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Anisotropy with respect to the applied magnetic field of spin
qubit decoherence times
Yujun Choi 1 and Robert Joynt 1✉

Electron spin qubits are a promising platform for quantum computation. Environmental noise impedes coherent operations by
limiting the qubit relaxation (T1) and dephasing (Tϕ) times. There are multiple sources of such noise, which makes it important to
devise experimental techniques that can detect the spatial locations of these sources and determine the type of source. In this
paper, we propose that anisotropy in T1 and Tϕ with respect to the direction of the applied magnetic field can reveal much about
these aspects of the noise. We investigate the anisotropy patterns of charge noise, evanescent-wave Johnson noise, and hyperfine
noise in hypothetical devices. It is necessary to have a rather well-characterized sample to get the maximum benefit from this
technique. The general anisotropy patterns are elucidated. We calculate the expected anisotropy for a particular model of a Si/SiGe
quantum dot device.
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INTRODUCTION
Spin qubits are a promising platform for quantum information
processing machines1. Recent progress includes the development
of high-fidelity single-qubit operations2, coupling to resonators3, a
programmable quantum processor4, universal quantum logic at
1.5 K5, and capacitive coupling of spin qubits6. The main obstacle,
as in many quantum computing implementations, is the presence
of noise that causes decoherence. The sources of decoherence are
many: noise from the nuclear spin bath7,8 evanescent-wave
Johnson noise9,10, random telegraph and 1/f-type charge
noise2,11–13, and noise from phonons14–16 are considered to be
the main candidates.
While the deleterious effects of noise are clearly evident,

tracking down the exact sources has proved problematic. On the
positive side, the qubits themselves are very sensitive noise
detectors. They can be used to measure T1, which is a measure of
the noise strength at the qubit operating frequency ωop, and T2,
which is usually a measure of a weighted average of the noise
strength at lower frequencies. In addition, echo techniques can be
used to do noise spectroscopy. However, while these techniques
have been useful, new methods are needed to identify the type of
noise and to pinpoint the positions of noise sources. Some
progress has been made recently in this direction13, but the
subject is still relatively undeveloped.
For most quantum computing platforms, T1 and T2 are

determined by quite different physical mechanisms. For spin
qubits, the situation is somewhat different. The qubits couple to
the effective magnetic noise field, B(eff), which is a vector.
Furthermore, there is a preferred axis set by the direction of the
applied field B0. We define the noise power tensor by

BðeffÞi BðeffÞj

D E
ω
¼

Z
dt eiωt BðeffÞi ðtÞ BðeffÞj ð0Þ

D E
: (1)

Here the angle brackets denote a quantum and thermal
average and the subscripts are Cartesian components. For the
moment, let us assume that B0 ¼ B0ẑ. T1 is determined
by the transverse noise components: 1=T1 / hBðeffÞx BðeffÞx iωop

þ
hBðeffÞy BðeffÞy i

ωop
. The dephasing rate 1/Tϕ, on the other hand, is

determined by a weighted average of the longitudinal noise
strength hBðeffÞz BðeffÞz iω. Since we have 1/T2= 1/2T1+ 1/Tϕ, all of the
diagonal components of the noise tensor are accessible to
experiment. For most spin qubits T1≫ T2, so we have the simpler
equation T2= Tϕ. Henceforth, we shall assume this to be the case
and will refer only to T2.
This vector character of the coherence time equations means that

one can investigate the nature of noise in spin qubit systems by
measuring the anisotropy in T1 and T2 as a function of the direction
of the applied field. Simply put, if the applied field is in the direction
Rẑ, where R is a rotation operator that takes ẑ into the direction with

polar angles (θ,ϕ), then 1=T1ðθ;ϕÞ / hBðeffÞRx̂ BðeffÞRx̂ i
ωop

þ hBðeffÞRŷ BðeffÞRŷ i
ωop

while Tϕ(θ,ϕ) depends on hBðeffÞRẑ BðeffÞRẑ i
ω
. The pattern in (θ,ϕ) gives

information about the nature of the noise sources and their positions
relative to the qubit.
For charge qubits, the analog of the direction of the external field

