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Neutron optical test of completeness of quantum
root-mean-square errors
Stephan Sponar1✉, Armin Danner 1, Masanao Ozawa 2,3 and Yuji Hasegawa1,4

While in classical mechanics the mean error of a measurement is solely caused by the measuring process (or device), in quantum
mechanics the operator-based nature of quantum measurements has to be considered in the error measure as well. One of the
major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to
obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanish only for
accurate measurements). A noise-operator-based error measure has been commonly used for this purpose, but it has turned out
incomplete. Recently, Ozawa proposed an improved definition for a noise-operator-based error measure to be both sound and
complete. Here, we present a neutron optical demonstration for the completeness of the improved error measure for both
projective (or sharp) as well as generalized (or unsharp) measurements.
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INTRODUCTION
Precise knowledge of the mean error of a measurement is vital,
both in classical mechanics, and even more in quantum
mechanics, where it is essential in the development of emerging
technologies such as quantum information processing, quantum
computing or the quantum internet1. Extending the classical
notion of root-mean-square (rms) error, which has been broadly
accepted as the standard definition for the mean error of
measurement, to quantum measurements is a highly challenging
and a non-trivial task2–8. A noise-operator-based error measure
has been commonly used as a sound error measure generalizing
the classical root-mean-square error. The noise-operator was first
used in attempts to prove Heisenberg’s uncertainty relation9

for approximate simultaneous measurements of pairs of non-
commuting observables10–12. The noise-operator-based quantum
root-mean-square (q-rms) error, defined as the root-mean-square
of the noise operator, indicates how closely a meter observable
‘tracks’ the observable to be measured. In more recent develop-
ments the noise-operator-based q-rms error was used to
reformulate Heisenberg’s error-disturbance relation to be uni-
versally valid2,13 and made the conventional relation testable. The
validity of the reformulated relation as well as the violation of the
conventional relation was observed first in neutronic14–18 and in
photonic19–23 systems for successive spin measurements. How-
ever, Busch, Heinonen, and Lahti (BHL) found a case where the
noise-operator-based quantum root-mean-square error shows
incompleteness24, and brought about a debate on the use of
the noise-operator7, until Ozawa recently brought a satisfactory
solution25. It is the purpose of this work to briefly recapitulate the
argument of BHL24, Ozawa’s improved definition of a sound and
complete noise-operator-based q-rms error25, and to present a
neutron optical experiment that demonstrates the completeness
of improved noise-operator-based q-rms error. At this point, we
want to emphasize that the improved error notion maintains the
previously obtained universally valid uncertainty relations and
their experimental confirmations without changing their forms
and interpretations25.

RESULTS
Theory
The noise-operator-based quantum root-mean-square (q-rms) error26

of a measuring process M, on quantum instrument I , is denoted as
εNOðAÞ ¼ ψ; ξh jNðA;MÞ2 ξ;ψj i1=2, where the noise-operator N(A,M)
describes how accurately the value of an observable A is transferred
to the meter observable MA, during the evolution U(t) of the
composite system: N(A,M)=U(t)†(1⊗MA)U(t)− A⊗1. Here A is an
observable of a system S in state ψj i of Hilbert space H, and MA is
the observable representing the meter of the observer in the probe
system (measurement device) P in initial state ξj i of Hilbert space K.
Moreover, U(t) is the unitary evolution of the composite quantum
system S+ P. This concept, introduced in27, is usually referred to as
indirect measurement model of measuring process M and
schematically illustrated in Fig. 1.
In the Heisenberg picture, we shall write A(0)= A⊗ 1 and

MA(t)= U(t)†(1⊗MA)U(t). The POVM Π of the measuring processM
is defined by ΠðxÞ ¼ ξh jPMAðtÞðxÞ ξj i, where PMAðtÞðxÞ is the spectral
projection of MA(t) for eigenvalues x. The moment operator M of
the POVM Π is defined by M= ∑xx Π(x), and the second moment
operator M(2) of the POVM Π is defined by M(2)= ∑xx

2 Π(x). The
measurement is called a sharp measurement of M if Π is
projection-valued. In this case, we have Π(x)= PM(x) and M(2)=
M2. Otherwise, the measurement is called an unsharp (or
generalized) measurement of M; in this case we have M(2) >M2.
An important property of εNO(A) is that it is determined by
(moment operators of) the POVM Π of M in such a way that

