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A double-slit proposal for quantum annealing
Humberto Munoz-Bauza1,2, Huo Chen 2,3 and Daniel Lidar 1,2,3,4

We formulate and analyze a double-slit proposal for quantum annealing, which involves observing the probability of finding a two-
level system (TLS) undergoing evolution from a transverse to a longitudinal field in the ground state at the final time tf. We
demonstrate that for annealing schedules involving two consecutive diabatic transitions, an interference effect is generated akin to
a double-slit experiment. The observation of oscillations in the ground state probability as a function of tf (before the adiabatic limit
sets in) then constitutes a sensitive test of coherence between energy eigenstates. This is further illustrated by analyzing the effect
of coupling the TLS to a thermal bath: increasing either the bath temperature or the coupling strength results in a damping of these
oscillations. The theoretical tools we introduce significantly simplify the analysis of the generalized Landau-Zener problem.
Furthermore, our analysis connects quantum annealing algorithms exhibiting speedups via the mechanism of coherent diabatic
transitions to near-term experiments with quantum annealing hardware.
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INTRODUCTION
Feynman famously wrote that the double-slit interference
experiment “… has in it the heart of quantum mechanics. In
reality, it contains the only mystery”.1 Here we propose a double-
slit experiment for quantum annealing (QA). In analogy to
Feynman’s particle-wave double-slit, the proposed experiment
can only be explained by the presence of interference and would
break down upon either an intermediate measurement or strong
decoherence. We are motivated by the recent resurgence of
interest in quantum annealing using the transverse field Ising
model,2,3 which has led to major efforts to build physical quantum
annealers for the purpose of solving optimization and sampling
problems,4–7 and significant debate as to whether quantum
effects are at play in the performance of such devices.8,9 The
mechanisms by which QA might achieve a speedup over classical
computing remain hotly contested, and while tunneling is often
promoted as a key ingredient10 and entanglement is often viewed
as a necessary condition which must be demonstrated,11,12 a
consensus has yet to emerge. Yet, an explicit example is known
where QA theoretically provides an oracle-based exponential
quantum speedup over all classical algorithms,13 and other
examples are known where QA provides a speedup over classical
simulated annealing.14–19 An essential feature in all these cases are
diabatic transitions which circumvent adiabatic ground state
evolution to enable the speedup, in the spirit of the idea of
shortcuts to adiabaticity.20,21 When these transitions result in a
coherent recombination of the ground state amplitude (a
phenomenon known as a diabatic cascade16,22), the result is a
wave-like interference pattern in the ground state probability as
the anneal time is varied.23–25 We thus conjecture that coherent
recombination of ground state amplitudes after coherent evolu-
tion between diabatic transitions can play a critical role in
enabling quantum speedups in QA. The double-slit proposal we

formulate and analyze here is designed to test for the presence of
quantum interference due to such coherent evolution.
Viewed from a different perspective, our double-slit proposal

joins a family of protocols designed to probe the dynamics of
what Berry called the “simplest non-simple quantum problem”,26 a
driven TLS near level crossings.27 The two-level paradigm was
introduced long ago by Landau and Zener (LZ).28,29 The
corresponding Hamiltonian for the generalized LZ problem is

HSðtÞ ¼ �aðtÞX � bðtÞZ; (1)

where X, Y and Z are the Pauli matrices. In the original protocol
which LZ solved analytically, a(t) is constant, b(t) is linear in t, and t
runs from −∞ to ∞. The problem has since been studied under
numerous variations, including Landau-Zener-Stueckelberg inter-
ferometry where b(t) is periodic,30–32 the subject of various
experiments.33–36 Complete analytical solutions were limited until
recently to certain particular functional forms of b(t) with constant
a(t),37 a finite-range linear schedule for both a(t) and b(t),38 and
periodic a(t) and b(t).39 An analytical solution for general b(t) but
constant a(t) was found in ref. 40, which was then extended to
general (but implicitly specified) a(t) as well.41,42 Here we consider
the case of general schedules a(t) and b(t), and develop a simple
to interpret, yet surprisingly accurate, low-order time-dependent
perturbation theory approach, that allows us to identify a class of
schedules exhibiting “giant” (relative to linear schedules) inter-
ference oscillations of the ground state population as a function of
the total annealing time. Our proposal should in principle be
straightforward to implement using, e.g., flux qubits, and toward
this end we also study the effects of coupling to a thermal
environment.
The structure of this paper is as follows. In the first section we

analyze the TLS quantum annealing problem in the closed system
limit. We first transform to an adiabatic interaction picture and
perform a Magnus expansion, which allows us to give a simple
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expression for the ground state probability in terms of the Fourier
transform of a key quantity we call the angular progression. We
then analyze both the LZ problem (with a linear schedule) and a
“Gaussian angular progression” schedule which gives rise to large
interference oscillations. We explain how these oscillations can be
interpreted in terms of a double-slit experiment generating
interference between ground state amplitudes. In the second
section we analyze the problem in the presence of coupling to a
thermal environment. We consider the weak-coupling limit both
without and with the rotating wave approximation, and find the
range of coupling strengths and temperatures over which the
interference oscillations are visible, using parameters relevant for
superconducting flux qubits. We find a simple semi-empirical
formula that accurately captures all our open-system simulation
results in terms of three physically intuitive quantities: the
oscillation period, rate of convergence to the adiabatic limit, and
damping due to coupling to the thermal environment. We express
all three are in terms of the input parameters of the theory.
Conclusions and the implications of our results are discussed in
the final section. A variety of supporting technical calculations and
bounds are provided in the Supplementary Information.

RESULTS
We present our results by first considering the closed system
setting, followed by the open system case.

Closed system analysis
We first consider the closed system setting. Consider a two-level
system (TLS) quantum annealing Hamiltonian in the standard form
(1), where the annealing schedules a(t), b(t) ≥ 0 respectively
decrease/increase to/from 0 with time t ∈ [0, tf], where tf is the
duration of the anneal. The schedules need not be monotonic,
and our analysis thus includes “reverse annealing”43–47 as a special
case. The TLS can be a single qubit or the two lowest energy levels
of a multi-qubit or multi-level system separated by a large gap
from the rest of the spectrum. Key to our analysis is a series of
transformations designed to arrive at a conveniently reparame-
trized interaction picture. First, we rewrite Eq. (1) in the form

HSðsÞ ¼ � 1
2
E0½AðsÞZ þ BðsÞY�; (2)

where A(s)= 2a(t)/E0 and B(s)= 2b(t)/E0 are dimensionless sche-
dules parametrized by the dimensionless time s= t/tf, and E0 > 0 is
the energy scale of the Hamiltonian. We have cyclically permuted
the Pauli matrices for later convenience. The ground states of HS(0)
and HS(1) are |0〉 and |−i〉, respectively. Second, we parametrize
the annealing schedules in the angular form

AðsÞ ¼ ΩðsÞ cos θðsÞ; BðsÞ ¼ ΩðsÞ sin θðsÞ; (3)

where θ(0)= 0 and θ(1)= π/2. Under this parametrization the
eigenvalues of HS(s) are ±E0Ω(s)/2, so the gap is Δ(s)= E0Ω(s). Thus,
any non-trivial time-dependence of the gap is encoded in the
time-dependence of Ω(s), which we refer to as the dimensionless
gap. The quantity

τðsÞ �
Z s

0
ds0Ωðs0Þ (4)

is the cumulative dimensionless gap. Third, changing variables
from s to τ to absorb Ω(s), the system satisfies the Schrödinger
equation

i
d
dτ
jψi ¼ � 1

2
E0tf ½cos θðτÞZ þ sin θðτÞY�jψi (5)

(we work in �h ¼ 1 units throughout). The Hamiltonian is
diagonalized at each instant by the rotation RX(θ)= e−iθX/2. Thus,
fourth, we change into the adiabatic frame48,49 with

ψadj i ¼ RXðθÞ ψj i, yielding:

i
d
dτ

ψadj i ¼ Had ψadj i; HadðτÞ � 1
2

dθ
dτ

X � E0tf Z

� �
: (6)

We call dθ
dτ the angular progression of the anneal.