is the direction of the line in space that connects the two quantum
dots. It is normally not possible to adjust this over a wide range and
even in a narrow range, it is unlikely to be possible in a controllable
way. As a result, the experiments we propose are only possible for
spin qubits. In this paper, we limit the analysis to single-spin devices.
The idea of using anisotropy to investigate noise should also be
applicable to multi-dot qubit devices such as hybrid qubits17 or
singlet-triplet qubits18. The analysis is more complicated for these
cases. For example, in the two-qubit experiment of ref. 19, the change
in the ratio of g-factors as the field is rotated introduces additional
complications. We will not attempt any treatment of these more
complex multi-qubit systems in this work, since we are mainly
attempting to establish the basic principles involved, and for this
purpose it is best to do the simpler cases first. Nevertheless, it seems
likely that the anisotropy in decoherence times would be a useful
tool even in these more involved situations.
We focus on the anisotropy of three different types of noise

sources: charge noise, hyperfine noise, and evanescent-wave
Johnson noise (EWJN) in silicon devices. Charge noise is the most
important at low frequencies and generally determines T2. EWJN is
important at higher frequencies and low magnetic fields, and in
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many cases may determine T1. Hyperfine noise is also important,
particularly in GaAs systems. It is expected to be isotropic in B0,
which from the viewpoint of this paper is a key experimental
signature of this type of noise20, as we shall discuss below. Phonon
relaxation mediated by spin-orbit coupling, in contrast, is highly
anisotropic, as has been shown previously15,21. This mechanism is
important at higher magnetic fields B0. Since we do not include it,
the results we present here hold only for B0 ≤ 3-4T22. At these
lower fields, T1 saturates. It is important to note that the
anisotropy due to phonon effects is determined by the orientation
of B0 relative to the crystal axes, while the anisotropies considered
in this paper are relative to directions determined by the
geometry of the device. Hot spots, where the valley and Zeeman
levels cross, are also a strong source of decoherence23.
Fortunately, it is relatively easy to avoid this by tuning the
strength of the applied field, and this would be necessary for the
proposed experiment to work. In metal-oxide-semiconductor
(MOS) structures the Dresselhaus interaction can be strong and
anisotropic. This gives rise to an anisotropic T2 from charge noise
that was measured in ref. 24. Here we focus on dots in
heterostructures, where the angular variation of the spin-orbit
coupling is expected to be much weaker.
In most experiments on spin qubits, the relative orientation of

the sample and the applied magnetic field is not allowed to vary.
However, rotatable sample holders can give some variation in the
angle between the growth direction and the applied field. See, for
example, ref. 25. Full coverage of the whole solid angle can be
obtained from vector magnet arrangements with appropriate
parameters of the magnets. Indeed, experiments to optimize qubit
operation by changing the direction of the applied field have
been carried out26. The present paper can be viewed as an aid to
these kinds of efforts since the direction of maximum decoher-
ence times can be inferred from the calculations. Other
phenomena that have been investigated by rotating the field
are the variations in the Rabi frequency of multi-hole qubits in Si27

and the profile of the spin–orbit interaction of a silicon double
quantum dot in MOS structures28,29.
This paper will focus on experiments that use a micromagnet to

provide a field gradient at the position of the dot. The direction of
the magnetization of the micromagnet can be affected by the
rotation of the applied field in a way that is not well understood and
that is difficult to measure. This means that to carry out the type of
experiment that is proposed here, hard magnets must be used.

RESULTS
Relaxation time
The relaxation rate of a spin qubit in the noise magnetic field
depends on the noise correlation function hBðeffÞi ðtÞBðeffÞj ð0Þi

ωopwhere B(eff) is the effective noise magnetic field, ωop is the
operating frequency of the qubit. The effective noise magnetic
field is any time-dependent field that couples to the spin in the
usual way. Hence this could be a physical magnetic field, a field
that comes from the motion of the qubit in an inhomogeneous
field, a field that results from phonons mediated by spin-orbit
coupling, etc.
T1, the relaxation time, depends only on the transverse

components of the correlation function. If we define T ðiÞ
1 as the

relaxation time when the applied field is in the i-direction, then:

1
T ðxÞ1

¼ μB
_

� �2
BðeffÞy BðeffÞy

D E
ωop

þ BðeffÞz BðeffÞz

� �
ωop

� �
;

1
T ðyÞ1

¼ μB
_

� �2
BðeffÞz BðeffÞz

� �
ωop

þ BðeffÞx BðeffÞx

� �
ωop

h i
;

1
T ðzÞ1

¼ μB
_

� �2
BðeffÞx BðeffÞx

� �
ωop

þ BðeffÞy BðeffÞy

D E
ωop

� �
:

(2)

μB is the Bohr magneton. We take g= 2.

