidence in the abilities of coherent quantum
annealers to one day deliver a quantum speedup.

METHODS
Magnus and Dyson series

We repeatedly use the following elementary identity for su(2) angular
momentum operators:

exp(—iply)J; exp(iply) = J, cos @ — J, sin@. (26)

Note that the Pauli matrices are related via J;=0;/2, i€ {x, y, z}..
Let us denote the solution of the adiabatic frame Hamiltonian given in
Eq. (6) by U.q4(1). The adiabatic interaction picture propagator,

Ui(t) = Ul (1) Upa (1) = T+e7"-]<; arATM(E) (27)
the solution of Eq. (7), can be computed using the Dyson series expansion:
Ui(r) =1 — i fydmiA(te)Xi(T1) 08)
+ (7i)2.]gdr1. TRATN)X(T)AT)X(12) + ...

Note that each term in the Dyson series contributes to the ground state
amplitude if and only if it is an even power, and likewise to the excitation
amplitude if and only if it is an odd power. Consequently, the amplitudes
calculated from the Dyson series may not be unitary to a desired precision
until the terms are calculated to a high enough order. For this reason we
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prefer the Magnus expansion,®® for which

N
U = fim exp|-ik™ (@), KM (1) = Z Kn(T). (29
The first few terms are given by
= / dt1/\(T1 )X|<T1) (303)
0
o) =~ / dr, / AT M T)X ()X (). (30b)
JO JO
Using Ul(N) (1) = exp [—f’C(N)(T)] and Eq. (8) we thus find
U (1) = exp(—i[¢S; + h.c.) (31a)
_(( 0 isnldeny )
—isin(g)e®  cos(|g)
— ei¢Z/2M‘¢‘efl¢Z/2 (310)
My = e 1% = cos(|p|)l — i sin(|¢p|)X. (31d)

where we wrote ¢ as a shorthand for ¢(Eqty), and where ¢ = arg(¢). This
directly results in Eq. (12).

To compute the second order Magnus term we use X|(1) = e 4TS, +
h.c. for the commutation relation

(Xi(t1),Xi(t2)] = 2isin[Eots (T2 — T1)]Z, 32

so that

Ko(T) = / dr, / " drM TN sinfEoty (1 — 12)]Z. (33)
0 0

Double-slit interpretation
Having derived the adiabatic frame Hamiltonian given in Eq. (6)

1 /d6
Had (1) = 5 (EX - EOth>7 (34)

we see that the angular progre55|on 9 of an annealing schedule is the
perturbation that causes transitions between the two levels of the system.
While this perturbation is steady and small in the case of a linear schedule,
Gaussian schedules in which the perturbation is localized suggest an
appealing physical picture similar to a double-slit or interferometer model.

Single Gaussian step. Let us first consider a single Gaussian step, which Eq.
(13) reduces to when p=0, ¢ = a\/m/2. Under the same assumptlons as
those leading to Eq. (14), we then find ¢, (w) = Ze”“”f/ze’("/’-"d with w
= Eotr. Thus, Eq. (31) gives us the first order Magnus expansion propagator
in the interaction picture with

lp| = —[Eotr/(2a)* _ %e*(ff/tad)z (35)

and ¢:E0tfrf/2. The X-rotation matrix in Eq. (31¢) thus becomes:

cos( ~(tr/toa)? ) _isin (g e—(n/mﬂ)
b= 2 A (36)
—isin (%e*("/‘ad) ) cos (ge*(rf/tm )

with the superscript G serving as a reminder that this is the Gaussian step
case. Now let us suppose that the Gaussian profile is narrow: a >> Egtf, or
equivalently t,q > tr. The perturbation is then sudden relative to the
adiabatic timescale, and acts like a beamsplitter in a Mach-Zehnder (MZ2)
interferometer.®® In this limit |¢| = 71/4 and Eq. (31¢) gives

M,

U|(1) (1) = el (EotrTr/2)Z M’G,/Z e~ i(EotsTe/2)Z

1 (37)
ME,, =1 .
m/2 ﬁ(—i 1>

Recall that in the adiabatic interaction picture |,(0)) = |0). Thus, the first
phase factor e #Z has no effect, and we can picture a process by which the
ground state |0) is instantly spllt into an equal superposition —= (\0) —1i|1))
by the ”Mach Zender” matrix M ,- These two states are then propagated
freely by Uo(rf) = ¢lbotTr/2)Z 50 t ey accumulate a relative phase of ieFt™r,
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For a single Gaussian, interference due to this phase difference is clearly
not picked up via a Z basis measurement.