εNOðA;Π; ψj iÞ2 ¼ ψh jðA�MÞ2 ψj i þ ψh jMð2Þ �M2 ψj i: (1)

This property and its consequence are to be studied in the present
experiment.
After numerous successful experimental demonstrations of

error-disturbance uncertainty relations based on the noise-
operator-based q-rms error2,13,14,19,20,26, Busch, Lahti, and Werner
(BLW)7 raised a reliability problem for quantum generalizations of
the classical root-mean-square error. They compared the noise-
operator-based q-rms error with the Wasserstein 2-distance, an
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error measure based on the distance between probability
measures, and pointed out several discrepancies between them
in favor of the latter.
In order to reconcile the conflict, Ozawa introduced four

requirements for a valid definition of error measure ε generalizing
the classical rms error25:

(i) Operational definability: The error measure is definable by
the POVM Π of measuring process M with A and ψj i, i.e.,
ε ¼ εðA;Π; ψj iÞ.

(ii) Correspondence principle: If A(0) and MA(t) commute,
εðA;Π; ψj iÞ equals the classical rms error determined by
the joint probability distribution of A(0) and MA(t).

(iii) Soundness: The error measure ε should vanish for any
accurate measurements.

(iv) Completeness: The converse of soundness—a measurement
should be accurate if the error measure ε vanishes.

Any reliable error measure should satisfy the soundness, while
sound and complete error measures completely characterize
accurate measurements. Ozawa25 showed that the noise-operator-
based q-rms error satisfies requirements (i)–(iii), so that it is a
sound generalization of the classical rms error. In fact, Eq. (1)
ensures (i), and (ii) follows from the property of the joint
probability distribution of A(0) and MA(t). It is further shown that
every error measure satisfying (ii) automatically satisfies (iii)25. It
was also shown that any error measures based on the distance of
probability measures, including the Wasserstein 2-distance, satisfy
(i) and (iii) but do not satisfy (ii) nor (iv)25. Hence, discrepancies
between the two error measures are not caused by the
unsoundness of the noise-operator-based q-rms error, but rather
caused by the incompleteness of the Wasserstein 2-distance. Thus,
the reliability problem for the noise-operator-based q-rms error
has been solved. The error-disturbance relation formulated by the
noise-operator-based q-rms error correctly describes the existence
of the unavoidable error and disturbance25.

Counter-example
It is well known that the classical rms error is sound and complete
for classical measurements. Thus, (ii) ensures that the noise-
operator-based q-rms error is not only sound but also complete
for any measurement such that A(0) and MA(t) commute. However,
the noise- operator-based q-rms error does not satisfy the
completeness, (iv), in general.
It is shown by BHL24 that there exists a measuring process M

with εNOðA;Π; ψj iÞ ¼ 0, whereas M does not accurately measure A.
However, a vanishing error is only expected for an accurate
measurement for the completeness of the error measure. Here, we
do not give the original counter-example but the slightly
simplified version as stated in ref. 25. Consider measurement of
the observable A in a two-level system in the initial state ψj i with
measuring process described by a POVM Π with the moment

operator M given as follows.

A ¼ 1 1

1 1

� �
; M ¼ 1 1

1 �1

� �
; ψj i ¼ 1

0

� �
: (2)

First, we consider the sharp measurement of M with the POVM
Π1. In this case, one obtains Π1(x)= PM(x) and M(2)=M2, so that

εNOðA;Π1; ψj iÞ ¼ ψh jðA�MÞ2 ψj i1=2 ¼ 0: (3)

However, this particular measurement is not accurate, since A
and M have disjoint spectra. The operator A has spectral
decomposition A ¼ P

iai aij i aih j, with eigenvalues ai= {2, 0} and
normalized eigenvectors aij i ¼ 1=

ffiffiffi
2

p ð1; ±1ÞT ¼ ±xj i, while
M ¼ P

imi mij i mih j, with eigenvaluesmi ¼ f± ffiffiffi
2

p g and normalized

eigenvectors mij i ¼ f 1ffiffiffiffiffiffiffiffiffiffiffi
4þ2

ffiffi
2

pp ð1þ ffiffiffi
2

p
; 1ÞT ; 1ffiffiffiffiffiffiffiffiffiffiffi

4�2
ffiffi
2

pp ð1� ffiffiffi
2

p
; 1ÞTg.