If the applied field is in an arbitrary direction
n̂ ¼ sin θ cosϕ x̂ þ sin θ sinϕ ŷ þ cos θ ẑ, where θ is the polar angle
and ϕ is the azimuthal angle, then the relaxation rate becomes

1
T1ðθ;ϕÞ ¼

μB
_

� 	2 X
ij

Qð1Þ
ij BðeffÞi BðeffÞj

D E
ωop

(3)

where

Qð1Þ ¼
cos2ϕcos2θþ sin2ϕ � cosϕ sinϕsin2θ � cosϕ cos θ sin θ

� cosϕ sinϕsin2θ sin2ϕcos2θþ cos2ϕ � sinϕ cos θ sin θ

� cosϕ cos θ sin θ � sinϕ cos θ sin θ sin2θ

2
64

3
75

with {x, y, z} as the basis for the matrix Qð1Þ
ij . Note that if there are

any nonzero off-diagonal correlation functions hBðeffÞi BðeffÞj i
ω
(i ≠ j),

they are also needed in the expression for the relaxation time.

Dephasing time
The calculation of the dephasing time is more complicated than
that for the relaxation time, since it depends more sensitively on
the full frequency spectrum of the noise and higher-level
correlation functions. For the purposes of this paper, only ratios
of T2 for different applied field angles are important. Hence the
specific approximation used to compute T2 is not so crucial. It will
be sufficient to assume that the field fluctuation obeys Gaussian
statistics. Then if the applied field is in the z-direction, the off-
diagonal components of the density matrix of the qubit decay
according to the expression exp½�ΓðtÞ� with

ΓðtÞ ¼ t2

2
2μB
_


 �2 Z 1

�1
dω BðeffÞz BðeffÞz

D E
ω
sinc2ðωt=2Þ: (4)

The dephasing time Tϕ of the qubit is obtained by solving the
transcendental equation Γ(Tϕ)= 1. Here the sinc function is
defined by sincðxÞ ¼ sin x=x. If the applied field is in the (θ, ϕ)
direction, then

ΓðtÞ ¼ t2
2

2μB
_

� �2 P
ij
Qð2Þ
ij

´
R1
�1 dω BðeffÞi BðeffÞj

D E
ω
sinc2ðωt=2Þ

(5)

where

Qð2Þ ¼
cos2ϕsin2θ cosϕ sinϕ sin2θ cosϕ cos θ sin θ

cosϕ sinϕ sin2θ sin2ϕ sin2θ sinϕ cos θ sin θ

cosϕ cos θ sin θ sinϕ cos θ sin θ cos2θ

2
64

3
75

in the same basis as used for Q(1).
The results of this subsection and the previous one make it clear

that the entire tensor structure of the noise correlation function is
in principle accessible simply by measuring T1 and T2.

Effective magnetic field noise from a micromagnet
Single-qubit logic gates in spin systems are often implemented
using a micromagnet to set up a magnetic field gradient. This has
the unwanted complication that electric field noise moves the
spin up and down the gradient, causing a time-dependent
magnetic field B(E) that can decohere the qubit. Here we outline
how this plays into the anisotropy effect.
We will take a simple model of a quantum dot in a harmonic

potential. The Hamiltonian is

H ¼ �
X
i

_2

2mi

∂

∂x2i
þ
X
i

1
2
kix

2
i � q

X
i

xiEiðtÞ (6)

where i is a Cartesian index, mi and ki are the effective mass and
spring constant of the electron in the i-direction, q is the electric
charge of the electron and Ei(t) is the noise electric field
component in the i-direction. The frequency of the electric noise
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is much smaller than the natural frequencies of the harmonic
motion, so the Born-Oppenheimer approximation applies and the
effect of Ei(t) is to shift the position of the minimum of the
potential by Δxi(t)= qEi(t)/2ki. The confinement in the z-direction is
much stronger, though the effects of excited states in this
potential are measurable30,31. To the level of approximation
needed in this paper, we can drop the z term in Eq. (7) in the
potential and treat the dot as two-dimensional.
The micromagnet sets up a static field Bm that varies strongly in

space. The associated effective noise field that acts on the spin is

BðEÞi ðtÞ ¼ ∂Bmi
∂xj

ΔxjðtÞ ¼ q
X
j

1
2kj

∂Bmi
∂xj

EjðtÞ: (7)

The field gradient and the spring constant are device
parameters. This equation already shows that considerable device
modeling is necessary to extract any interesting information about
the noise field Ei(t).