Two Gaussian steps: indirect derivation of the interferometer model in the
narrow Gaussian limit. If instead we consider a two-step Gaussian
schedule [Eq. (13)], then as we already found before Eq. (14),

b, (w) = ge*’“’ff/ze*(’f/‘ﬂd)zcos(yw), with w=Egtr. Eq. (31) now gives us
the first order Magnus expansion propagator in the interaction picture
with [¢p| = T |cos(uEoty)|e~/%)" and again ¢ = Eot77/2. Note that without

the exponential decay factor e (/)" = ~(t1/ta)’ the oscillations are
completely undamped and the adiabatic limit is never reached. Thus it is
clear that the finite width of the Gaussian steps is solely responsible for the
onset of adiabaticity.

Let us now derive an equivalent MZ interferometer model. On the one

hand, we already know from Eq. (12) that péL)O = cos?(|¢|), i.e

Polo — cos ( ‘cos(“EOtf)‘e’(ff/fad)z). 8)

This function has a quasiperiod (the distance between consecutive
maxima) of m/(uEy), a minimum of cos?(7m/4) =1/2 at t;=0, and a
maximum of 1. On the other hand, we may model the two-step narrow
(a> Eotp) Gaussian schedule as two consecutive, localized (at 1#/2 + )
and non-overlapping (a>> 1/u) “beam-splitter” steps, separated by a
dimensionless time interval of 2u. Each beam-splitter is of the form given
in Eq. (37), the only difference being that the first acts at /2 —pu
(preceded by free evolution) and the second acts at 7/2 + u (followed by
free evolution). In between the beam-splitter action there is free
evolution of duration 2u. Ignoring the initial and final free evolutions
(since the initial and final state we are interested are both |0), which is
invariant under Up) we expect to be able to write the propagator as the
following ansatz:

U (x7) = M§Uo (2u)M§ (39)

where we left the angle ¢ in the beam splitter matrix (36) unspecified in
order to determine it by matching to the properties of pf)L)O = cos?(|4)).
Carrying out the matrix multiplication and computing the expectation
value, we find

[(0]U™ (x¢)|0) | |cos(w/2) — sin?(/2)e?Heot |, (40)

In order for this to match Eq. (38), we require a quasiperiod of 1/(uEo)
(which is already the case), a minimum of 1/2 at tr=0, and a maximum
of 1. The latter two conditions force ¢ = /4.

Therefore, considering Eqg. (39), we have shown that the two-step
Gaussian model is equivalent (in the large a limit) to a MZ interferometer
with two unbalanced beamsplitters, separated by free propagation of
duration 2u (the separation between the two Gaussians).

The double-slit (or MZ interferometer model) is remarkably accurate in
terms of predicting the ground state probability. This is shown in Fig. 1,
where we compare the numerically exact result and the solution of the
simple interferometer model given by Eq. (40). Namely, we use the
interference model given in Eq. (40), with ¢ =m/4. To calculate the
interference fringe, the position of each of the two Gaussians is given by
s+ = (17/2 £ p)/1. The phase factor uEots which only holds in the large a
limit, is replaced by Eotr[t(s:) — T(s_)] = Eot¢ [3"ds’Q(s'), where 1(s) is the
cumulative dimensionless gap [Eq. (4)]. The reason for this replacement
is given in the following, alternative and more direct derivation of the
interferometer model.