With PA(2), being the projector associated with eigenvalue 2, that
is þxj i þxh j � Pσx ð1Þ, which finally gives þzh jPσx ð1Þ þzj i ¼ 1

2. We
can then write ψh jPAð2Þ ψj i ¼ 1

2 ≠ ψh jΠ1ð2Þ ψj i ¼ 0 to express the
inaccuracy of the measurement. Thus, the measurement with the
POVM Π1= PM does not accurately measure A but
εNOðA;Π1; ψj iÞ ¼ 0.
Secondly, we consider the unsharp measurement of M with

POVM Π2 given by

Π2ð2Þ ¼ 1
2

1þ 1
2
σx þ 1

2
σz

� �
; Π2ð�2Þ ¼ 1

2
1� 1

2
σx � 1

2
σz

� �
;

(4)

for which we have M= 2Π2(2)− 2Π2(− 2), so that the POVM Π2 is
an unsharp measurement of M. Then, we have M(2)= 41 and M2=
21. Thus, we have εNOðA;Π2; ψj iÞ ¼ ffiffiffi

2
p

: Since

εNOðA;Π2; ψj iÞ ¼ ðεNOðA;Π1; ψj iÞ2 þ 2Þ1=2 ¼
ffiffiffi
2

p
;

the value εNOðA;Π2; ψj iÞ ¼ ffiffiffi
2

p
will be revised when the value

εNOðA;Π1; ψj iÞ ¼ 0 is revised for the completeness of the error
measure.

Definition and predictions of locally uniform quantum
root-mean-square error
To remedy the incompleteness of the noise-operator-based q-rms
error, Ozawa25 proposed a modification of its definition to satisfy
all of the requirements (i)–(iv) including completeness. For any
t 2 R the quantum root-mean-square (q-rms) error profile εt for
A and Π in ψj i is defined as

εtðA;Π; ψðtÞj iÞ ¼ εNOðA;Π; e�itA ψj iÞ: (5)

In order to obtain a numerical error measure the locally uniform q-
rms error ε is defined as

εðA;Π ψj iÞ ¼ sup
t2R

εtðA;Π; ψðtÞj iÞ: (6)

Then ε is a sound and complete q-rms error. For the given
example from Eq. (2), with A, Π1, and ψj i, we get

εtðA;Π1; ψðtÞj iÞ ¼ 2j sin tj and εðA;Π1; ψj iÞ ¼ 2; (7)

for the sharp M measurement described by the POVM Π1. The
relation εðA;Π; ψj iÞ ¼ 2 correctly indicates that the measurement
of A described in the example above is not an accurate
measurement. For the unsharp M measurement described by
the POVM Π2, one gets

εtðA;Π2; ψðtÞj iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2 cosð2tÞ

p
and εðA;Π2; ψj iÞ ¼

ffiffiffi
6

p
: (8)

Thus, the value ϵNOðA;Π2; ψj iÞ ¼ ffiffiffi
2

p
is revised as

ϵðA;Π2; ψj iÞ ¼ ffiffiffi
6

p
for the completeness of the error measure ϵ.

In addition to (i)–(iv), the locally uniform q-rms error ε is shown
to have the following two properties:

Fig. 1 Model of quantum measuring process. Schematic illustra-
tion of the indirect measurement model with noise-operator-based
quantum root-mean-square (q-rms) error εNO(A) of measuring
process M.
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(v) Dominating property: The error measure ε dominates the
noise-operator-based q-rms error, that is εNOðA;Π; ψj iÞ �
εðA;Π; ψj iÞ.

(vi) Conservation property for dichotomic measurements:
The error measure ε coincides with the noise-operator-
based q-rms error εNO for dichotomic measurements, i.e.,
εNOðA;Π; ψj iÞ ¼ εðA;Π; ψj iÞ if A2=M(2)= 1.

Property (v) ensures that all the universally valid error-
disturbance relations for εNO also hold for ε. Thus the improved
notion maintains all previously obtained universally valid uncer-
tainty relations and their experimental confirmations carried out
for dichotomic measurements14–18 without changing their forms
and interpretations, in contrast to a prevailing view that a state-
dependent formulation for measurement uncertainty relation is
not tenable7.