Finally, we transform into the interaction picture with respect to
the free Hamiltonian H0=−E0tfZ/2 and its propagator
U0ðτÞ ¼ e�iH0τ . Letting S±= (X ± iY)/2 denote the spin raising
and lowering operators we have
XIðτÞ ¼ Uy0ðτÞXU0ðτÞ ¼ e�iE0tf τSþ þ h: c:, and obtain

i
d
dτ

ψIj i ¼ HIðτÞ ψIj i; HIðτÞ � λðτÞXIðτÞ; (7)

where ψIj i ¼ Uy0 ψadj i and λðτÞ ¼ 1
2
dθ
dτ . Therefore, we see that in this

adiabatic interaction picture the dynamics of the annealed TLS is a
rotation about the time-dependent XI axis with a rate equal to the
angular progression.
The corresponding time-ordered propagator UIðτÞ ¼

Tþe
�i
R τ

0
dτ0HIðτ0Þ can be calculated in time-dependent perturbation

theory using the Magnus expansion (see Methods) for the

Hermitian operator KðNÞðτÞ ¼PN
n¼1 KnðτÞ. The resulting UðNÞI ðτÞ ¼

exp½�iKðNÞðτÞ� converges to UI(τ) uniformly with growing N, and is
unitary at all orders.50 To first order:

K1ðτÞ ¼
Z τ

0
dτ1HIðτ1Þ ¼ ϕτðE0tf Þ þ h:c:; (8)

where

ϕτðωÞ �
1
2

Z τ

0
dτ1

dθ
dτ1

e�iωτ1 : (9)

To systematically go beyond first order we note that the Kn(τ)
are nth order nested commutators, and hence closure of the su(2)
Lie algebra guarantees that at all orders KðNÞðτÞ ¼
ηðNÞðτÞn̂ðNÞðτÞ �~σ, where η(N)(τ) > 0, n̂ðNÞðτÞ is a unit vector, and
~σ ¼ ðX; Y; ZÞ. It thus follows that
UðNÞI ðτÞ ¼ I cos ηðNÞðτÞ � in̂ðNÞðτÞ �~σ sin ηðNÞðτÞ: (10)

We will be concerned primarily with the probability of
remaining in the ground state at the final time, denoted p0←0.
Since ψIðsÞj i ¼ Uy0ðτðsÞÞRXðθðsÞÞ ψðsÞj i, we have ψIð0Þj i ¼ 0j i and
ψIð1Þj i / �i 0j i. Thus, to Nth order:

pðNÞ0 0 ¼ 1� pðNÞ1 0 ¼ 0h jUðNÞðτf Þ 0j i
�� ��2 (11a)

¼ cos ηðNÞðτf Þ � inðnÞZ ðτf Þ sin ηðNÞðτf Þ
��� ���2; (11b)

where the states |0〉 and |1〉 are the initial ground and excited
states, and where τf≡ τ(1). To first order we find (see Methods for
the explicit form of U(1)):

pð1Þ0 0 ¼ j 0h je�ijϕjX 0j ij2 ¼ cos2ðjϕjÞ; ϕ � ϕτðE0tf Þ: (12)

This conceptually elegant result already indicates that quite
generally one may expect the ground state probability to oscillate
as a function of the anneal time tf, before the adiabatic limit sets
in, a conclusion also reached in ref. 25 on the basis of either a
large-gap (near-adiabatic limit) or very small gap (stationary phase
approximation) assumption. Our analysis applies for
arbitrary gaps.
Having set up the general analysis framework, let us now first

consider the simplest annealing schedule, namely a linear
interpolation of the type considered in the original LZ pro-
blem:28,29 A(s)= 1− s and B(s)= s. To evaluate Eq. (9) we can
change the integration variable to s and approximate τ(s) ≈ τfs in
the exponent, yielding ϕτf ðωÞ ¼ 1

2

R 1
0 ds

1
s2þð1�sÞ2 e

�iωτf s for the first-

order Magnus expansion. We compare this to the numerically
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exact solution in Fig. 1, which shows remarkably good agreement.
The simplicity of our Magnus expansion approach should be
contrasted with the analytical solution for linear schedules in
terms of parabolic cylinder functions.38 Also notable is that while a
quantum interference pattern is visible, the oscillations are very
weak and not controllable (see the insert of Fig. 1). This motivates
us to introduce schedules with strong and controllable quantum
interference.
Our goal is to identify a family of annealing schedules that

generate strong interference between the paths leading to the
final ground state, such that “giant” oscillations of the ground
state probability can be observed. Therefore we now introduce
Gaussian angular progressions.
Suppose that the angular progression is two-step Gaussian,

namely, a sum of two Gaussians centered at τf/2 ± μ (with μ < τf/2):

dθ
dτ
¼ c e�½αðτ�ðτf =2þμÞÞ�

2 þ e�½αðτ�ðτf =2�μÞÞ�
2

� �
: (13)

Note that
R τf
0 dτ

dθ
dτ ¼ θð1Þ � θð0Þ ¼ π

2, which fixes c. If we assume
that α� 1 then we may approximate

R τf
0 by

R1
�1 (we bound the

approximation error in the Supplementary Information). Thus c ¼
α

ffiffiffi
π
p

=4 and Eq. (9) yields ϕτf ðωÞ ¼ π
4 e
�iωτf =2e�½ω=ð2αÞ�

2
cosðμωÞ.

Using Eq. (12), to first order the ground state probability is then

pð1Þ0 0 ¼ cos2
π

4
e�ðtf =tadÞ

2

cosðπtf=tcohÞ
h i

(14a)

tad � 2α=E0; tcoh � π=ðμE0Þ: (14b)

The ground state probability thus approaches its adiabatic limit
of 1 on a timescale of tad (set by the Gaussian width), while
undergoing damped oscillations with a period of tcoh. The
oscillations are overdamped when tad < tcoh. In particular, a single
Gaussian (μ= 0) can thus not give rise to oscillations.
We plot the ground state probability pG(tf)≡ p0←0 in Fig. 1, for a

two-step Gaussian progression with parameters chosen to
represent the underdamped case; the associated annealing

schedules are shown in Fig. 2 (top). The amplitude of the resulting
pre-adiabatic oscillations seen in Fig. 1 is, as desired, much larger
than that associated with the linear schedule. The accuracy of the
first-order Magnus expansion is again striking, especially given its
simplicity compared to the analytical solution approaches.40–42 We
give a bound on the first-order Magnus expansion approximation
error in the Supplementary Information.
What is the origin of the oscillations? The answer is an

interference effect between the two paths created by the two-
step schedule, which enforces a double-slit or an unbalanced
Mach-Zender interferometer scenario, with π/4 beam-splitters: see
Fig. 2 (bottom). The first step is a perturbation that generates
amplitude in the excited state, while the second step allows for
some of this amplitude to recombine with the ground state. The
relative phase between the two paths is ξ ¼ E0tf

R sþ
s�
Ωðs0Þ ds0,

which results in oscillations. In Methods we derive this result via a
simple interferometer-type model that predicts the curve marked
DS Γ= 0 in Fig. 1, which is in excellent agreement with the
numerically exact result.
A natural question is whether the observation of interference

oscillations as a function of tf implies the existence of quantum
coherence in the computational basis at tf. We give a formal proof
that the answer is affirmative in Methods. An illustration is given in
Fig. 1, for the case of dephasing in the instantaneous energy