Two Gaussian steps: direct derivation of the interferometer model. Given
the two-step Gaussian schedule, Eq. (13),

a6 _ C(e—[aa—n P e latrr >F)7 @1
dr

where 1, =T1#/2 + u, we can split the unitary generated by the adiabatic
frame Hamiltonian, Eq. (34), into two parts:

Uad (17,0) = Uag (Tf )Uad (5 0) (42)
We now wish to apply the Magnus expansion separately to each of the
unitaries Uaq ($,0) and Uag(tr,%). Consider Uy (£,0). Inverting Eq. (27),
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the first order Magnus expansion [Eq. (31)] gives

T, T, T,
bul(.0) =)t ()
= Up(3,0)e 72 Mye 0212, (43b)
where, using Eq. (9), now
1 [72de
¢ = tbr,p0(Eotr) = E/ E(IEDW dry. (44)
0

For a > 1 we may extend the limits of integration over the interval [0, T/
2] to +eo without considering the second Gaussian step:

b~ %/w e lan 1) g-iEotrti g, (45a)

_ g oot g (tr/tas)” (45b)

where we used ¢ = a+//4 as we found in the derivation of Eq. (14). We
may thus write the explicit form of the interaction picture unitary as

UI(1) (% 7 O) _ ei(Eoth/Z)ZMg/4e—i(Eor,r,/2)Z (462)
= Ub(1_,0)MS 4Us (1, 0), (46b)
and the adiabatic frame unitary becomes:
Tf Tf L
Uad (3 , 0) =Uo (? ) 0) Ui(r_, 0)/\/’2/4%(L .0) (472)
Tf
- U, <E,T,)Mﬁ/4U0(T,, 0). (47b)

Repeating this calculation for the second adiabatic frame unitary
Uad (Tr, %), we obtain

T, T
Usa (7123 ) = Uo(rr, T M3yl (1.5 ). (48)

Thus, Eq. (42) becomes
Uad (17, 0) = Uo (17, T4 M5 14 Uo (T, T )M U (T, 0), 49)

which describes an interferometer composed of two unbalanced (r1/4)
double beam-splitters, interrupted by free propagation of duration 7, — 7_
(ignoring the initial and final phases).

The phase accumulated between [0) and |1) is solely determined by the
free evolution in Eq. (49),

Uo(ty,T_) = eilbotr (1 —1-)/2]Z (50)

whose value is given by
St
€ — Eoty(t, —7.) — Eoty / () ds, (51)
JS

where in the second equality we used Eq. (4).

Interference oscillations in the double-slit experiment imply
quantum coherence in the computational basis
Here we prove that coherence in the energy eigenbasis implies, in general,
coherence in the computational basis.

Let H(t) denote an arbitrary, time-dependent TLS Hamiltonian, with
instantaneous energy eigenbasis {|e(t))}. The TLS density matrix can be
written in this basis as

p(t) = _py(0l&(0)(5(1)|- (52)
i

Let us define “coherence” with respect to a given basis as the off-
diagonal elements of the density matrix in the same basis. We can
compute the coherence in the computational basis {|0), |1)} via

Por = (Olp(t)[1) = > (0lp; () (1)[1), (53)

)
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np)j

where gt) = [g(t))(g(t)]. The two bases are related via a unitary rotation:

eo(t)) = cos B(t)]0) + D sin B(t)[1) (54a)

&1 (t)) = sin B(t)]0) — &%) cos B(1)|1), (54b)

so that Eq, (53) reduces to:

i - 1\ . - .
lp(0n) = ¢ (Br0 ~ § )sin(28) ~ Re(pro)cos(z0) + im(pro) .
(55)
where we used py, + 017 = 1 and py; = P73, Equation (55) can be further

simplified  using  (pgo — 1)sin(26) — Re(0;4)c0s(26) = C(cos @sin(26)—
sin @ cos(20)), where

2 ~
c- ¢ (Repro)? + (p - %) . tang = 2ePro). (56)

pOD 2

Additionally, by making use of the trigonometric identity sin(26 — ¢) =
sin 260 cosg — sing co0s26, Eq. (55) can be written as

(0lp(t)|1) = e™(Csin(28 — @) + ilm pyq). (57)

Since Csin(26 —¢) € R, it follows that Im(p,o(t)) =0 implies
(0]p(t)|1) # 0. Therefore we next establish that indeed, Im(p,,(t)) # 0 in
our double-slit proposal.

