Fig. 1: Information sharing framework. | npj Quantum Information

Fig. 1: Information sharing framework.

From: Variational quantum algorithm with information sharing

Fig. 1

Parallel Bayesian optimisation for physically parameterised VQE tasks. Separate BO’s \({\mathcal{B}}({{\bf{x}}}_{\alpha })\) optimise for different cost functions Cα, corresponding to different values of the physical parameters xα, using the same parameterised ansatz circuit U(θ). Every iteration, each \({\mathcal{B}}({{\bf{x}}}_{\alpha })\) requests a new variational parameter point θα, at which the set of Pauli strings {Pi} are measured. These expectation values are used to compute any Cβ cost functions (dashed lines) at θα, for all α, β. Each BO can then be updated using the measurement results obtained for several θα, θβ, … parameter points each iteration (bold arrows), dramatically speeding up convergence at all xα.

Back to article page