Magnet hardness
In qubit experiments carried out to date, the micromagnet is
made of pure cobalt32,33. Co is hexagonal with the easy axis for
magnetism along the z-direction. The anisotropy parameter (the
difference in energy between the z-axis and the x-y plane) is about
106 J/m3, which corresponds to an anisotropy field HA of about
0.5 T when the magnetization is saturated, as it surely is at the low
temperatures of the experiments. This and shape anisotropy will
mainly determine the coercive field, though sample-dependent
domain wall pinning will also contribute. The anisotropy
parameter quoted above is consistent with the results of ref. 34,
though it is sometimes assumed that the magnet will rotate
freely35,36. In any case, in the fields of present-day experiments (a
fraction of 1 T), the magnet cannot be considered to be hard and
some rotation of the direction of the magnetization of the Co
micromagnet is certainly to be expected. This will change the field
gradient tensor that is used to calculate T1 and T2.
There are three possible solutions to this problem, the first two

of which involve changing the magnet.
The first is to use a softer ferromagnet with a cubic crystal

structure such as Fe, where one could expect the magnetization
follows the applied field. This would erase much though not all of
the anisotropy in the decoherence times. It is certainly not ideal
but might still give useful information about the noise sources.
The second option is to use a harder ferromagnet, so that the

field gradient tensor is fixed once and for all when the magnet is
cooled in a field. There are many possibilities, but one that
suggests itself is SmCo5, very close chemically to the Co magnets
in current use. The anisotropy field can be as high as HA= 55T, an
order of magnitude higher than pure Co37. The magnetization
would not be significantly affected by the rotation of the external
field. Then the anisotropy in T1 and T2 is more pronounced and
more information can be extracted from it.
The third possibility is to stick with the Co magnet but to use an

external field that is considerably smaller (<0.05 T, say) so that the
field from the micromagnet is fixed. This has the problem that the
energy level splitting of the qubit becomes smaller than kBT, and
initializing the spin for measurements is problematic. It is possible
only at temperatures of the order of 1 mK, considerably lower than
the temperatures in use today for these experiments. One might
still be able to do spin blockade-based measurements, however.
In this paper, we shall assume that the second alternative is

chosen, since this gives the richest phenomenology, and seems
feasible with fairly modest changes in fabrication techniques. So
we take the field gradients to be fixed. Of course, this means that
the experiment cannot be carried out with the sample of ref. 33,
which uses a Co magnet and electron temperatures of order
150mK.

Evanescent-wave Johnson noise
Evanescent-wave Johnson noise (EWJN) is due to the random
motion of charges in the metallic elements of the device. This
motion produces random electric and magnetic fields on the
qubits in the vicinity of the metal. For the discussion of this effect,
let us take the growth direction for the device to be the z-
direction, the distance of the qubit from the gate layer as d, the
gate thickness as w, and the dielectric constant of the intervening
insulating material as ϵd.
For the case of noise from a conducting half-space, rather

simple formulas are available9,38. In most Si/SiGe heterostructure
and Si MOS devices, the gates form sheets of metal that can be
approximated as a uniform layer from the standpoint of noise
production. Thus the theory of EWJN from a film with a finite w is
more appropriate. It has been worked out in detail39, though the
results are somewhat complicated, and depend on whether we
consider electric field noise or magnetic field noise. For the values
of d of interest to us, electric field noise is slightly enhanced for
the film case as compared to the half-space case, while the
opposite is true for the magnetic field noise, and the effect of
finite w is larger. A very good approximation is to use the half-
space formula for the electric noise and a modified formula for the
magnetic case.
Given these considerations, the noise correlation functions for

the electric field are

EzEzh iωop
¼ _ωopϵdϵ0

2σd3
coth

_ωop

2kBT
: (8)

Here σ is the conductivity. The other elements of the noise
tensor are hExExiωop

¼ hEyEyiωop
¼ ð1=2ÞhEzEziωop

, while the off-
diagonal elements of the tensor vanish. This electric noise is
converted into effective magnetic field noise using the techniques
of the previous section.
The magnetic EWJN correlation function is given by

BzBzh iωop
¼ _ωopμ0σw

8d2
coth

_ωop

2kBT
: (9)

This is reduced from the half-space result by a factor of w/d.
The other elements of this noise tensor are
hBxBxiωop

¼ hByByiωop
¼ ð1=2ÞhBzBziωop

, while the off-diagonal
elements of the tensor vanish. Unlike the electric noise,
magnetic EWJN acts directly on the qubit spin to produce
decoherence.

