Table 1 Concrete protocols for verifying the Bell state in an untrusted quantum network.

From: Optimal verification of the Bell state and Greenberger–Horne–Zeilinger states in untrusted quantum networks

Protocol

Threshold γ*

γ(C) (pure state)

\(\hat{\gamma }(C)\) (mixed state)

v(C = 0)

XY

\(\frac{1}{2}+\frac{1}{2\sqrt{2}}\approx 0.854\)

\(\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1+{C}^{2}}{2}}\)

\(\frac{1}{4}[2+\sqrt{2}+(2-\sqrt{2})C\ ]\)

\(\frac{1}{\sqrt{2}}{(1,1,0)}^{{{{\rm{T}}}}}\)

XYZ

\(\frac{1}{2}+\frac{1}{2\sqrt{3}}\approx 0.789\)

\(\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1+2{C}^{2}}{3}}\)

\(\frac{1}{6}[3+\sqrt{3}+(3-\sqrt{3})C\ ]\)

\(\frac{1}{\sqrt{3}}{(1,1,1)}^{{{{\rm{T}}}}}\)

Isotropic

\(\frac{3}{4}=0.75\)

\(\frac{3}{4}+\frac{{C}^{2}{{{\rm{arcsinh}}}}\left(\frac{\sqrt{1-{C}^{2}}}{C}\right)}{4\sqrt{1-{C}^{2}}}\)

\(\frac{3+C}{4}\)

any direction

Equator

\(\frac{1}{2}+\frac{1}{\pi }\approx 0.818\)

\(\frac{1}{2}+\frac{1}{\pi }K(\sqrt{1-{C}^{2}}\ )\)

\(\frac{1}{2\pi }[\pi +2+(\pi -2)C\ ]\)

any direction in the xy-plane

Polygon(3)

\(\frac{5}{6}\approx 0.833\)

\(\frac{4+\sqrt{1+3{C}^{2}}}{6}\)

\(\frac{5+C}{6}\)

any vertex direction

Equator +Z

\(\frac{1}{2}+\frac{1}{\sqrt{4+{\pi }^{2}}}\approx 0.769\)

 − 

\(\frac{1+C}{2}+\frac{1-C}{\sqrt{4+{\pi }^{2}}}\)

\(\frac{1}{\sqrt{4+{\pi }^{2}}}{(\pi ,0,2)}^{{{{\rm{T}}}}}\)

Polygon(3)+Z

\(\frac{1}{2}+\frac{1}{\sqrt{13}}\approx 0.777\)

 − 

\(\frac{1}{2}+\frac{1}{\sqrt{13}}+\left(\frac{1}{2}-\frac{1}{\sqrt{13}}\right)C\)

\(\frac{1}{\sqrt{13}}{(3,0,2)}^{{{{\rm{T}}}}}\)

  1. Here γ(C) (\(\hat{\gamma }(C)\)) is the maximum guessing probability for pure (mixed) states with concurrence at most C, and v(C = 0) is an intelligent direction for C = 0. Entanglement can be certified when the guessing probability surpasses the threshold \({\gamma }^{* }=\gamma (0)=\hat{\gamma }(0)\). The XY protocol and isotropic protocol are the simplest and optimal verification protocols, respectively. All protocols listed, except for the isotropic protocol, can be generalized to GHZ states.