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Overcoming detection loss and noise in squeezing-based
optical sensing
Gaetano Frascella 1,2✉, Sascha Agne1✉, Farid Ya. Khalili 3,4✉ and Maria V. Chekhova 1,2✉

Among the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms
and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably
increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But
despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular,
squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally
demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant
operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding
the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives
up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum
resources in these fields.
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INTRODUCTION
Quantum resources promise advances in sensing and metrology1–7,
beyond the fundamental limits of precision set for classical light.
They enable overcoming the shot-noise limit (SNL) and achieving
the ultimate Heisenberg limit in phase sensing8. Within the
quantum states toolbox, most practical are squeezed states. Unlike
exotic non-Gaussian states, squeezed states of atoms and light can
contain a macroscopic number of particles and survive a reasonable
amount of loss while providing reduced uncertainty in a plethora of
measurements. As a result, their use noticeably improved the
sensitivity of modern gravitational-wave detectors9–12. There are
also numerous proof-of-principle experiments on squeezing-
enhanced absorption measurement and spectroscopy13–15, ima-
ging and microscopy16–19, polarimetry20, magnetometry21,22, and
other types of sensing23,24.
Although more robust than non-Gaussian states, squeezed

states are still very susceptible to loss. Therefore, overcoming the
SNL in optical sensing requires extremely efficient detection18,25.
The quantum advantage provided by squeezing strongly depends
on the detection efficiency η26–28, and completely disappears for
η < 50%. Similarly, detection noise becomes a problem if the
probing state is not very bright. In spectral ranges where detection
is inefficient or noise is high, sub-shot-noise optical sensing is
impossible.
Here we experimentally demonstrate a solution to this problem,

namely strong parametric amplification of the signal before
detection. Although proposed long ago29 and already applied to
the detection of microwave quantum states30, to the improve-
ment of the homodyne detection bandwidth31, to the tomogra-
phy of optical non-Gaussian states32, and to atom
interferometry33, this method has not been implemented in
optical sensing. A similar principle provides loss tolerance of so-
called SU(1,1) (nonlinear) interferometers34–36, both optical and
atomic. But SU(1,1) has certain limitations, among them, a narrow

range of phase sensitivity27 and more complexity in realization, at
least in the multimode version. For making phase measurement
loss- and noise-tolerant, much more practical is to add an
amplifier to the output of a linear [SU(2)] interferometer. This is
what we do in our experiment; the same method can be applied
to sub-shot-noise imaging and absorption measurement.

RESULTS
Phase-space representation
The principle is illustrated in Fig. 1 showing a Mach-Zehnder
interferometer as an example. In classical interferometry (a),
coherent light is fed into one input port, and direct or homodyne
detection is performed in one output port in order to sense a
phase difference ϕ between the two arms. The best sensitivity is
achieved in the ‘dark fringe’, with no light in the output port. This
becomes clear by looking at the Wigner function of the output
state. In panel b, it is plotted for ϕ= 0, 0.2 π, . . π for the input
coherent state containing 9 photons. Whenever the output states
are well separated, the phase sensitivity is high; this happens
around ϕ= 0. The phase can be retrieved by measuring the x̂
quadrature (homodyne detection) or the number of photons
(direct detection).
To increase the phase sensitivity, a squeezed vacuum state ξj i is

injected into the unused input port29,37–39 (Fig. 1c). Then, under
the ‘dark fringe’ condition ϕ= 0, the detected output port
contains the squeezed vacuum (6 dB squeezing is assumed in
this example). As the phase changes from ϕ= 0 to ϕ= π, the
output state evolves to a coherent state (Fig. 1d). Near the ‘dark
fringe’, the states are squeezed in the x̂ quadrature and therefore
better distinguishable. However, if the detection is lossy (we
assume η= 0.5), the squeezing is degraded, the states overlap,
and the advantage of squeezing is fully or partly lost.
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As a remedy, the state at the output of the interferometer is
amplified by a phase sensitive amplifier (a degenerate optical
parametric amplifier, DOPA), see Fig. 1e. The DOPA amplifies the
quadrature carrying the phase information, but it also makes this
quadrature anti-squeezed. The relative separation of the states at
the output (Fig. 1f) remains the same, but the phase information is
now in the anti-squeezed quadrature and therefore less suscep-
tible to loss. In the calculation, quadrature anti-squeezing of 9.6 dB
completely eliminates the effect of loss; as we will see below, our
experiment provides even stronger amplification and a much
higher loss can be overcome. If strong enough, amplification also
protects the measurement against the detection noise. Impor-
tantly, a DOPA does not change the signal-to-noise ratio of the
input state and therefore does not add noise.