Charge noise sources
The exact nature of the low-frequency charge noise remains
controversial. There are two leading models for the source of the
two-level systems (TLS) that give rise to this noise.
The first model is the TLS proposal of Anderson, Halperin, and

Varma, and independently Phillips, of 197240,41. The picture,
shown in Fig. 1, is that the noise source is the motion of some
atom or group of atoms in a potential that supports bistability in
some range of parameters. The motion also produces a fluctuating
dipole moment, which we take as ±p in the two stable positions.
For the most part, this idea has formed the conceptual
background of the field in physics experiments for the last half
century. We will assume that the orientation of these dipoles is
uniformly random on the unit sphere, and that they are
distributed uniformly in space in the oxide layer above the qubits.
We call this the random dipole model.
The second model is the related but physically quite distinct

idea of McWhorter42, in which a conducting layer serves as a
reservoir for electron traps near the surface of the layer whose
energies are close to the Fermi level of the layer. Electrons from
the reservoir can hop on and off, again changing the distribution
of charge in the system, the change being well approximated by a
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fluctuating dipole perpendicular to the layer. In this case, the
fluctuation is between a zero and a fixed nonzero value of the
dipole moment, while in the dipole model the fluctuation is
between two different nonzero values. The trap-type TLS is in fact
widely thought to be the most important for the noise in field-
effect transistors in the engineering community. However, as in
the case of the dipole model, real proof of the details of the model
is hard to come by. We call this the trap model. An illustration of
the model is given in Fig. 1b.
It is evident that the two models are not easy to distinguish

experimentally, since they will both give random telegraph noise
with a distribution of switching rates, and reasonable assumptions
about the distribution will lead to 1/f type noise. They differ in the
orientation of the effective dipoles, however, suggesting that an
experiment that can detect anisotropy in the noise correlation
tensor will distinguish the two models. This forms a chief
motivation for the current work.

Source positions
Anisotropy in the decoherence rates can come from several
sources. We have seen that the noise tensor from EWJN can itself
be anisotropic, and the dipole and trap models also have
characteristic anisotropy signatures. In addition to this, it is
possible for charge noise sources to be clumped, either from a
tendency to adhere to different device elements, or, particularly in
the case of only a few sources, to cluster by random chance. Of
course, if the noise is coming from a certain direction this is also a
source of anisotropy.
This leads to distinguishing four models all together, which we

call the uniformly distributed dipole model (UD), uniformly
distributed trap model (UT), localized cluster dipole model (CD)
and localized cluster trap model (CT). The U-type models assume
that the sources are many in number and uniformly distributed,
while the C-type models assume that the sources are relatively few

in number. The total number of sources is of course also very
important to determine13.
The U- and C- type models represent limiting cases of very

many and just a few closely spaced noise sources, respectively. Of
course, it is not possible to rule out in advance a lumpy set of say
10 to 100 noise sources. The current computational method would
need to be developed considerably further to become a useful
characterization tool in this difficult intermediate case. In
particular, multiple qubits and cross-correlation functions among
them would most likely be needed.

Noise correlation functions
The noise correlation functions for all models are calculated as
follows.
First, we note that because of the metallic elements in the

device, it is important to include screening of the electric noise.
Electric dipoles near a metal surface at z= 0 are screened in an
anisotropic fashion. A dipole oriented perpendicularly to the
surface is anti-screened since the image dipole is in the same
direction as the original one. This is in sharp contrast to a dipole
oriented parallel to a metal surface, which is strongly screened,
with the image dipole opposite in direction to the original one13.
These image charge effects are taken into account in our
calculations by adding an image dipole pim to the bare dipole
p0. If the bare dipole p0= (px0, py0, pz0) is located at r= (x, y, z)
relative to a metallic layer at z= 0 the image dipole is located at
(x, y,−z) and its moment is given by pim= (−px0, −py0, pz0).
Examples of a bare dipole and corresponding image dipole for the
random dipole model and trap model are shown in Figs. 1(c)
and (d).
Let the qubit be at the point r, so we are interested in the

correlation function 〈Ei(r, t)Ej(r, 0)〉. Let the dipole be at r0 and the

(a) Random dipole model

Insulator
Well

Well±

(b) Trap model

Conductor

±

Well

(c) Image dipole

Insulator

±

Conductor

(d) Image trap

Insulator±

Conductor

Fig. 1 Conceptual diagram of random dipole model and trap model. a and b A charge moves back and forth between bistable potential
wells in the random dipole model while between the Fermi surface of a conductor and a trap of an insulator in the trap model. The screening
effect of metallic gates can be taken into account by adding image charges to the conductor. c and d Resultant image dipole and image trap
are depicted as red dashed arrows respectively.
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root-mean-square dipole strength be p0. Define R0 ¼ r� r0. Then