Experimental
Here, we present a neutron polarimetric measurement of the
quantum root-mean-square (q-rms) error profile εα, resulting in
determination of the locally uniform q-rms error ϵ, for the POVM
Π1 (the sharp measurement of M) and the POVM Π2 (an unsharp
measurement of M), as given in Eqs. (7) and (8) to demonstrate the
completeness property and thereby confirm the resolution of the
inconsistency in question.
The experiment was performed at the polarimeter instrument

NepTUn (NEutron Polarimeter TU wieN), located at the tangential
beam port of the 250 kW TRIGA Mark II research reactor at the
Atominstitut - TU Wien, in Vienna, Austria. A schematic illustration
of the setup is given in Fig. 2. An incoming monochromatic
neutron beam, reflected from a pyrolytic graphite crystal, with
mean wavelength λ≃ 2.02Å (Δλ/λ≃ 0.02) is polarized along the
vertical (+z) direction by refraction from a CoTi multilayer array,
hence on referred to as supermirror. The neutron polarimetric

setup consists of three stages, as indicated in Fig. 2. The blue stage
indicates the preparation of the incident state ψj i ¼ þzj i, which is
reflected from the polarizer (first super mirror). In the red stage the
state evolution of initial state ψj i ¼ þzj i as ψðtÞj i ¼ e�itA ψj i !
eðiασxÞ=2 ψj i � ψðαÞj i is induced, due to rotation by angle α about
the x-axis (note that the error profile ϵα is a function of the rotation
angle α). The Larmor precession inside direct current (DC) coil 1 is
induced by the static magnetic field BðαÞx .
In the green stage, a projective (or sharp) measurement of M is

performed first, in order to demonstrate the counter example
εtðA;Π1; ψðtÞj iÞ ¼ 2j sin tj from25. The Π1 measurement has two
possible outcomes, namely m ¼ þ ffiffiffi

2
p

and m ¼ � ffiffiffi
2

p
, correspond-

ing to measurement operators Π1ð±
ffiffiffi
2

p Þ ¼ PMð± ffiffiffi
2

p Þ ¼ 1
2 ð1± σmÞ,

with σm ¼ 1ffiffi
2

p σz þ 1ffiffi
2

p σx . The error-profile εαðA;Π1; ψðαÞj iÞ is
obtained by measuring expectation values of A2, M2 and M in
state ψðαÞj i and of M in auxiliary states ψðαþ πÞj i and þxj i (see
the “Methods” section for details of the experimental realization of
sharp M measurement process). The combined action of DC-coil 2
and the analyzer (second super mirror) realizes the respective
projector.
In addition to the sharp measurement, we also realized a

generalized (or unsharp) measurement of M in terms of a
positive-operator-valued measures (POVM) elements Π2ð±2Þ ¼
1
2 ð1± 1

2 σx ± 1
2 σzÞ, yielding q-rms error profile εαðA;Π2; ψðαÞj iÞ.

This is achieved by a randomized combination of projectors of
PMð± ffiffiffi

2
p Þ together with a contribution of a ’no-measurement’,

realized by the ±x projectors, denoted as Pσx ð±1Þ, which gives
( ψðαÞh jPσx ð±1Þ ψðαÞj i ¼ 1

2 for all α ∈ [0, 2π]) (see the “Methods”
section for experimental details of the POVM realization).
Figure 3a gives a Bloch sphere depiction of projectors

Π1ð±
ffiffiffi
2

p Þ ¼ PMð± ffiffiffi
2

p Þ and POVM elements Π2( ± 2). The finally
recorded intensity was about 350 neutrons s−1 at a beam cross-
section of 10 (vertical) × 5 (horizontal) mm2. A 3He detector with
high efficiency (more than 99 %) is used for count rate detection.
To avoid unwanted depolarization, a static guide field pointing in
the +z-direction with a strength of about 10 Gauss is produced by
rectangular Helmholtz coils. In addition, the guide field induces
Larmor precession, which, together with two appropriately tuned
DC coils, enables state preparation of ψðαÞj i and projective or
generalized measurements Π1 and Π2.
Experimental results of expectations values 〈ψ(α)∣Πi(±mi)∣ψ(α〉)