Experiment
In our experiment, we provide strong phase-sensitive parametric
amplification with a nonlinear beta-barium borate (BBO) crystal
pumped by picosecond pulses under collinear frequency-
degenerate type-I phasematching. The amplification is defined
by the squeeze factor G / χð2ÞL

ffiffiffi
P

p
, where L is the length of the

nonlinear crystal, χ(2) its second-order susceptibility, and P the
pump power40. The quadratures after such an amplifier evolve as
x̂out ¼ eGx̂in; p̂out ¼ e�Gp̂in, and the mean photon number of a

coherent state, as Nout ¼ Nine2G þ sinh2G. Generally40, we can
achieve up to G ~ 10. The current experiment uses squeeze factors
only up to G= 3.6, which still means impressive 1340-fold
intensity amplification and 31 dB quadrature variance anti-
squeezing.
In our proof-of-principle implementation, the interferometer is

simulated by a half-wave plate (HWP)39, see Fig. 2a. Instead of two
spatial modes, the two arms of the interferometer are the right-
and left-circularly polarized modes, and a rotation of the HWP
leads to a phase shift between them (see Methods). The inputs
and outputs of the interferometer are linear polarization modes.
The coherent state is the radiation of a Spectra Physics Spitfire Ace
laser with the central wavelength 800 nm, 1.5 ps pulse duration, 5
kHz repetition rate, horizontally polarized (Fig. 2b), attenuated to
1500 photons/pulse. The squeezed vacuum (SV), produced in the
first amplifier BBO1 pumped by the second harmonic of the same
laser and unseeded, is vertically polarized. The coherent beam,
injected through beamsplitter BS2, does not interact with BBO1
because there is no phase matching for its polarization. The
output amplifier BBO2 works only for a vertically-polarized input
beam; the de-amplification phase is set by properly choosing the
distance between the two crystals36, while the amplification phase
of the coherent beam is set with a piezoelectric actuator
(Supplementary Information Sec. II). The pump is rejected with
dichroic mirror DM and the vertical polarization is selected by Glan

Fig. 1 Overcoming detection loss in squeezing-assisted interferometry. Panels a, c, e show the experimental schemes and panels b, d, f, the
calculated Wigner functions of the output states for five equidistant phases. a This ideal Mach-Zehnder interferometer fed with a coherent
state αj i has the best phase sensitivity at ϕ= 0, the detector seeing the `dark fringe', where the output states for different phases are most
distinguishable (b). c If, additionally, the second input port is fed with squeezed vacuum (SV) ξj i, the neighboring states are squeezed and
better distinguishable; however loss or imperfect detection efficiency η makes them overlap (d). e To overcome the loss, a degenerate optical
parametric amplifier (DOPA) amplifies the state before detection. f The output states are now anti-squeezed in the quadrature carrying the
phase information; the latter is therefore protected against loss. In the calculation, α= 3, η= 0.5, ξj i is 6 dB squeezed, and DOPA provides 9.6
dB quadrature anti-squeezing.
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polarizer GP. To ensure good de-amplification of the SV, we select
an angular bandwidth of 130 μrad with 200 μm pinhole P in the
focal plane of lens L (f= 1.5 m). The bandpass filter BF has 3 nm
spectral bandwidth around the central wavelength 800 nm.
Photodetector PD1 registers the number of photons per pulse,
with a dark noise of 500 photons.
The loss between BBO1 and BBO2 (internal) amounts to 3% and