Eiðr; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4πϵ0

p
X
r

X
k

3R0kpkðtÞR0i � R0kR
0
kpiðtÞ

R0j j5
: (10)

The dipoles, (except for direct and image pairs) are assumed to
be statistically independent, so their correlation function is

hpiðr0; tÞpjðr0; 0Þi ¼ δmod p
2
0 gðtÞ: (11)

where the model-dependent factor δmod= δij/3 for the random
dipole model, δmod= δizδjz for the trap model, and δij is the
Kronecker delta. Here g(t) is the time correlation function for a
single dipole. We substitute Eqs. (10) and (11) into the definition of
the electric field correlation function and, after some calculation
and a time Fourier transform, find

EiðrÞEjðrÞ
� �

ω
¼ 1

12πϵ0
ρvp

2
0 gðωÞ

Z
d3r0

3R0iR
0
j þ δij R0j j2

R0j j8
(12)

for the UD model and

EiðrÞEjðrÞ
� �

ω
¼ 1

4πϵ0
ρap

2
0 gðωÞ

R
d2r0 R0j j�10

´ 9R
02
z R

0
iR

0
j � 3R0zR

0
j R

0j j2δiz
h

�3R0zR
0
i R

0j j2δjz þ R0j j4δizδjz
i (13)

for the UT model. Here ρv is the volume density of dipoles, ρa is
the areal density of dipoles, and g(ω) is the Fourier transform of g
(t). Both direct and image pairs are included in the rate formulas
(3) and (4).
For charge noise g(ω) is often of the 1/f type. However, one of

the important advantages of the experiments described in this
paper is that we can investigate the sources of noise using spatial
and geometric information alone, and the frequency spectrum of
the noise is less important, a point we will return to below.
For the CD and CT models, the passage to an integral as in Eqs.

(12) and (13) is not possible, and the sum in Eq. (10) must be
performed explicitly.
We now use the above theory to make predictions for the

coherence time anisotropy for a model device. We have chosen
the device parameters from the sample used by ref. 33 because it
has been particularly well-characterized: T1 and T2 were measured,
the distance from the qubits to gates is accurately known as d=
137 nm, and, most importantly, the magnetic field gradient tensor
created by the micromagnet was simulated in detail. We take the
tensor as fixed and independent of the direction of the applied
field, though we repeat that this would be unlikely if a Co magnet
is used. Parameters for the device are given in the Methods
section.

Anisotropy of T2
The goal of this section is to determine signatures of the different
types of noise in T2 data. We first show that EWJN is not important
for T2. Then we point out that hyperfine noise is isotropic and
estimate its magnitude.
In the experiment of ref. 33, T�

2 of the device is measured to be
840 ± 70 ns and corresponds to T ðxÞ

2 of our simulation because the
applied magnetic field B0 is in the x-direction. For EWJN, the
dephasing rate in the i-direction is

1

T ðiÞ
ϕ

¼ 2πkBT
2μB
_


 �2

lim
ω!0

1
ω

BðeffÞi BðeffÞi

D E
ω

� �
: (14)

This is the dephasing time for the exponential regime when the
time t≫ ℏ/kBT. The calculated T ðxÞ

2 ¼ 1:19 s from EWJN is six
orders of magnitude larger than the experimental one. Thus the
dominant mechanism for the decoherence of the qubit should be
charge noise, not EWJN.

The isotropic hyperfine noise is taken into account by
estimating it from other experiments. It should not differ too
much from one device to another. The material in the case study
device is natural silicon. If the decoherence rate in isotopically
purified silicon2 is subtracted from that in natural silicon43, we find
a hyperfine contribution to the rate of 1=Thyper

2 ¼ ð1:83μsÞ�1 −
(20.4 μs)−1 = (2.01 μs)−1. 1=Thyper

2 is then simply added to the
dephasing rates from charge noise. Because of its isotropy, its
effect is to smooth the resulting plots.
For charge noise, Γ(t) for the applied field along the (θ, ϕ)

direction can be written as

Γðt; θ;ϕÞ ¼
X
ij

Qð2Þ
ij γ2xðtÞ

∂Bi
∂x

∂Bj
∂x

þ γ2yðtÞ
∂Bi
∂y

∂Bj
∂y

� �
(15)

where γ2x(t) and γ2y(t) are the prefactors related to the gradients in
x- and y-direction respectively.
Now we assume that the TLS noise is a Poisson process with an

exponential time correlation functions with characteristic relaxa-
tion time τ and carry out the necessary integrations. For the UD
model we have