(with i= 1, 2 and mi ¼ f ffiffiffi
2

p
; 2g), that is hψðαÞjΠ1ð±

ffiffiffi
2

p ÞjψðαiÞ ¼
hψðαÞjPMð± ffiffiffi

2
p ÞjψðαiÞ of projective (sharp) measurements and

〈ψ(α)∣Π2( ± 2)∣ψ(α〉) of generalized (unsharp) POVM are plotted in
Fig. 3b. See the “Methods” section for details of the measurement
procedure.
The final results for the error profile for projective M

measurement and εαðA;Π2; ψðαÞj iÞ for generalized measurements
(POVM), are plotted in Fig. 4. For the initial state ψj i ¼ þzj i, which
corresponds to α= 0, the q-rms error profile of the sharp
(projective) measurement is zero; εαðA;Π1; ψðα ¼ 0Þj iÞ ¼ 0, as
expected from the counter-example from Eq. (3). The maximum
value of εα= 2 is obtained for α= π, namely
εαðA;Π1; ψðα ¼ πÞj iÞ ¼ 2. From this we infer the value of the
locally uniform q-rms errorεðA;Π1 ψj iÞ ¼ supεαðA;Π1; ψðαÞj iÞ as
εðA;Π1; jψÞ ¼ 2. As can be seen from Fig. 4, the theoretical
prediction for the error profile εαðA;Π1; ψðαÞj iÞ ¼ 2j sin α

2 j are
evidently reproduced for all values of α∈ [0, 2π].
The generalized (unsharp) measurement in terms of POVMs also

reproduces the theoretical predictions of the q-rms error profile
εαðA;Π2; ψðαÞj iÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 2 cos α
p

, with minimum value εαðA;Π2;

ψðα ¼ 0; 2πÞj iÞ ¼ ffiffiffi
2

p
and maximum value εαðA;Π2; ψðα ¼j

πÞiÞ ¼ ffiffiffi
6

p ¼ εðA;Π2; ψj iÞ, the locally uniform q-rms error. The
higher values of the POVM error profile (meaning
εαðA;Π2; ψðαÞj iÞ> εαðA;Π1; ψðαÞj iÞ for all α∈ [0, 2π]) are caused
by the unsharp character of the POVM measuring process.

Fig. 2 Experimental setup for measurement of the q-rms error
profile εα of measuring process M. The setup consists of three
regions: Blue: preparation of the initial state ψj i ¼ ð1; 0ÞT � þzj i.
Red: preparation of the evolved state
ψðtÞj i ¼ e�itA ψj i ! ψðαÞj i ¼ e�itσx ψj i ¼ eðiασx Þ=2 ψj i. Green: Measure-
ment of A2,M2 and M in state ψðαÞj i, ψðαþ πÞj i and þxj i,
respectively. Projective (sharp) measurements are realized by
applying projectors PMð± ffiffiffi

2
p Þ and generalized (unsharp) in terms

of POVM by randomized sequences of PM and Pσx . Bloch spheres
above setup indicate the evolution of initial state ψðαÞj i and
measured projectors PM and Pσx .
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DISCUSSION
As seen already from Eq. (1) the error εðA;Π; ψj iÞ depends on the
choice of the respective POVM Π that realizes a particular
measurement. From a physical point of view one might ask which
measurement is optimal? Although individual expectation values
(mean values) are the same for sharp (projective) and unsharp
(POVM) realizations of the same measurement M, regarding
measurement error of single measurements, sharp measurements
are always superior compared to unsharp measurements. How-
ever in the case of joint, simultaneous (or successive) measure-
ments, where an optimal error-error (or error-disturbance) trade-
off is obtained, unsharp measurements are able to outperform
sharp measurements18,28.
Generalized (or unsharp) measurements are of high impor-

tance in the emerging field of quantum metrology and
quantum information processing and are foreseen to be vital
in future applications within these fields. Our implementation of
generalized measurements, that is a randomized combination
of projectors together with a contribution of a ‘no-measure-
ment’, applied here, is more direct (compact) and more efficient
compared to methods used in previous experiments18,29.