is impossible to compensate for. The loss after the amplifier
(‘detection loss’) is incorporated into the detection efficiency η=
0.50 ± 0.03 (for the detailed description of losses, see Supplemen-
tary Information Sec. III). Please note that spatial and spectral
filtering, i.e. the pinhole and the bandpass filter, restricts the
amount of photons detected but cannot be considered as loss
since all the measurements are carried out within the same
bandwidths. Meanwhile, the optical transmission of the bandpass
filter within the spectral bandwidth is taken into account. The
amplification at the interferometer output, if strong enough, can
completely overcome the detection inefficiencies. Both the
amplification of BBO2 and the squeezing of BBO1 are character-
ized by measuring the photon numbers at their outputs with a
vacuum at the input (see Methods and Fig. 2c). In all measure-
ments, G1= 1.7 ± 0.3 (measured as described in Methods), from
which an initial 15 dB level of squeezing is inferred.
Beamsplitters BS1 and BS2 serve, respectively, for monitoring/

stabilizing the pump intensity (Methods) and locking the phase
between the coherent and SV beams at the input of the HWP
(Supplementary Information Sec. II).
The phase sensitivity is evaluated as

Δϕ ¼ ΔN
dhNi
dϕ

����
����

� ��1

; (1)

where ΔN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2i � hNi2

q
is the measured uncertainty of the

photon number, detector dark noise included, and 〈N〉 is the
average number of photons. The slope of the hNi ϕð Þ dependence
is inferred from the fit.
Figure 3 shows the results of phase sensitivity measurements,

with the SNL (measured as described in Methods) marked with a
dashed red line. In panel a, the second amplifier has the squeeze
factor measured to be G2= 3.1 ± 0.3 (photon-number amplifica-
tion 490 times) and the detection efficiency is 50%, 29% and

15%. To vary η, we place a HWP and a GP (not shown in Fig. 2)
before lens L. For the highest efficiency (circles), the SNL variance
is overcome by 1.8 ± 0.8 dB in the best case, i.e., at ϕ ~ 0. Note that
without the output amplifier, the phase sensitivity would not
overcome the SNL at all, in particular due to the large detection
noise. With the amplifier, the performance just overcomes the SNL
for 29% detection efficiency (triangles). Exactly at ϕ= 0, the
average number of photons is the lowest and the detector dark
noise spoils the sensitivity, hence the peak.
By increasing the output parametric amplification (the mea-

sured squeeze factor G2= 3.6 ± 0.3), the phase sensitivity is
improved (Fig. 3b). The measurements shown with circles,
triangles and crosses correspond, respectively, to detection
efficiencies η= 50%, 16% and 6%. For the highest value of η,
the SNL variance is overcome by 6 ± 1 dB. In addition, with lower
detection efficiency we need a stronger amplification for over-
coming SNL. Indeed, while it is η= 29% for lower G2 (a), for higher
G2 it is only η= 16% (b).
To fit the experimental points, we derive the phase sensitivity

for a lossy squeezing-assisted interferometer with an OPA at the
output and direct detection27. The model also takes into account
the relative excess noise of the coherent beam, i.e. deviation of the
normalized second-order correlation function g 2ð Þ from unity (see
Supplementary Information Secs. IV-V), which we measured to be
0.0020 ± 0.0005. We use two fitting parameters G2 and g 2ð Þ for the
model (lines), in reasonable agreement with the experiment for
G2= 2.7 and g 2ð Þ ¼ 1:003 (a) and for G2= 3.2 and g 2ð Þ ¼ 1:004 (b).
From now on, we refer to the two different situations in panels (a)
and (b) with these fitted squeeze factors.
Ideally, the sub-shot-noise sensitivity phase range should cover

half of the 2π period27. In our case, it is at most ~ 0.3 π in panel a
and ~ 0.4 π in panel b. The main reason is that our coherent beam
is not shot-noise limited. Additionally, the detector dark noise
excludes part of this range near ϕ= 0. But even with these
imperfections, the sub-shot-noise sensitivity range is broader than
the one of the SU(1,1) interferometer36,41.
To demonstrate tolerance to detection inefficiency, Fig. 4a

shows the best phase sensitivity Δϕmin versus the detection
efficiency η. The photon number for the coherent beam and the
input squeezing are kept constant; the common SNL is marked
with a red dashed line. We observe that with G2= 2.7 (green