Consider the the ground state just before the first beam-splitter,

p(T- — &) = |&){&ol (58)

with /(T4 — 7_) < 1. This state evolves through the double-beam-splitter
region [recall Eq. (49)]:

M|¢‘U0(T+,T,)M|¢‘, (59)

where Uy is given in Eq. (50) and M, is given in Eq. (31d).
After passing through the first beam-splitter, the system density matrix
in the energy eigenbasis becomes

cos’(|¢]) iSin(|¢\)COS(\¢I))
—isin(jg))cos(g])  sin2(lp) )

It is useful to include a simple model of decoherence between energy
eigenstates during the time interval [t_, 7,], complementary to our master
equation treatment. We can do so by introducing a continuous dephasing
channel. This damps the phases by the factor e "7, where At=1, —7_ =
2u, and I > 0 is the dephasing rate. Right before the second beam-splitter,

the system density matrix is then:

p(T-+¢) = ( (60)

cos?(|))

- e~ e sin(|gp|) cos(|¢b])
p(ty —¢) = <7iefrmefn,fum sin(|¢p]) cos(|¢|) >

sin?(¢])
1)

After passing through the second beam-splitter, the state becomes
p(ty +&) =Myp(ty — e)M‘iﬁ‘. We find, after some algebra:

M—oc

P = oo = sin*(|@h]) + cos* (|p]) — 2e”™" sin?(|p]) cos® (||) cos(AtEoty) — % [cos(4]¢]) + 3]
(62a)

Por = %sin(z\(/)\)(e’w[— sin(AtEoty) + i cos(2|¢h|) cos(AtEoty)] + i cos(2|¢])) rﬁfi%sin(ﬂz[)”
(62b)

We now note from Eq. (45b) that |¢| = Ze~(4/%3)", Therefore we may
conclude that Im(p44(tf)) > 0, and Im(p,,) — 0 only in the adiabatic limit (
tr > taq, which implies |¢| — 0). Note that Eq. (62a) generalizes Eq. (40) by
including the effect of dephasing in the energy eigenbasis.

It is clear from Eq. (62) that oscillations in the ground state probability
Pg(t), which are present for finite I, imply a non-vanishing Im(p;o(tf)).
Therefore we may conclude that the observation of interference
oscillations in our proposed double-slit experiment are also evidence of
coherence in the computational basis at t. For finite I, such coherence
vanishes only in the adiabatic limit.
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Derivation of the adiabatic-frame TCL2/Redfield master equation
We start from the Hamiltonian given in Eq. (17), which we write as

Hiot(s) = Hi(s) + ’:ISB(S) (63a)
H(s) = 5855 (63)
Hss(s) = Kii(s) - 6 ® B(s) , (630)

where k=gt; Our goal is to derive a master equation for the system
evolution. It is convenient to do so using the time-convolutionless (TCL)
approach.®’ To do so we must first perform yet another interaction picture
transformation, defined by Hs), with the associated unitary
Ui(s,s') = Tpexp[—i [} Hi(s")ds"], where T, denotes forward time-
ordering. In this frame the total Hamiltonian H(s) becomes

Fhot(s)k = [ (s) -G @ B(s), fi(s) = Ul (s,0)fi(s)Ui(s,0). (64)

We can now calculate the TCL expansion generated by the super-
operator

L(s)p = —i[Fror(s), ] (65)

whereupon

p(s) =D K"Kan(s)p(s) (66)
n=1

The different orders are called TCL2, TCL4, etc. We give details on the
convergence criteria of this expansion in the Supplementary Information.
To second order the TCL generator is:

Ko (5)[Ps @ pg) = /0 " AT [Fhor(5) [Fhoe(5'),55(5) ® 3], ©7)

where pg is the initial state of the bath, and the joint initial state is assumed
to be in the factorized form ps ® ps. Note that the TCL2 approximation
coincides with the Redfield master equation.’