Fig. 1 The numerically exact (dotted) and first order Magnus
expansion (solid) ground state probabilities of the linear (orange)
and two-step Gaussian progression (blue) at E0= 0.25 GHz. For the
two-step Gaussian we set α= 32 and μ= 101/800. Insert: zoomed-in
view of the linear schedule results. Here and in other plots we use
parameters compatible with quantum annealing using flux qubits.4–7

Also shown is the prediction of a simplified double-slit type analysis
(dashed, red). Both the latter and the first order Magnus expansion
result are in excellent agreement with the numerically exact
solution. The effect of strong dephasing in the instantaneous
energy eigenbasis is shown as well (dashed, black), obtained using a
phenomenological noise model with dephasing parameter Γ
described in Methods. In this case the interference oscillations are
strongly damped

Fig. 2 Top: Example annealing schedules A(s) (blue) and B(s)
(orange) for a two-step Gaussian progression with α= 32 and μ=
101/800, subject to the dimensionless gap Ω(s)= 0.99cos2(2πs)+
0.01, which is shown as well (dashed, green). Bottom: Equivalent
interferometer model in the adiabatic interaction picture. The
system starts in the ground state |0〉. At s1 ≈ .25 the first Gaussian
splits the amplitude, some of which evolves in the excited state |1〉,
where it acquires a relative phase ξ ∝ tf. The second Gaussian at s2 ≈
0.75 returns part of the excited state amplitude to the ground state,
where it recombines. The total ground state amplitude is a2+ e−iξb2.
Each Gaussian acts as an unbalanced (a, b) beamsplitter (purple),

where a ¼ cos π
8 e
�ðtf =tadÞ2

� �
, b ¼ �i sin π

8 e
�ðtf =tadÞ2

� �
(see Methods for

details)
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eigenbasis, which is equivalent to performing a measurement in
this basis between the two Gaussian steps. The final ground state
probability is then the sum of classical conditional probabilities
through each beam-splitter, and as expected, the oscillations
disappear.
We emphasize that the angular progression

dθ
dτ
ðsÞ ¼ B0ðsÞAðsÞ � A0ðsÞBðsÞ

ΩðsÞ3 ; (15)

is the sole quantity needed to determine the ground state
probability, per Eqs (9) and (12). In particular, per Eq. (15), any
transformation of A(s), B(s) and Ω(s) that leaves dθ

dτ invariant will not
affect PG in the closed-system setting.
Note, furthermore, that specifying the angular progression does

not uniquely determine the annealing schedules A(s) and B(s). This
is advantageous for practical purposes, since such schedules are
typically implemented via arbitrary waveform generators (AWGs)
with bandwidth constraints that can be incorporated into the
schedule design process. To determine these schedules we need
to specify the dimensionless gap Ω(s) and the angular progression
dθ
dτ . We can determine τ(s) by solving the differential equation dτ

ds ¼
ΩðsÞ subject to the boundary condition τ(0)= 0. Then θ(s) can be
determined by solving the differential equation

dθ
ds
¼ ΩðsÞdθ

dτ

����
τ¼τðsÞ

; (16)

subject to appropriate boundary conditions. Together, Ω(s) and θ
(s) determine the annealing schedules A(s) and B(s) via Eq. (3). In
the two-step Gaussian case this means integrating Eq. (13), which,
for a constant gap, yields θ(s) as a sum of erf functions.
A particularly interesting example of a dimensionless gap

schedule is one that represents the presence of two avoided level
crossings, a significant feature of the glued trees problem.13 An
example is shown in Fig. 2 (top), representing an example of the
procedure outlined above for numerical determination of the
schedule. It is clear from Eq. (15) that the main contribution to the
angular progression is the near-vanishing of the gap. In contrast,
when Ω(s) is constant, the main contribution to the angular
progression is the suddenness of the schedule, i.e., a large A′(s) or
B′(s).

Open system analysis
While a phenomenological model of dephasing in the instanta-
neous energy eigenbasis already shows clearly how the inter-
ference pattern disappears under decoherence (Fig. 1 and
Methods), this is not a realistic model of decoherence. We thus
examine the effect of coupling the TLS to a thermal environment
that corresponds more closely to experiments, e.g., with super-
conducting flux qubits.
We consider a dephasing model wherein the total system-bath

Hamiltonian is H= HS(t)+ HB+ gY ⊗ B, where B is the dimension-
less bath operator in the system-bath interaction, HS(t) is given in
Eq. (2), HB is the bath Hamiltonian, and g is the coupling strength
with units of energy. We assume a separable initial state ρS(0) ⊗
ρB, with ρB= exp(−βHB)/Z the Gibbs state of the bath at inverse
temperature β and partition function Z= Tr[exp(−βHB)]. We
transform to the interaction picture with respect to HB, so that
H 7!~HðtÞ ¼ HSðtÞ þ gY � ~BðtÞ, with ~BðtÞ ¼ UyBðtÞBUBðtÞ, and
UBðtÞ ¼ e�itHB . The same series of transformations as those leading
to Eq. (6) can be summarized as: Y � ~BðtÞ 7! tf Y � ~BðsÞ
7! tf RXðθÞYRXð�θÞ � ~BðsÞ ¼ tf ½cosðθÞY þ sinðθÞZ� � ~BðsÞ. After the
final transformation to the H0-interaction picture, the total
Hamiltonian replacing HI(τ) in Eq. (7) becomes

HtotðsÞ ¼ 1
2
_θðsÞXIðsÞ þ gtf~μðsÞ �~σ � ~BðsÞ; (17)

where ~μ ¼ ðsinϕ cos θ; cosϕ cos θ; sin θÞ is a unit vector in polar
coordinates, with ϕðsÞ � �E0tf τðsÞ, and henceforth the dot denotes
d
ds. The time-convolutionless (TCL) expansion51 provides a conve-
nient and systematic way to derive master equations (MEs) without
requiring an adiabatic or Markovian approximation. With the
detailed derivation given in Methods, the 2nd order TCL (TCL2)
ME in the adiabatic-frame can be written as:

_ρSðsÞ ¼ �i
�
HIðsÞ; ρSðsÞ

	
� ðgtf Þ2

�
~μðsÞ �~σ;ΛðsÞρSðsÞ

	þ h:c:;
(18)

where

ΛðsÞ ¼
Z s

0
ds0Cðs; s0ÞUIðs; s0Þ~μðs0ÞUyI ðs; s0Þ �~σ; (19)

and Cðs; s0Þ ¼ Tr½~BðsÞ~Bðs0ÞρB� ¼ C�ðs0; sÞ is the bath correlation
function. We assume that the bath is Ohmic with spectral density
JðωÞ ¼ ηωe�ω=ωc . To ensure the validity of the TCL2 approximation
—which is also known as the Redfield ME—we derive a general
error bound in the Supplementary Information, and apply this
bound to the Ohmic case. We find the condition tf 	 β

g2η, which is
always satisfied in our simulations.
In general, the Redfield ME (18) does not generate a completely

positive map, which can result in non-sensical results such as
negative probabilities.52,53 Although this is not necessary for
complete positivity,54 a further rotating wave approximation
(RWA) is usually performed. The resulting Lindblad-type ME also
lends itself to a simpler physical interpretation. As detailed in
Methods, this leads to

_ρS ¼ �i 1
2
_θXI þ HLS; ρS

h i
� g2tf γd ρba bj i ah j þ ρab aj i bh jð Þ
þ g2tf γt ρaa � e�βΔρbb


 �
bj i bh j � aj i ah jð Þ;