Fig. 2 Squeezing-assisted interferometer with parametric amplification at the output. a A HWP as a Mach-Zehnder interferometer: left-
and right-circularly polarized states play the role of the two arms and linear polarization states, input and output modes. b Vertically polarized
squeezed vacuum (SV) is produced in nonlinear crystal BBO1 and the horizontally polarized coherent state is fed through beamsplitter BS2.
Vertically polarized output of the interferometer is amplified in the second crystal BBO2, cleaned from the pump by dichroic mirror DM,
selected by Glan polarizer GP, and finally detected with photodetector PD1. Lens L and pinhole P provide spatial filtering, while bandpass filter
BF, spectral filtering. Beamsplitters BS1, BS2 tap off parts of the pump and coherent beams to monitor intensity fluctuations and lock the
phase. c The output intensity of unseeded BBO2 versus the pump power.
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triangles), the system provides sub-shot-noise sensitivity for
η > 34%. For G2= 3.2 (blue circles), the best sensitivity proves
more robust and overcomes the SNL for η= 13%.
For any detection efficiency, by increasing G2 one can get as

close as necessary to perfect-detection performance. Indeed, with
an account for amplification, the quantum advantage in phase
sensitivity is

Q ¼ Q�1
0 þ 1� η

ημ
e�2G2

� ��1

; (2)

where Q0 is the quantum advantage under perfect detection27 and
(1− μ) the internal loss. Figure 4b shows Q/Q0, where Q0= 17 is
determined by the initial 15 dB squeezing and 3% internal loss, as a
function of η and G2. Blue and green points mark the parameters of
our experiment. For very low detection efficiency, the required
amplification can be unrealistically high, but G= 5, easily achiev-
able in experiment36,40, already enables overcoming 98% loss.
Noteworthy, the detection of pulsed light we perform here has

a considerable noise, equivalent to 500 photons per pulse. Yet,
although this noise is much stronger than the SV (about 10
photons per pulse) and comparable to the coherent beam (1500
photons per pulse) injected into the interferometer, parametric
amplification provides noise robustness and enables sub-shot-

noise phase sensitivity. Meanwhile, it is the detection noise that
prevents reaching the ‘perfect detection’ quantum advantage
(green and blue points in Fig. 4b).

DISCUSSION
We have demonstrated that for a squeezing-assisted interferom-
eter the detrimental effects of detection loss and noise can be
eliminated with a phase-sensitive parametric amplifier at the
output. In particular, our experiment shows phase sensitivity
overcoming the SNL by 6 dB even with 50% detection efficiency
and noise comparable to the signal sensing the phase. Increasing
the output amplification helps to overcome a higher amount of
loss. By amplifying the output photon number about 600 times we
overcome the SNL for detection efficiency down to 13%. Even
lower detection efficiencies will not be an obstacle for squeezing-
assisted measurements if stronger amplification is used; it is
realistic to go down to 2% efficiency.
This result is relevant to many schemes where losses in the

output optical path, including limited detection efficiency, reduce
the advantage brought by squeezing. An example is the
gravitational-wave detectors, where, due to the output losses,
7–10 dB of the input squeezing gives only ≈ 3 dB of the sensitivity
gain11,12. Compensating for these losses with a continuous-wave

Fig. 3 Phase sensitivity measurements with 15 dB input squeez-
ing and Nα= 1500 photons in the coherent beam. The red dashed
line marks the SNL and the solid lines are the theoretical predictions.
The error bars represent the standard error of the mean with a
sample size of 1000. The insets show the photon number
dependence on the phase and the error bars are too small to be
seen. a Parametric amplification with G2= 3.1. Circles, triangles and
crosses show measurements with detection efficiency η= 50%, 29%
and 15%, respectively. b Parametric amplification with G2= 3.6.
Circles, triangles and crosses are for η= 50%, 16% and 6%,
respectively.

Fig. 4 Loss tolerance through phase-sensitive amplification.
a Best phase sensitivity as a function of detection efficiency η with
G2= 3.2 and G2= 2.7 amplification (blue circles and green triangles,
respectively). The SNL is the red dashed line and the lines show the
theoretical model. The error bars in the vertical axis represent
the standard error of the mean with a sample size of 1000 and the
standard deviation for the horizontal axis. b The quantum
advantage Q normalized to the ‘perfect detection' one Q0= 17
versus the detection efficiency and parametric amplification. Points
show the experimental parameters used with standard-deviation
error bars.
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scheme similar to ours could revolutionize gravitational-wave
detection (note that the 6 dB gain in the phase sensitivity
translates to almost an order of magnitude increase of the
detection rate). Importantly, the homodyne scheme (used in
gravitational-wave detectors) will also benefit from pre-amplifica-
tion; moreover, unlike direct detection, it is not affected by
detector dark noise27.
A similar amplification strategy will be valid for imaging