γ2xðtÞ ¼ γ2yðtÞ ¼ 2μB
_

� �2 q
2mw2

orb

� 	2 πρvp
2
0

12
1
l3
� 1

d3

� 	

´ 2πτðt þ ðe�t=τ � 1ÞτÞ:
(16)

For the UT model we find

γ2xðtÞ ¼ 2μB
_

� �2 q
2mw2

orb

� 	2 ð9πþ6Þρap20
32d4

´ 2πτðt þ ðe�t=τ � 1ÞτÞ;
γ2yðtÞ ¼ 2μB

_

� �2 q
2mw2

orb

� 	2 ð9π�6Þρap20
32d4

´ 2πτðt þ ðe�t=τ � 1ÞτÞ:

(17)

The temporal part of γ2x and γ2y results from the integration of
the product of a Lorentzian g(ω)= 2τ/(1+ (ωτ)2), and sinc2(ωt/2).
Those equations are obtained by converting electric field noise
correlations (Eq. (12) or Eq. (13)) into effective magnetic field
correlation using Eq. (7) (See details in Supplementary Notes). It is
important to note first that the details of the noise spectrum and
thus the choice of an exponential correlation are not crucial for
the anisotropy patterns, since they depend only on ratios of noise
strengths. On the negative side, if some parameter of the noise
such as τ itself depends on position in the sample, then the
extraction of useful information from the analysis of the data
would become far more complicated.
ρv and ρa are poorly known, so we use them as fitting

parameters. T�
2 ¼ 840 ns was measured for only a single direction

of the field, indicated by the red dots in Fig. 2. This yields ρv=
2.93 × 1020 m−3 and ρa= 2.66 × 1011 m−2 for Fig. 2a and b,
respectively.
The anisotropy maps of T2 for the various models are shown in

Fig. 2. There is some redundancy in the maps since they are
symmetric under the transformation θ→ π− θ and ϕ→ π+ ϕ,
stemming from T2(B0)= T2(−B0). This same redundancy also arises
in the anisotropy maps of T1 in Fig. 3. We have chosen to show the
full angular ranges since in some instances the topology of the
function is clearer this way. The number of maxima (Nmax), minima
(Nmin), and saddle points (Ns) in each map are shown in Table 1.
When the dephasing and relaxation times in the maps are
continuous functions without higher-order critical points, Morse
theory can be applied. In particular for such functions on a 2D
sphere (genus zero), they follow the relation: Nmax+ Nmin= Ns+ 2.
Table 1 shows how the topology of the function can change when
parameters affecting the noise are varied. For the maps of Fig. 2e
and f, Morse theory cannot be applied because the ridges in the
maps correspond to a line of higher-order critical points.
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The background Thyper2 ¼ 2:01 μs sets an upper bound on the
plotted values in Fig. 2. The white regions in Fig. 2a and d
represent angular regions where the charge noise contribution is
negligible and this upper bound is reached. Figure 2a shows the
results for the UD model and Fig. 2b for the UT model. The
horizontal (vertical) axis denotes polar (azimuthal) angle with
respect to the device’s z-direction. The key feature of these two
models is that anisotropy of T2 results only from the magnetic field
gradients. The patterns are not too dissimilar, with the ratio
between maximum and minimum values being around 3 for the
UD model and 2 for the UT model. The main difference between
the UD and UT models is that the peaks and valleys are broader in
the UT model. In the UD model, the dipoles are oriented
randomly, while in the UT model they are in the z-direction. The
differences in the anisotropy maps between UD and UT can be
traced back to the different behavior of electric field lines from
these two different types of sources. However, this does not
manifest itself in a simple way because of the complexity of the
gradient tensors that mediate the electric noise. Because of that, it
is difficult to develop much physical intuition about the distinction
between UD and UT charge noise sources from inspection of the
anisotropy maps, and it appears that a full calculation is necessary
to test the differences between the two noise models.
The anisotropy maps for the CD model, a localized dipole