(20)

where ρab= 〈a|ρS|b〉, all quantities except g, tf and β are s-
dependent, and the effective dephasing and thermalization rates
γd and γt, respectively, and the basis {|a〉, |b〉}, are given by

aðsÞj i ¼ UIðsÞ ε�ðsÞj i; bðsÞj i ¼ UIðsÞ εþðsÞj i (21a)

γdðsÞ ¼
1
2
γtðsÞð1þ e�βΔðsÞÞ; γtðsÞ ¼ γðΔðsÞÞ: (21b)

Here ε± ðsÞj i ¼ Uy0ðsÞ ±j i are the instantaneous eigenvectors of
HI(s). The Lamb shift is:

HLSðsÞ ¼ g2tf SðΔðsÞÞ bj i bh j þ Sð�ΔðsÞÞ aj i ah jð Þ: (22)

The functions γ(ω)/2 and S(ω) are the real and imaginary parts of
the one-sided Fourier transform of the bath correlation function,
and are implicitly β-dependent (see Methods, where we also
discuss the validity conditions for the RWA).
The numerical solutions of Eqs (18) and (20) are shown in Fig. 3

for the two-step Gaussian schedule with parameters as in Fig. 1
and for the gap schedule plotted in Fig. 2 (top). The main message
conveyed by this figure is that oscillations are visible over a wide
range (an order of magnitude) of temperatures and system-bath
coupling strengths. We also note that for these parameter values
the Redfield ME produces physically valid solutions, despite the
concerns about complete positivity mentioned above. The Red-
field ME results in consistently higher ground state probabilities
than the RWA.
These numerical results are accurately reproduced in terms of a

simple semi-empirical formula, also shown in Fig. 3, and derived in
Methods:

P0Gðtf Þ ¼ PGðtf Þ � PEðβÞð Þe�γd tf þ PEðβÞ (23)

where P′G(tf) and PG(tf) denote the open and closed system
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success probabilities, respectively, where

γd ¼ g2
Z 1

0
ds0γdðs0Þ (24)

is the average thermalization rate, and where

PEðβÞ � eβE0=2

Z
; Z ¼ 2 coshðβE0=2Þ (25)

is the ground state probability in the adiabatic limit, given by the
thermal equilibrium value associated with HS(1) [Eq. (2)]. As seen in
Fig. 3, the agreement is excellent with both the RWA result when
we use PE(0)= 1/2 (the infinite temperature limit), and with the
TCL2 results when we use PE(β) and fit β; we find that the fitted β is
consistently slightly lower than the actual β values used in our
simulations.

DISCUSSION
We have proposed a double-slit approach to quantum annealing
experiments, exhibiting “giant” interference patterns, motivated
by the role of coherent diabatic evolution in enabling quantum
speedups. Our analytical approach based on a simple time-
dependent expansion in the adiabatic interaction picture accu-
rately describes the associated dynamics. The experimental
observation of such interference oscillations then becomes a

clear and easily testable signature of coherence in the instanta-
neous energy eigenbasis. The test is simple in principle: it involves
a quantum annealing protocol that employs the proposed
schedules, with a measurement of only the ground state
population as a function of the anneal time tf. When the relative
phase between the upper and lower paths to the ground state is
randomized, the interference effect is weakened.
To explain these results we proposed an effective model that

accurately explains the interference oscillations in terms of a few
simple parameters. Namely, upon replacing PG(tf) in Eq. (23) by
pð1Þ0 0ðtf Þ as given in Eq. (14a), the three timescales tcoh, tad, and
1=γd respectively characterize the oscillation period, Gaussian
damping due to approach to the adiabatic limit, and exponential
damping due to coupling to the thermal bath. We expressed all
three timescales in terms of the input physical parameters of the
problem [Eqs (14b) and (24)], and together they completely
characterize the oscillations and their damping. It is an interesting
problem to try to generalize these results to multi-level systems.
We do not expect that the general multi-level system case will be
amenable to an analytical treatment of the type we developed
here, but under the assumption of a timescale separation which
would effectively embed a TLS in a multi-level system due to a
large gap to higher excited states, we still expect many of our
conclusions and analysis methods to hold. Alternatively, high-
contrast interference oscillations have been obtained numerically
in multi-level systems with a high degree of symmetry.55

We expect that an experimental test of our “double-slit”
proposal will reveal the predicted interference oscillations for
qubits that are sufficiently coherent, such as aluminum-based flux
qubits,5–7 Rydberg atoms,56,57 or trapped ions.58,59 Such an
experiment can be viewed as a necessary condition for quantum
annealing implementations of algorithms exhibiting a quantum
speedup, e.g., the glued trees problem,13 which rely on coherence
between energy eigenstates. It appears relevant (if not essential)
to use such coherence in order to bypass the common objection
that stoquastic quantum annealing or adiabatic quantum comput-
ing are subject to, which is that they can be efficiently simulated
using the quantum Monte Carlo algorithm when restricted to
ground-state evolution (with some known exceptions60,61), due to
the absence of a sign problem.62,63 Therefore an experimental
observation of the quantum interference pattern predicted here
will bolster our confidence in the abilities of coherent quantum
annealers to one day deliver a quantum speedup.

METHODS
Magnus and Dyson series
We repeatedly use the following elementary identity for su(2) angular
momentum operators:

expð�iφJxÞJz expðiφJxÞ ¼ Jz cosφ� Jy sinφ: (26)

Note that the Pauli matrices are related via Ji= σi/2, i∈ {x, y, z}.
Let us denote the solution of the adiabatic frame Hamiltonian given in

Eq. (6) by Uad(τ). The adiabatic interaction picture propagator,

UIðτÞ ¼ Uy0ðτÞUadðτÞ ¼ Tþe
�i
R τ

0
dτ0λðτ0 ÞXIðτ0 Þ; (27)

the solution of Eq. (7), can be computed using the Dyson series expansion:

UIðτÞ ¼ I � i
R τ
0 dτ1λðτ1ÞXIðτ1Þ

þ ð�iÞ2R τ
0 dτ1

R τ1
0 τ2λðτ1ÞXIðτ1Þλðτ2ÞXIðτ2Þ þ ¼

(28)

Note that each term in the Dyson series contributes to the ground state
amplitude if and only if it is an even power, and likewise to the excitation
amplitude if and only if it is an odd power. Consequently, the amplitudes
calculated from the Dyson series may not be unitary to a desired precision
until the terms are calculated to a high enough order. For this reason we
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Fig. 3 Ground state probability as a function of total annealing time
in the open system setting. Shown are the numerical results of the
TCL2 master equation without the RWA [Eq. (18), Redfield] and with
the RWA [Eq. (20), Lindblad], and the semi-empirical Eq. (23). The
bath is Ohmic with a cutoff frequency ωc = 4 GHZ. Top: ηg2= 2 ×
10−4 for a range of temperatures. Bottom: T= 20mK for a range of
coupling values. TCL2′(0) is the case PE(0), and is an excellent
agreement with the RWA results. TCL2′(β) is the case PE(1/T

*) with
fitted T* values. From top to bottom: a T*= {13.68, 44.06, 104.50}mK
and b T*= {23.72, 24.22, 24.95}mK. Parameter values were chosen to
be consistent with quantum annealing using flux qubits and the
necessary condition tf 	 β

g2η
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prefer the Magnus expansion,50 for which

UIðτÞ ¼ lim
N!1

exp �iKðNÞðτÞ
h i

; KðNÞðτÞ ¼
XN
n¼1

KnðτÞ: (29)

The first few terms are given by

K1ðτÞ ¼
Z τ

0
dt1λðτ1ÞXIðτ1Þ (30a)