This technique will be applied in future experiments studying
noise-disturbance trade-off relations in successive generalized
measurements30.
For the operational accessibility of the locally uniform q-rms

error in the general case, it is supposed that the unitary operator
e−itA can be implemented canonically. This assumption is often
made in quantum measurement theory. A justification is given by
Ozawa13 (pp. 375–376) as follows. It is a standard assumption that
for any observable A in a system S, we can implement the
coupling A⊗ P for a fixed time interval to a one-dimensional
system P with the canonical observables Q, P with [Q, P]= iℏ to
realize the unitary evolution e−iA⊗P of S+ P. This assumption is
commonly accepted, for instance, in implementing weak mea-
surements31. Then, preparing P in the momentum eigenstate
tj i ¼ P ¼ tj i, we have

e�iA�Pð ψj i ψh j � tj i th jÞeiA�P ¼ e�itA ψj i ψh jeitA � tj i th j (9)

for any ψj i. Thus, the unitary evolution e−itA of S can be
operationally implemented in principle. Note that the general
case where P is prepared in an arbitrary state ϕj i instead of tj i ¼
P ¼ tj i was discussed by Ozawa25 (p. 7, the remark following
Theorem 3).
To conclude, despite numerous successful experimental

demonstrations of error-disturbance uncertainty relations based
on the noise-operator-based q-rms error2,13,14,19,20,26, Busch, Lahti,
and Werner7 brought about a debate on the use of the noise-
operator-based q-rms error. Ozawa25 showed that the noise-
operator-based q-rms error εNO is a sound error measure
extending the classical rms error, and redefine it to be a sound
and complete error measure, called the locally uniform q-rms error
ε, by modifying the value for the measurements without satisfying
[A(0),MA(t)]= 0. By the domination property εNO � ε, the error-
disturbance relation holds for the sound and complete error
measure ε with the same form as Ozawa’s original error-
disturbance relation for εNO. Thus, we already have a universally
valid error-disturbance relation with a sound and complete
quantum extension of the classical rms error, whereas the original
error-disturbance relation with the noise-operator-based q-rms
error is stronger than the improved relation.
A problem remains as to the experimental accessibility of the

improved error measure ε. It was shown that εNO ¼ ε holds for
dichotomic measurements, often considered as the common case
with regard to applications, for which the validity has been

Fig. 3 Experimental results of projective (sharp) measurement Π1
and generalized (unsharp) measurement Π2. a Bloch sphere
depiction of projectors Π1ð±

ffiffiffi
2

p Þ ¼ PMð± ffiffiffi
2

p Þ of sharp, and POVM
elements Π2( ± 2) of unsharp measurement. b Expectations values of
ψðαÞh jΠ1ð±

ffiffiffi
2

p Þ ψðαÞj i ¼ ψðαÞh jPMð± ffiffiffi
2

p Þ ψðαÞj i for projective and
ψðαÞh jΠ2ð±2Þ ψðαÞj i for generalized POVM in state ψðαÞj i with
measurement time tmeas= 100 s. (error-bars represent ±1 st. dev.).

Fig. 4 Final experimental results of the q-rms error profile εα and
locally uniform q-rms error ε. Green data points represent quantum
root-mean-square (q-rms) error profile εαðA;Π1; ψðαÞj iÞ (projective)
and red data points represent εαðA;Π2; ψðαÞj iÞ (POVM), for different
evolved states ψðαÞj i with measurement time tmeas= 100 sec (error-
bars represent ±1 st. dev.). Locally uniform q-rms error εðA;Π1; jψÞ ¼
2 (projective) and εðA;Π2; jψÞ ¼

ffiffiffi
6

p
(POVM) are represented by

green and red line, respectively.
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confirmed by many experiments14,19,20, and for measurements
satisfying [A(0),MA(t)]= 0. However, our aim is to study the
experimental behavior of ε for non-dichotomic measurements
without satisfying [A(0),MA(t)]= 0. In this paper, we present an
experimental study of the improved error measure for measure-
ments such that ε≠ εNO, and the operational accessibility of the
improved error measure is confirmed. Measuring the improved
error of measurements of higher dimensional systems, which is
operationally feasible, in principle, as discussed above, is a
challenging problem in future studies.