experiments involving multimode radiation, considered theoreti-
cally in ref. 28. Indeed, the scheme could be accommodated to
support more than a single spatial mode, similarly to ref. 42, and
this opens up a considerable amount of experiments on sub-shot-
noise imaging. The method will be also applicable to sub-shot-
noise measurement of very small loss, where otherwise a very
high detection efficiency is required28,43.
Detection efficiency proves to be an especially important

constraint for experiments with mid-infrared and terahertz
radiation, used for biological and industrial applications. Another
case is where the whole angular spectrum of radiation cannot be
collected due to small detector sizes. This is an issue in sub-shot-
noise microscopy where high resolution compromises the
detection efficiency18. In these cases, parametric amplification
before detection will be indispensable.

METHODS
Polarization Mach-Zehnder interferometer
is implemented using a single HWP (Fig. 2a). The input coherent state αj i
has horizontal polarization and the SV state ξj i, vertical polarization. The
50:50 beam splitters correspond to the transition between linear and
circular polarization bases. The HWP with the optic axis at an angle δ
introduces a phase shift ϕ= 4δ between the two arms, see Supplementary
Information Sec. V. The HWP is a 45-μm-thick dual-wavelength waveplate:
a HWP for 800 nm; a full-wave plate for 400 nm.

Parametric amplifiers
BBO1 and BBO2 are 2 mm BBO crystals pumped by the second harmonic
of Spectra Physics Spitfire Ace laser (central wavelength 400 nm, horizontal
polarization, average power 65 mW, waist intensity FWHM 240 ± 10 μm).
Their squeeze factors G1,2 are found by measuring the mean numbers of
photons N1,2 per pulse at their outputs in the regime of vacuum
amplification (high-gain parametric down-conversion) and fitting with
the parameters B1,2 the obtained dependences on the pump power P with
the functions N1;2 / sinh2G1;2, G1;2 ¼ B1;2

ffiffiffi
P

p
. By detuning BBO1 from

exact phase matching, G1 is reduced compared to G2. The waist of the
coherent beam is inside BBO2 and the waist intensity FWHM is chosen
close to the one of the first Schmidt mode44, i.e. 80 ± 10 μm. This ensures
mode matching for the coherent beam and, as a result, efficient
amplification. Meanwhile, the SV is de-amplified efficiently only in the
collinear direction due to its divergence, and spatial filtering at the
detection stage is necessary for this purpose.

Pump intensity stabilization
We tap off part of the pump beam by BS1 (Fig. 2b), amplify the fluctuations
(initially 2% RMS) approximately 7 times using high-gain parametric down-
conversion, and post-select measurements for which the pump fluctua-
tions were within 0.3% RMS (see Supplementary Information Sec. I).

The shot-noise limit for the phase sensitivity
is found as

ΔϕSNL ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nα þ NSV
p ; (3)

where Nα and NSV are, respectively, the photon numbers of the coherent
and SV beams inside the interferometer, i.e. at the HWP, within the spatial
and spectral bandwidths registered at the detector. For the SV beam,
we can use the estimate NSV � sinh2G1. For the coherent beam, we
measure with the photo-detector at the output of the interferometer an
average number of photons per pulse of 720 ± 20, whose uncertainty is

reduced by repeated measurements. Dividing this number by the total
efficiency 49 ± 3%, we obtain Nα= 1500 ± 100 and, neglecting the small
value of NSV, the SNL sensitivity is ΔϕSNL= 26 ± 1 mrad.
We also test the interferometer in the classical regime, by blocking

the SV and leaving only the laser beam at the input. In this case, the phase
sensitivity is much worse than SNL, due to the detection loss and noise
(see Supplementary Information Sec. III). We note that it is this test that
identifies the SNL in most of experiments. While it might work for
continuous-wave lasers, it leads to the overestimation of the SNL for
pulsed light, which usually has stronger intensity fluctuations.

DATA AVAILABILITY
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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