K2ðτÞ ¼ � i
2

Z τ

0
dτ1

Z τ1

0
dτ2λðτ1Þλðτ2ÞXIðτ1ÞXIðτ2Þ: (30b)

Using UðNÞI ðτÞ ¼ exp �iKðNÞðτÞ
h i

and Eq. (8) we thus find

Uð1ÞI ðτÞ ¼ exp �i½ϕSþ þ h:c:�ð Þ (31a)

¼ cosðjϕjÞ �i sinðjϕjÞeiφ
�i sinðjϕjÞe�iϕ cosðjϕjÞ

� �
(31b)

¼ eiφZ=2Mjϕje�iφZ=2 (31c)

Mjϕj � e�ijϕjX ¼ cosðjϕjÞI � i sinðjϕjÞX: (31d)

where we wrote ϕ as a shorthand for ϕτ(E0tf), and where φ= arg(ϕ). This
directly results in Eq. (12).
To compute the second order Magnus term we use XIðτÞ ¼ e�iE0tf τSþ þ

h:c: for the commutation relation

XIðt1Þ; XIðt2Þ½ � ¼ 2 i sin½E0tf ðτ2 � τ1Þ�Z; (32)

so that

K2ðτÞ ¼
Z τ

0
dτ1

Z τ1

0
dτ2λðτ1Þλðτ2Þ sin½E0tf ðτ1 � τ2Þ�Z: (33)

Double-slit interpretation
Having derived the adiabatic frame Hamiltonian given in Eq. (6)

HadðτÞ ¼ 1
2

dθ
dτ

X � E0tf Z

� �
; (34)

we see that the angular progression dθ
dτ of an annealing schedule is the

perturbation that causes transitions between the two levels of the system.
While this perturbation is steady and small in the case of a linear schedule,
Gaussian schedules in which the perturbation is localized suggest an
appealing physical picture similar to a double-slit or interferometer model.

Single Gaussian step. Let us first consider a single Gaussian step, which Eq.
(13) reduces to when μ= 0, c ¼ α

ffiffiffi
π
p

=2. Under the same assumptions as
those leading to Eq. (14), we then find ϕτf ðωÞ ¼ π

4 e
�iωτf =2e�ðtf =tadÞ

2
, with ω

= E0tf. Thus, Eq. (31) gives us the first order Magnus expansion propagator
in the interaction picture with

jϕj ¼ π

4
e�½E0tf =ð2αÞ�

2 ¼ π

4
e�ðtf =tadÞ

2

(35)

and ϕ= E0tfτf/2. The X-rotation matrix in Eq. (31c) thus becomes:

MG
ψ ¼

cos ψ
2 e
�ðtf =tadÞ2

� �
�i sin ψ

2 e
�ðtf =tadÞ2

� �
�i sin ψ

2 e
�ðtf =tadÞ2

� �
cos ψ

2 e
�ðtf =tadÞ2

� �
0
B@

1
CA; (36)

with the superscript G serving as a reminder that this is the Gaussian step
case. Now let us suppose that the Gaussian profile is narrow: α� E0tf , or
equivalently tad � tf . The perturbation is then sudden relative to the
adiabatic timescale, and acts like a beamsplitter in a Mach-Zehnder (MZ)
interferometer.33 In this limit |ϕ| ≈ π/4 and Eq. (31c) gives

Uð1ÞI ðτf Þ ¼ eiðE0tf τf =2ÞZMG
π=2e

�iðE0tf τf =2ÞZ

MG
π=2 ¼ 1ffiffi

2
p

1 �i
�i 1

� �
:

(37)

Recall that in the adiabatic interaction picture |ψI(0)〉= |0〉. Thus, the first
phase factor e−iϕZ has no effect, and we can picture a process by which the
ground state |0〉 is instantly split into an equal superposition 1ffiffi

2
p 0j i � i 1j ið Þ

by the “Mach-Zender” matrix MG
π=2. These two states are then propagated

freely by Uy0ðτf Þ ¼ eiðE0tf τf =2ÞZ , so they accumulate a relative phase of ieiE0tf τf .

For a single Gaussian, interference due to this phase difference is clearly
not picked up via a Z basis measurement.

Two Gaussian steps: indirect derivation of the interferometer model in the
narrow Gaussian limit. If instead we consider a two-step Gaussian
schedule [Eq. (13)], then as we already found before Eq. (14),
ϕτf ðωÞ ¼ π

4 e
�iωτf =2e�ðtf =tadÞ

2
cosðμωÞ, with ω= E0tf. Eq. (31) now gives us

the first order Magnus expansion propagator in the interaction picture
with jϕj ¼ π

4 jcosðμE0tf Þje�ðtf =tadÞ
2
and again ϕ= E0tfτf/2. Note that without

the exponential decay factor e�ðtf =tadÞ
2 ¼ e�ðtf =tadÞ

2
the oscillations are

completely undamped and the adiabatic limit is never reached. Thus it is
clear that the finite width of the Gaussian steps is solely responsible for the
onset of adiabaticity.
Let us now derive an equivalent MZ interferometer model. On the one

hand, we already know from Eq. (12) that pð1Þ0 0 ¼ cos2ðjϕjÞ, i.e.
pð1Þ0 0 ¼ cos2

π

4
jcosðμE0tf Þje�ðtf =tadÞ

2
� �

: (38)

This function has a quasiperiod (the distance between consecutive
maxima) of π/(μE0), a minimum of cos2(π/4)= 1/2 at tf= 0, and a
maximum of 1. On the other hand, we may model the two-step narrow
(α≫ E0tf) Gaussian schedule as two consecutive, localized (at τf/2 ± μ)
and non-overlapping (α≫ 1/μ) “beam-splitter” steps, separated by a
dimensionless time interval of 2μ. Each beam-splitter is of the form given
in Eq. (37), the only difference being that the first acts at τf/2− μ
(preceded by free evolution) and the second acts at τf/2+ μ (followed by
free evolution). In between the beam-splitter action there is free
evolution of duration 2μ. Ignoring the initial and final free evolutions
(since the initial and final state we are interested are both |0〉, which is
invariant under U0) we expect to be able to write the propagator as the
following ansatz:

~Uð1Þðτf Þ ¼ MG
ψU0ð2μÞMG

ψ (39)

where we left the angle ψ in the beam splitter matrix (36) unspecified in

order to determine it by matching to the properties of pð1Þ0 0 ¼ cos2ðjϕjÞ.
Carrying out the matrix multiplication and computing the expectation
value, we find

0h j~Uð1Þðτf Þ 0j i
�� ��2¼ cos2ðψ=2Þ � sin2ðψ=2Þe2iμE0tf�� ��2: (40)

In order for this to match Eq. (38), we require a quasiperiod of π/(μE0)
(which is already the case), a minimum of 1/2 at tf= 0, and a maximum
of 1. The latter two conditions force ψ= π/4.
Therefore, considering Eq. (39), we have shown that the two-step

Gaussian model is equivalent (in the large α limit) to a MZ interferometer
with two unbalanced beamsplitters, separated by free propagation of
duration 2μ (the separation between the two Gaussians).
The double-slit (or MZ interferometer model) is remarkably accurate in

terms of predicting the ground state probability. This is shown in Fig. 1,
where we compare the numerically exact result and the solution of the
simple interferometer model given by Eq. (40). Namely, we use the
interference model given in Eq. (40), with ψ= π/4. To calculate the
interference fringe, the position of each of the two Gaussians is given by
s±= (τf/2 ± μ)/τ. The phase factor μE0tf, which only holds in the large α
limit, is replaced by E0tf ½τðsþÞ � τðs�Þ� ¼ E0tf

R sþ
s�
ds0Ωðs0Þ, where τ(s) is the

cumulative dimensionless gap [Eq. (4)]. The reason for this replacement
is given in the following, alternative and more direct derivation of the
interferometer model.