Let

C(s,s") = Tr[B(s)B(s)pg) = C* (5, 5) (68)

denote the bath correlation function. By explicitly tracing out the bath,
K1(s) can be written as

Ka(s)ps = —2 1 (5) - 3. Als)ps] +h.c. (69)

where

AGs) = / a5, )RS - 6 70)
JOo

After transforming back to the Schrodinger frame with respect to H(s)
we obtain:

ps(s) = —i[H(s), ps(s)] — k2 [H(s) - 3, A(s)ps(s)] + h.c., 71

where

Als) = / A5, ) Ui(s, 8 (5 Ul (s, ) - 6. 72)
0

Rotating wave approximation
Let

Mw) = / dt e C(t) = t:Ts(wtr) (73)
0

be the one-sided Fourier transform of the bath correlation function, where

W) = [ dsees) = Jyw) + i (w), 74
0

and where yi(w)/2 and Si(w) are the real and imaginary parts of {(w).
Explicitly:>'

ys(w) = /DQ e“*C(s) ds (75a)
s =+ [ y () dw (75b)
S(w)_ﬂ/,xy(w) w_w)%"
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Here P denotes the Cauchy principal value, and the s subscript is a
reminder that t; has been factored out.

To perform the rotating wave approximation, let us first define the
eigenspace projection operator of H(s) as

N(e(s)) = le(s))(e(s); (76)

where [¢(s)) is an eigenstate of H(s) with instantaneous energy &(s). We can
then define the operator

Alws) = D N(es)) ) - dN(E ), 77)
&/(s)—e(s)=w(s)

where

w(s) € {0, 6(s)} (78)

is the dimensionless Bohr frequency, and the sum is over all pairs &(s), €'(s)
subject to the constraint €'(s) — &(s) = w(s). The interaction picture master
equation (66) can then be written to second order, with the TCL2
generator (67) as

ps = [5ds'Trg [Fio(s), [Frot(s'), Ps(s) © pg] ]
= K2 Y V9T (w)(AW)DAT () — AW )A(W)Bs) + h.c. 79)

w,w

To obtain this master equation, we apply the standard Markovian
approximation: change the integration variable s'—s — s’ and replace the
upper limit with co. The RWA consists of neglecting terms in Eq. (79) for
which w’ # w. A necessary condition for the validity of the RWA is:%*

1/15 < min |w — &', (80)
wzw

which, unfortunately, is not always satisfied for the two-step Gaussian
schedule (13) because [recall Eq. (78)]

minjw — w'| = 8(s) ~ 0 (81)
wW'

for s outside the Gaussian pulse region.
Nevertheless, the RWA results in the interaction picture adiabatic
Markovian master equation in Lindblad form:%°

ps = —ilHis, ps] + D(ps), 82)
where
His = k) S(w)Al ()A(w) (83)

is the Lamb shift, and
D(ps) = K % Ys(w) (A(w)psAT (w) — 3 {AT(w)A(w), ps }) (84)

is the dissipator.

We can explicitly calculate A(w(s)). First, recalling that H(t) =
%%f Uf)(r)XUo(T) [Eq. (7)], we realize that the eigenvalues and eigenvectors
of Hy(s) can be written as

£:(s) = = =6(s),

lex(5)) = Up(s)| £). (85)

Also, from the sequence of transformations leading to Eq. (17), the
interaction terms have the form

fi(s) - G = U} (s)(cos 8(s)Y + sin 6(s)Z)Uo (s). (86)
Substituting these expressions back into Eq. (77), we obtain

A(0) =0 (87a)

AB(s)) = —iele_(s)) (€4 (5) (87b)

A(=0(5)) = ie Ple. (5)) (e (5)]. (870)

After undoing the interaction picture transformation with respect to H(s)
and ignoring the phase factors in the A(w) operators, we obtain the
Schrodinger picture master equation, namely Egs. (20)-(22). In deriving this
result we made use of the Kubo-Martin-Schwinger (KMS) condition®'

v(-0) = e Py (a), (88)
where A is the dimensionless Bohr frequency in units of 1/t¢

A(s) = w(s)/tr. (89)
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Derivation of the semi-empirical Eq. (23)

The semi-empirical formula (23) can be derived directly from Eq. (82). Let
us first write Eq. (82) in terms of the quantities defined in Eq. (21b):

;75 = 7’.[HL57F35]
— t7a(P_le) -] + B e L) (90)
Fteye(pry — e Pp ) (e )(e-| —lex) (&)