METHODS
Three-state-method and time evolution
In order to experimentally demonstrate the completeness of ε, Eqs. (7) and
(8) need to be expressed in terms of experimentally accessible quantities,
i.e., expectation values. This can be achieved by applying the well known
three-state-method26 for generalized measurements13 (p.383) to obtain
the state-dependent q-rms error profile εtðA;Π; ψðtÞj iÞ from
ε2t ðA;Π; ψðtÞj iÞ ¼ ψðtÞh jðM� AÞ2 ψðtÞj i þ ψðtÞh jMð2Þ �M2 ψðtÞj i; (10)

where M(2) denotes the second moment of Π, given by M(2)= ∑xx
2 Π(x). The

first term of Eq. (9) can be symmetrized, applying the operator identity

ðA� 1ÞMðA� 1Þ � A M A�M ¼ �ðM Aþ A MÞ; (11)

which gives

ε2αðA;Π; ψðαÞj iÞ ¼ ψðαÞh jA2 ψðαÞj i þ ψðαÞh jM2 ψðαÞj i � ψðαÞh jM ψðαÞj i � ψðαÞh jA M A ψðαÞj i
þ ψðαÞh jðA� 1Þ M ðA� 1Þ ψðαÞj i þ ψðαÞh jMð2Þ �M2 ψðαÞj i:

(12)

The q-rms error-profile for all evolved states ψðαÞj iÞ is calculated using
the three-state method (see Supplementary Note 1 for the individual
measurement results of all terms from Eq. (12)).
Next, we analyze the time evolution of the initial state

ψj i ¼ ð1; 0ÞT � þzj i, dependent on A, as expressed in Eq. (5). The
observable A can be decomposed as A= 1+ σx. Hence, the time evolution
of the initial state yields

ψðtÞj i ¼ e�itA ψj i ¼ e�itð1þσx Þ ψj i ! e�itσx ψj i ¼ eðiασx Þ=2 ψj i
¼ 1 cos α2 � iσx sin α

2

� � þzj i � ψðαÞj i; (13)

which is simply a rotation about the x-axis by an angle α (see Bloch sphere
in Fig. 2). Thus the parametrization has changed from time t to an
(experimentally adjustable) spinor rotation angle α.

Projective measurement of M
In order to demonstrate the counter example from Eq. (2), a sharp
measurement of M is required. The decomposition of M into projectors is
denoted as

M ¼
ffiffiffi
2

p
Π1ð

ffiffiffi
2

p
Þ �

ffiffiffi
2

p
Π1ð�

ffiffiffi
2

p
Þ ¼

ffiffiffi
2

p
PMð

ffiffiffi
2

p
Þ �

ffiffiffi
2

p
PMð�

ffiffiffi
2

p
Þ;

(14)

where

PMð
ffiffiffi
2

p
Þ ¼ 1

2
1þ σx þ σzffiffiffi

2
p

zfflfflfflffl}|fflfflfflffl{σm
0
BB@

1
CCA; PMð�

ffiffiffi
2

p
Þ ¼ 1

2
1� σx þ σzffiffiffi

2
p

zfflfflfflffl}|fflfflfflffl{σm
0
BB@

1
CCA; (15)

with

Mð2Þ ¼
X

x¼±
ffiffi
2

p
x2 PMðxÞ ¼ 2 1 ¼ M2: (16)

Therefore, the error-profile ε2αðA;Π1; ψðαÞj iÞ yields
ε2αðA;Π1; ψðαÞj iÞ ¼ ψðαÞh jA2 ψðαÞj i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≠1

þ ψðαÞh jM2 ψðαÞj i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
≠1

� ψðαÞh jM ψðαÞj i � ψðαÞh jAMA ψðαÞj i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2 þxh jM þxj i

þ ψðαÞh j ðA� 1Þ|fflfflfflffl{zfflfflfflffl}
σx

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{ψðαþπÞh j

M ðA� 1Þ|fflfflfflffl{zfflfflfflffl}
σx

ψðαÞj i
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{ψðαþπÞj i

þ ψh jMð2Þ �M2 ψj i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

;

(17)

which finally gives

εαðA;Π1; ψðαÞj iÞ ¼ 2 sin
α

2

��� ���; (18)

with locally uniform q-rms error εðA;Π1; ψj iÞ ¼ 2, as predicted in ref. 25.
Note that only for dichotomic measurements the first two terms of Eq. (17)
are unity and the error profiles become α-independent (see Supplemen-
tary Note 1 for experimental details and results of all individual expectation
values of the sharp M-measurement).