Two Gaussian steps: direct derivation of the interferometer model. Given
the two-step Gaussian schedule, Eq. (13),

dθ
dτ
¼ c e�½αðτ�τþÞ�

2 þ e�½αðτ�τ�Þ�
2

� �
; (41)

where τ±= τf/2 ± μ, we can split the unitary generated by the adiabatic
frame Hamiltonian, Eq. (34), into two parts:

Uadðτf ; 0Þ ¼ Uad τf ;
τf
2

� �
Uad

τf
2
; 0

� �
(42)

We now wish to apply the Magnus expansion separately to each of the
unitaries Uad

τf
2 ; 0


 �
and Uad τf ;

τf
2


 �
. Consider Uad

τf
2 ; 0


 �
. Inverting Eq. (27),
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the first order Magnus expansion [Eq. (31)] gives

Uad
τf
2
; 0

� �
¼ U0

τf
2
; 0

� �
Uð1ÞI

τf
2
; 0

� �
(43a)

¼ U0
τf
2
; 0

� �
eiφZ=2Mjϕje�iφZ=2; (43b)

where, using Eq. (9), now

ϕ � ϕτf =2;0ðE0tf Þ ¼
1
2

Z τf =2

0

dθ
dτ1

e�iE0tf τ1dτ1: (44)

For α≫ 1 we may extend the limits of integration over the interval [0, τf/
2] to ±∞ without considering the second Gaussian step:

ϕ 
 c
2

Z 1

�1
e�½αðτ1�τ�Þ�

2

e�iE0tf τ1dτ1 (45a)

¼ π

8
e�iE0tf τ�e�ðtf =tadÞ

2

; (45b)

where we used c ¼ α
ffiffiffi
π
p

=4 as we found in the derivation of Eq. (14). We
may thus write the explicit form of the interaction picture unitary as

Uð1ÞI
τf
2
; 0

� �
¼ eiðE0tf τ�=2ÞZMG

π=4e
�iðE0tf τ�=2ÞZ (46a)

¼ Uy0ðτ�; 0ÞMG
π=4U0ðτ�; 0Þ; (46b)

and the adiabatic frame unitary becomes:

Uad
τf
2
; 0

� �
¼ U0

τf
2
; 0

� �
Uy0ðτ�; 0ÞMG

π=4U0ðτ�; 0Þ (47a)

¼ U0
τf
2
; τ�

� �
MG

π=4U0ðτ�; 0Þ: (47b)

Repeating this calculation for the second adiabatic frame unitary
Uad τf ;

τf
2


 �
, we obtain

Uad τf ;
τf
2

� �
¼ U0ðτf ; τþÞMG

π=4U0 τþ;
τf
2

� �
: (48)

Thus, Eq. (42) becomes

Uadðτf ; 0Þ ¼ U0ðτf ; τþÞMG
π=4U0ðτþ; τ�ÞMG

π=4U0ðτ�; 0Þ; (49)

which describes an interferometer composed of two unbalanced (π/4)
double beam-splitters, interrupted by free propagation of duration τ+− τ−
(ignoring the initial and final phases).
The phase accumulated between |0〉 and |1〉 is solely determined by the

free evolution in Eq. (49),

U0ðτþ; τ�Þ ¼ ei½E0tf ðτþ�τ�Þ=2�Z (50)

whose value is given by

ξ ¼ E0tf ðτþ � τ�Þ ¼ E0tf

Z sþ

s�
Ωðs0Þds0; (51)

where in the second equality we used Eq. (4).

Interference oscillations in the double-slit experiment imply
quantum coherence in the computational basis
Here we prove that coherence in the energy eigenbasis implies, in general,
coherence in the computational basis.
Let H(t) denote an arbitrary, time-dependent TLS Hamiltonian, with

instantaneous energy eigenbasis {|εi(t)〉}. The TLS density matrix can be
written in this basis as

ρðtÞ ¼
X
ij

~ρijðtÞ εiðtÞj i εjðtÞ
� ��: (52)

Let us define “coherence” with respect to a given basis as the off-
diagonal elements of the density matrix in the same basis. We can
compute the coherence in the computational basis {|0〉, |1〉} via

ρ01 ¼ 0h jρðtÞ 1j i ¼
X
ij

0h j~ρijðtÞεijðtÞ 1j i; (53)

where εij(t)= |εi(t)〉〈εj(t)|. The two bases are related via a unitary rotation:

ε0ðtÞj i ¼ cos θðtÞ 0j i þ eiϕðtÞ sin θðtÞ 1j i (54a)

ε1ðtÞj i ¼ sin θðtÞ 0j i � eiϕðtÞ cos θðtÞ 1j i; (54b)

so that Eq, (53) reduces to:

0h jρðtÞ 1j i ¼ e�iϕ ~ρ00 �
1
2

� �
sinð2θÞ � Reð~ρ10Þcosð2θÞ þ i Imð~ρ10Þ


 �
:

(55)

where we used ~ρ00 þ ~ρ11 ¼ 1 and ~ρ01 ¼ ~ρ�10. Equation (55) can be further
simplified using ~ρ00 � 1

2


 �
sinð2θÞ � Reð~ρ10Þcosð2θÞ ¼ Cðcosφ sinð2θÞ�

sinφ cosð2θÞÞ, where

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRe~ρ10Þ2 þ ~ρ00 �

1
2

� �2
s

; tanφ ¼ Reð~ρ10Þ
~ρ00 � 1

2

: (56)

Additionally, by making use of the trigonometric identity sin(2θ− φ)=
sin 2θ cosφ− sinφ cos2θ, Eq. (55) can be written as

0h jρðtÞ 1j i ¼ e�iϕðC sinð2θ� φÞ þ i Im ~ρ10Þ: (57)

Since C sinð2θ� φÞ 2 R, it follows that Imð~ρ10ðtÞÞ ≠ 0 implies
h0jρðtÞj1i ≠ 0. Therefore we next establish that indeed, Imð~ρ10ðtÞÞ ≠ 0 in
our double-slit proposal.
Consider the the ground state just before the first beam-splitter,

ρðτ� � εÞ ¼ ε0j i ε0h j (58)

with ε=ðτþ � τ�Þ 	 1. This state evolves through the double-beam-splitter
region [recall Eq. (49)]:

MjϕjU0ðτþ; τ�ÞMjϕj; (59)

where U0 is given in Eq. (50) and M|ϕ| is given in Eq. (31d).
After passing through the first beam-splitter, the system density matrix

in the energy eigenbasis becomes

ρðτ� þ εÞ ¼ cos2ðjϕjÞ i sinðjϕjÞ cosðjϕjÞ
�i sinðjϕjÞ cosðjϕjÞ sin2ðjϕjÞ

� �
: (60)

It is useful to include a simple model of decoherence between energy
eigenstates during the time interval [τ−, τ+], complementary to our master
equation treatment. We can do so by introducing a continuous dephasing
channel. This damps the phases by the factor e−ΓΔτ, where Δτ= τ+− τ−=
2μ, and Γ > 0 is the dephasing rate. Right before the second beam-splitter,
the system density matrix is then:

ρðτþ � εÞ ¼ cos2ðjϕjÞ ie�ΓΔτeitf E0Δτ sinðjϕjÞ cosðjϕjÞ
�ie�ΓΔτe�itf E0Δτ sinðjϕjÞ cosðjϕjÞ sin2ðjϕjÞ

� �

(61)

After passing through the second beam-splitter, the state becomes
ρðτþ þ εÞ ¼ Mjϕjρðτþ � εÞMyjϕj . We find, after some algebra:

PG ¼ ~ρ00 ¼ sin4ðjϕjÞ þ cos4ðjϕjÞ � 2e�ΓΔτ sin2ðjϕjÞ cos2ðjϕjÞ cosðΔτE0tf Þ �!Γ!1 1
4
½cosð4jϕjÞ þ 3�

(62a)

~ρ01 ¼
1
2
sinð2jϕjÞ e�ΓΔτ ½� sinðΔτE0tf Þ þ i cosð2jϕjÞ cosðΔτE0tf Þ� þ i cosð2jϕjÞ
 � �!Γ!1 i

1
4
sinð4jϕjÞ:

(62b)

We now note from Eq. (45b) that ϕj j ¼ π
8 e
�ðtf =tadÞ2 . Therefore we may

conclude that Imð~ρ10ðtf ÞÞ> 0, and Imð~ρ10Þ ! 0 only in the adiabatic limit (
tf � tad, which implies jϕj ! 0). Note that Eq. (62a) generalizes Eq. (40) by
including the effect of dephasing in the energy eigenbasis.
It is clear from Eq. (62) that oscillations in the ground state probability

PG(tf), which are present for finite Γ, imply a non-vanishing Imð~ρ10ðtf ÞÞ.
Therefore we may conclude that the observation of interference
oscillations in our proposed double-slit experiment are also evidence of
coherence in the computational basis at tf. For finite Γ, such coherence
vanishes only in the adiabatic limit.
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Derivation of the adiabatic-frame TCL2/Redfield master equation
We start from the Hamiltonian given in Eq. (17), which we write as

HtotðsÞ ¼ HIðsÞ þ ~HSBðsÞ (63a)

HIðsÞ ¼ 1
2
_θðsÞXIðsÞ (63b)

~HSBðsÞ ¼ κ~μðsÞ �~σ � ~BðsÞ ; (63c)

where κ≡ gtf. Our goal is to derive a master equation for the system
evolution. It is convenient to do so using the time-convolutionless (TCL)
approach.51 To do so we must first perform yet another interaction picture
transformation, defined by HI(s), with the associated unitary
UIðs; s0Þ ¼ Tþexp �i

R s
s0HIðs0 0Þds0 0

� 	
, where T+ denotes forward time-

ordering. In this frame the total Hamiltonian Htot(s) becomes

~HtotðsÞκ ¼ ~μ
!ðsÞ �~σ � ~BðsÞ; ~μ

!ðsÞ ¼ UyI ðs; 0Þ~μðsÞUIðs; 0Þ: (64)

We can now calculate the TCL expansion generated by the super-
operator

LðsÞρ ¼ �i ~HtotðsÞ; ρ
� 	

; (65)

whereupon

_~ρðsÞ ¼
X1
n¼1

κ2nK2nðsÞ~ρðsÞ (66)

The different orders are called TCL2, TCL4, etc. We give details on the
convergence criteria of this expansion in the Supplementary Information.
To second order the TCL generator is:

K2ðsÞ½~ρS � ρB� ¼ �
Z s

0
ds0TrB ~HtotðsÞ; ~Htotðs0Þ; ~ρSðsÞ � ρB

� 	� 	
; (67)

where ρB is the initial state of the bath, and the joint initial state is assumed
to be in the factorized form ρS ⊗ ρB. Note that the TCL2 approximation
coincides with the Redfield master equation.51

Let

Cðs; s0Þ ¼ Tr½~BðsÞ~Bðs0ÞρB� ¼ C�ðs0; sÞ (68)

denote the bath correlation function. By explicitly tracing out the bath,
K2ðsÞ can be written as

K2ðsÞ~ρS ¼ �κ2 ~μ
!ðsÞ �~σ; ~ΛðsÞ~ρS
h i

þ h: c: (69)

where

~ΛðsÞ ¼
Z s

0
ds0Cðs; s0Þ ~μ!ðs0Þ �~σ: (70)

After transforming back to the Schrödinger frame with respect to HI(s)
we obtain:

_ρSðsÞ ¼ �i
�
HIðsÞ; ρSðsÞ

	� κ2
�
~μðsÞ �~σ;ΛðsÞρSðsÞ

	þ h: c:; (71)

where

ΛðsÞ ¼
Z s

0
ds0Cðs; s0ÞUIðs; s0Þ~μðs0ÞUyI ðs; s0Þ �~σ: (72)

Rotating wave approximation
Let

ΓðωÞ ¼
Z 1

0
dt eiωtCðtÞ ¼ tf Γsðωtf Þ (73)

be the one-sided Fourier transform of the bath correlation function, where

ΓsðωÞ �
Z 1

0
ds eiωsCðsÞ ¼ 1

2
γsðωÞ þ iSsðωÞ; (74)

and where γs(ω)/2 and Ss(ω) are the real and imaginary parts of Γs(ω).
Explicitly:51

γsðωÞ ¼
Z 1

�1
eiωsCðsÞ ds (75a)

SsðωÞ ¼ 1
2π

Z 1

�1
γðω0ÞP 1

ω� ω0

� �
dω0: (75b)

Here P denotes the Cauchy principal value, and the s subscript is a
reminder that tf has been factored out.
To perform the rotating wave approximation, let us first define the

eigenspace projection operator of HI(s) as

ΠðεðsÞÞ ¼ εðsÞj i εðsÞh j; (76)

where |ε(s)〉 is an eigenstate of HI(s) with instantaneous energy ε(s). We can
then define the operator

A


ωðsÞ� � X

ε0ðsÞ�εðsÞ¼ωðsÞ
Π


εðsÞ�½~μðsÞ �~σ�Π
ε0ðsÞ�; (77)

where

ωðsÞ 2 f0; ± _θðsÞg (78)

is the dimensionless Bohr frequency, and the sum is over all pairs ε(s), ε′(s)
subject to the constraint ε′(s)− ε(s)=ω(s). The interaction picture master
equation (66) can then be written to second order, with the TCL2
generator (67) as

_~ρS ¼
R s
0ds
0TrB ~HtotðsÞ; ~Htotðs0Þ; ~ρSðsÞ � ρB

� 	� 	
¼ κ2

P
ω;ω0

eiðω
0�ωÞsΓðωÞðAðωÞ~ρSAyðω0Þ � Aðω0ÞAðωÞ~ρSÞ þ h:c: (79)

To obtain this master equation, we apply the standard Markovian
approximation: change the integration variable s0 7!s� s0 and replace the
upper limit with ∞. The RWA consists of neglecting terms in Eq. (79) for
which ω′ ≠ ω. A necessary condition for the validity of the RWA is:64

1=τB < min
ω≠ω0
jω� ω0j; (80)

which, unfortunately, is not always satisfied for the two-step Gaussian
schedule (13) because [recall Eq. (78)]

min
ω≠ω0

ω� ω0j j ¼ _θðsÞ 
 0 (81)

for s outside the Gaussian pulse region.
Nevertheless, the RWA results in the interaction picture adiabatic

Markovian master equation in Lindblad form:65

_~ρS ¼ �i HLS; ~ρS½ � þ D ~ρSð Þ; (82)

where

HLS ¼ κ2
X
ω

SsðωÞAyðωÞAðωÞ (83)

is the Lamb shift, and

Dð~ρSÞ ¼ κ2
P
ω
γsðωÞ AðωÞ~ρSAyðωÞ


 � 1
2 AyðωÞAðωÞ; ~ρS
� ��

(84)

is the dissipator.
We can explicitly calculate A(ω(s)). First, recalling that HIðτÞ ¼

1
2
dθ
dτ U

y
0ðτÞXU0ðτÞ [Eq. (7)], we realize that the eigenvalues and eigenvectors

of HI(s) can be written as

ε± ðsÞ ¼ ±
1
2
_θðsÞ; ε± ðsÞj i ¼ Uy0ðsÞ ±j i: (85)