We now follow the steps in ref.®® to obtain the solution in this
interaction picture. Eq. (90) can be split into two decoupled ordinary
differential equations:

dp__ dp ~ ~

= = [P 9P~ F- (9] ©12)
d. dpr, N :
4 ds — [iQ(s) +=(s)]p,_, (91b)
where
Fi(s) = gtry,(9) (92a)
F(s) = Gtrye(s)e P*C), (92b)
and
Q(s) = gt (S(A(s)) — S(—A(s))) (93a)
3(s) = g*trya(s). (93b)

Additionally, the KMS condition allows us to write y4(s) in terms of F_(s)
Fo(s)(1+ e P2O)) = 262 ty,(s). (94)

The solution of Egs (91) is given by:

b (5)= exp[—zrfgz I ds’m(s’)} {p,,<o> + [ar. e [mgz A ds"m(s”)] }

(95a)
oo )= ew{ - [[ios) + vl fo. (0 (95b)
0
pi(s)=1-p () (950)
p_y(s) =pL_(5), (95d)
where the initial conditions are:
00 =3, hie{+ ). (96)

The next step is to move back to Schrodinger picture

ps(t) = Ui(t)ps(t)U] (t), (97)

and write the open system ground state probability in terms of ps:

P4 (tr) = (Olp(tr)[0) = (0|Ui(tr)B(tr)U (t)0) (98a)
= > o0l (x;[0), (98b)
ije{+,—}
where
Xi(tr)) = Ui(te)ei(te)) = Un(tr)Ub(tr) i) (99)

For simplicity, we further denote U9(t) = U|(t)U(T,(t), whose elements
can be related to those of U(t) in the {|0), |1)} basis:

Ua(0) = (KU U1 = 0 uo)l, (100

Published in partnership with The University of New South Wales

H. Munoz-Bauza et al.

where k, | € {0, 1} and ¢(t) = —Eot/2. Then:

1
(Olx; ){x[0) = 3 (|Ugo|2+ugoug1* + Ug, Ugo + |Ug, |2> (101a)
1
(O Y- 10) = 5 (VS0 [* ~ Uy — U2y UG + (UG, ) (101b)
1 . .
(O Y0x-10) = 5 (V8o ~UgoU8: — Uy Uz + U8, ) (1019
1 . .
(0. 0) = 5 (V8o +UgoU8: — Uy s — (U8 ). (101d)
Because U(t) is the closed system unitary, we have
a 2 2 _
0 - - )
|UGo (t) "= (0] Ui(tr)[0)|* = Ps(tr) (102)
and
U +[U "= 1. (103)
Eq. (98) becomes:
1 1
Palt) =3+ oy (1) +5. 1) (Palt) - 3 (104a)
+(py 1 (tr) — p__(tr))Re(UgoUgy ) (104b)
Filo . (tr) — P (t)IM(USUG)- (1040

This result is exact and corresponds to the numerical solution in the
TCL2 case shown in Fig. 3.

We now make two additional approximations in order to arrive at a
simpler expression. First, we ignore the Lamb shift term Q(s) in Eqgs (95),
which leads to:

1
o _(tr)+p_ (tr) = exp{fgztf/ ds yd(s)} (105a)
0

p._(tr) —p_,(tr) = 0. (105b)

Second, we substitute the solution given in Egs (95) into line (104b):

1 . S
(0.4 (tr) — p__(tr)Re(USUZ) = Re(ugougr>{1 —2e i

+ g fydsyi(s)e o "‘”Vd“”)} }
(106a)

~ (1 —2])Re(Ug,U5;) =0, (106b)

where in the last line we used the weak coupling assumption, gt < 1.

With these two approximations, Eq. (104) becomes the semi-empirical
formula (23) with P£(0) = 1/2. We note that it is well known that for time-
independent Lindbladians the RWA master equation has the Gibbs state as
its steady state.”’ We do not recover this result for the time-dependent
case. Rather, we find that the time-dependent Redfield master equation
(TCL2) converges to the Gibbs state P¢(8) = eﬁfz"/z, but with a temperature
that differs from that of the bath state, as illustrated in Fig. 3.
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