Generalized measurement of M
In addition, we performed generalized (unsharp) measurements, described by
POVM Π2, to determine the q-rms error profile εðA;Π2; ψj iÞ, where a
decomposition of M in terms of POVM elements is applied, which is found as

M ¼ 2 Π2ð2Þ � 2 Π2ð�2Þ: (19)

The expectation value of M is expressed as

ψðαÞh jM ψðαÞj i ¼ 2p½Π2ð2Þ;ψðαÞ� � 2p½Π2ð�2Þ;ψðαÞ�; (20)

with probabilities p½Π2ð2Þ;ψðαÞ� ¼ TrðΠ2ð2Þ ραÞ and p½Π2ð�2Þ;ψðαÞ� ¼
TrðΠ2ð�2Þ ραÞ, with ρα ¼ ψðαÞj i ψðαÞh j, being the probabilities of obtaining
the respective results. The individual POVM elements are given by Eq. (4),
with M(2)= 4 1 ≠M2= 2 1. This accounts for a generalized measurement
(with Π2(2)+ Π2(−2)= 1, obeying the completeness relation of POVMs).
Applying the definition of the q-rms error profile εα from Eq. (17) evidently
reproduces the predictions for q-rms error profile

εαðA;Π2; ψðαÞj iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2 cos α

p
; (21)

and for the locally uniform q-rms error we get εðA;Π2; ψj iÞ ¼ ffiffiffi
6

p
.

In the actual experiment the noisy POVM is realized by a randomized
combination of a projective measurement of σm ¼ 1ffiffi

2
p σz þ 1ffiffi

2
p σx and a ‘no-

measurement’. The probability p½Π2;ψðαÞ� ¼ TrðΠ2 ψðαÞj i ψðαÞh jÞ, is mea-
sured by the projectors of σm, denoted as Pσm , that is ψðαÞh jPσm ψðαÞj i,
together with a contribution of a no-measurement. The ‘no-measurement’,
(identity) is simply a measurement of spin operators, that are orthogonal to
the plane spanned by the of the evolved states ψðαÞj i, namely
ψðαÞh jPσx ð±1Þ ψðαÞj i ¼ ψðαÞ ±xj i ±xh jjψðαÞh i ¼ 1

2 for all α∈ [0, 2π], and
therefore add up to identity. We can thus rewrite the POVM elements as

Π2ð± 2Þ ¼ 1
2 ð1± 1

2 σx ±
1
2 σzÞ ¼ γ11þ γ2

1
2
ð1±

σx þ σzffiffiffi
2

p
zfflfflfflffl}|fflfflfflffl{σm

Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Pσm ð±1Þ

� γ11þ γ2P
σm ð± 1Þ

¼ γ1 Pσx ð1Þ þ Pσx ð�1Þð Þ þ γ2P
σm ð± 1Þ;

(22)

with γ1 ¼ 1
4 ð2�

ffiffiffi
2

p Þ as the weight for the ‘no-measurement’ and γ2 ¼ 1ffiffi
2

p

as weight of the projector. Experimentally this is achieved, for example in
the TrðΠ2ð2ÞραÞ measurement, by controlling the current in DC coil 2 with
a random generator, where with a frequency of 10 Hz either the current Iþm
for the Pσm ð1Þ measurement or I ±no for one of the two orthogonal spin
components of the ‘no-measurement’ is randomly chosen. The respective
probabilities are given by pðIþnoÞ ¼ pðI�noÞ ¼ 1

2
γ1

γ1þγ2
and pðImÞ ¼ γ2

γ1þγ2
.

The same procedure is applied to the measurement of expectation
values ψðαÞh jðA� 1Þ M ðA� 1Þ ψðαÞj i and ψðαÞh jA M A ψðαÞj i. To obtain
the results of ψðαÞh jA2 ψðαÞj i and ψðαÞh jM2 ψðαÞj i the expectation values of
projector onto þxj i and identity have to be measured (see Supplementary
Note 1 for experimental results of all individual expectation values of the
unsharp M-measurement).

DATA AVAILABILITY
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