Also, from the sequence of transformations leading to Eq. (17), the
interaction terms have the form

~μðsÞ �~σ ¼ Uy0ðsÞðcos θðsÞY þ sin θðsÞZÞU0ðsÞ: (86)

Substituting these expressions back into Eq. (77), we obtain

Að0Þ ¼ 0 (87a)

Að _θðsÞÞ ¼ �ieiθ ε�ðsÞj i εþðsÞh j (87b)

Að� _θðsÞÞ ¼ ie�iθ εþðsÞj i ε�ðsÞh j: (87c)

After undoing the interaction picture transformation with respect to HI(s)
and ignoring the phase factors in the A(ω) operators, we obtain the
Schrödinger picture master equation, namely Eqs. (20)–(22). In deriving this
result we made use of the Kubo-Martin-Schwinger (KMS) condition51

γð�ΔÞ ¼ e�βΔγðΔÞ; (88)

where Δ is the dimensionless Bohr frequency in units of 1/tf:

ΔðsÞ ¼ ωðsÞ=tf : (89)
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Derivation of the semi-empirical Eq. (23)
The semi-empirical formula (23) can be derived directly from Eq. (82). Let
us first write Eq. (82) in terms of the quantities defined in Eq. (21b):

_~ρS ¼ �i½HLS; ~ρS�
� tf γd ~ρþ� εþj i ε�h j þ ~ρ�þ ε�j i εþh j


 �
þ tf γtð~ρþþ � e�βΔ~ρ��Þ ε�j i ε�h j � εþj i εþh jð Þ:

(90)

We now follow the steps in ref. 66 to obtain the solution in this
interaction picture. Eq. (90) can be split into two decoupled ordinary
differential equations:

d~ρ��
ds
¼ �d~ρþþ

ds
¼ FþðsÞ~ρþþ � F�ðsÞ~ρ��

� 	
(91a)

d~ρþ�
ds
¼ d~ρ��þ

ds
¼ � iΩðsÞ þ ΣðsÞ½ �~ρþ�; (91b)

where

FþðsÞ ¼ g2tf γtðsÞ (92a)

F�ðsÞ ¼ g2tf γtðsÞe�βΔðsÞ; (92b)

and

ΩðsÞ ¼ g2tf ðSðΔðsÞÞ � Sð�ΔðsÞÞÞ (93a)

ΣðsÞ ¼ g2tf γdðsÞ: (93b)

Additionally, the KMS condition allows us to write γd(s) in terms of FþðsÞ

FþðsÞð1þ e�βΔðsÞÞ ¼ 2g2tf γdðsÞ: (94)

The solution of Eqs (91) is given by:

ρ��ðsÞ ¼ exp �2tf g2
Z s

0
ds0γdðs0Þ

� �(
ρ��ð0Þ þ

Z s

0
ds0Fþðs0Þexp 2tf g

2
Z s0

0
ds00γdðs00Þ

" #)

(95a)

ρþ�ðsÞ ¼ exp �
Z s

0
ds0½iΩðs0Þ þ tf g

2γdðs0Þ�

 �

ρþ�ð0Þ (95b)

ρþþðsÞ ¼ 1� ρ��ðsÞ (95c)

ρ�þðsÞ ¼ ρ�þ�ðsÞ; (95d)

where the initial conditions are:

ρijð0Þ ¼
1
2
; i; j 2 fþ;�g: (96)

The next step is to move back to Schrödinger picture

ρSðtÞ ¼ UIðtÞ~ρSðtÞUyI ðtÞ; (97)

and write the open system ground state probability in terms of ~ρS :

P0Gðtf Þ ¼ 0h jρðtf Þ 0j i ¼ 0h jUIðtf Þ~ρðtf ÞUyI ðtf Þ 0j i (98a)

¼
X

i;j2fþ;�g
ρij 0jχ ih ihχ j j0i; (98b)

where

χ iðtf Þj i ¼ UIðtf Þ εiðtf Þj i ¼ UIðtf ÞUy0ðtf Þ ij i: (99)

For simplicity, we further denote UaðtÞ ¼ UIðtÞUy0ðtÞ, whose elements
can be related to those of UI(t) in the {|0〉, |1〉} basis:

Ua
klðtÞ ¼ kjUIðtÞUy0ðtÞjl

D E
¼ eð�1Þ

l iϕðtÞ kjUIðtÞjlh i; (100)

where k, l ∈ {0, 1} and ϕ(t)=−E0t/2. Then:

0 χþ
�� �

χþ
� ��0� � ¼ 1

2
Ua
00

�� ��2þUa
00U

a�
01 þ Ua

01U
a�
00 þ Ua

01

�� ��2� �
(101a)

0 χ�j i χ�h j0h i ¼ 1
2

Ua
00

�� ��2�Ua
00U

a�
01 � Ua

01U
a�
00 þ Ua

01

�� ��2� �
(101b)

0 χþ
�� �

χ�h j0
� � ¼ 1

2
Ua
00

�� ��2�Ua
00U

a�
01 � Ua

01U
a�
00 þ Ua

01

�� ��2� �
(101c)

0 χ�j i χþ
� ��0� � ¼ 1

2
Ua
00

�� ��2þUa
00U

a�
01 � Ua

01U
a�
00 � Ua

01

�� ��2� �
: (101d)

Because UI(t) is the closed system unitary, we have

Ua
00ðtf Þ

�� ��2¼ 0h jUIðtf Þ 0j ij j2¼ PGðtf Þ; (102)

and

Ua
00

�� ��2þ Ua
01

�� ��2 ¼ 1: (103)

Eq. (98) becomes:

P0Gðtf Þ ¼ 1
2
þ ðρþ�ðtf Þ þ ρ�þðtf ÞÞ PGðtf Þ � 1

2

� �
(104a)

þðρþþðtf Þ � ρ��ðtf ÞÞReðUa
00U

a�
01Þ (104b)

þiðρ�þðtf Þ � ρþ�ðtf ÞÞImðUa
00U

a�
01Þ: (104c)

This result is exact and corresponds to the numerical solution in the
TCL2 case shown in Fig. 3.
We now make two additional approximations in order to arrive at a

simpler expression. First, we ignore the Lamb shift term Ω(s) in Eqs (95),
which leads to:

ρþ�ðtf Þ þ ρ�þðtf Þ 
 exp �g2tf
Z 1

0
ds γdðsÞ


 �
(105a)

ρþ�ðtf Þ � ρ�þðtf Þ 
 0: (105b)

Second, we substitute the solution given in Eqs (95) into line (104b):

ðρþþðtf Þ � ρ��ðtf ÞÞReðUa
00U

a�
01Þ ¼ ReðUa

00U
a�
01Þ 1� 2e�2tf g

2
R 1

0
ds0γdðs0 Þ

h
1
2




þ tf g2
R 1
0 ds

0γtðs0Þe2g
2tf
R s0

0
ds0 0γd ðs0 0 Þ

��
(106a)


 1� 2 1
2


 �
ReðUa

00U
a�
01Þ ¼ 0; (106b)

where in the last line we used the weak coupling assumption, g2tf 	 1.
With these two approximations, Eq. (104) becomes the semi-empirical

formula (23) with PE(0)= 1/2. We note that it is well known that for time-
independent Lindbladians the RWA master equation has the Gibbs state as
its steady state.51 We do not recover this result for the time-dependent
case. Rather, we find that the time-dependent Redfield master equation
(TCL2) converges to the Gibbs state PEðβÞ ¼ eβE0=2

Z , but with a temperature
that differs from that of the bath state, as illustrated in Fig. 3.
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