cluster, are shown in Fig. 2c and d. The cluster is located at (x, y, z)
= (37, 0, 37) nm and (x, y, z)= (0, 37, 37) nm respectively. The maps
for the CT model, a localized trap cluster, are shown in Fig. 2e and
f. The trap is located at (x, y, z)= (37, 0, 137) nm and (x, y, z)= (0,
37, 137) nm respectively. In both CD and CT model, the qubit is
located at the origin. Thus, Fig. 2c is directly comparable to Fig. 2e
and d is directly comparable to Fig. 2f. The overall dipole strength
p0 is used for the fitting parameter of these single cluster models,
once more by using the experimental value measured at the red
point. Figure 2c–f exhibits more anisotropy relative to the uniform
distribution models. This is expected since the localization of the
source itself introduces anisotropy. On the other hand, one might

expect that C- and U-type models would be easy to distinguish
because of a simpler azimuthal dependence for the latter. But
once more because of the mediation of the noise by the
complicated field gradient tensors, such simple expectations are
not borne out.
The difference between the CD and CT models lies in the dipole

orientation. In the CD model, it is assumed that the cluster
contains dipoles of all orientations and the noise electric field is
averaged over the solid angle. This washes out the anisotropy to
some extent, but the pattern still depends on the direction of the
line connecting the dipole and the qubit. The distance between
the dipole and qubit just changes the overall magnitude of T2. In
the CT model, however, the trap generates a noise electric field
with more directionality, so the overall anisotropy patterns are
sharper and both the direction and the distance are important.
Comparing Figs. 2c to 2d and 2e to 2f indicates that the source

position has a large effect. To understand this in more detail, let us
focus on the CT model in Fig. 2e and f. Note that ∂Bx/∂x, ∂Bz/∂x,
and ∂By/∂y are an order of magnitude greater than the other
gradient terms. In Fig. 2e, the electric field at the qubit has only x
and z components. The x component contributes to 1/T2 after
multiplication by ∂Bx/∂x and ∂Bz/∂x. Thus small T2 is expected
when the applied field is in the x and z directions, which can be
identified on the map with (θ, ϕ)= (π/2, 0) and (θ, ϕ)= (0, 0),
respectively. On the other hand, in Fig. 2f, the electric field at the
qubit has only y and z components. The leading contribution to 1/
T2 is the result of the product of the y component and ∂By/∂y. A
small T2 is expected with the applied field is in the y-direction,
which is seen at the point (θ, ϕ)= (π/2, π/2) on the map. Thus for
the distinction between CD and CT models, some relatively simple
physical considerations can help to decipher the anisotropy map.
It is important to point out that if relatively few two-level

systems contribute to the dephasing of the qubit, as is often
hypothesized based on deviations for power-law spectra13,44, the
anisotropy can be used to determine the source position and to
distinguish between random dipole and trap models for the
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Fig. 2 The anisotropy maps of decoherence time T2. x and y axes are the polar angle θ and the azimuthal angle ϕ with respect to the device's
z-direction, respectively. The models used for simulations are: a uniformly distributed random dipoles (UD), b uniformly distributed traps (UT),
c and d single dipole cluster (CD) located at (x, y, z)= (37, 0, 37) nm and (x, y, z)= (0, 37, 37) nm respectively, e and f single trap cluster (CT)
located at (x, y, z)= (37, 0, 137) nm and (x, y, z)= (0, 37, 137) nm respectively. The qubit is located at the origin. The applied field direction (θ, ϕ)
= (π/2, 0) used in the experiment is indicated by the red dot. For the uniform distribution models in a and b, the volume density ρv and areal
density ρa are respectively used as fitting parameters to match T2(π/2, 0) to the experimental value, 840 ns, and for single cluster models in
c–f the dipole strength p0 is used as a fitting parameter.
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charge noise. The present method can be extended to models
with very few sources by eliminating the averaging we have
performed, but the analysis quickly becomes complicated.

Anisotropy of T1
In the experiment, T1 of the device is in the order of 1 s. To
estimate the contribution of charge noise, we use the results from
II A together with the determination of densities from T2. This
leads immediately to an estimate in the range of 109 s so we
conclude that charge noise is not important for spin relaxation in
the single-qubit system considered here. To exclude phonon
relaxation we need to stipulate for the moment that the external
field strength is less than about 1 T. This leaves EWJN as the
dominant mechanism.
The relaxation rate with applied field direction in (θ, ϕ) for EWJN

can be written as

1
T1ðθ;ϕÞ ¼ αþ β

X
ij

Qð1Þ
ij

∂Bi
∂x

∂Bj
∂x

þ ∂Bi
∂y

∂Bj
∂y

� �
(18)

where

α � _ωopμ0σw
4d2

coth _ωop

2kBT
;

β � q
2mω2

orb

� 	2 _ωopϵdϵ0
4σd3

coth _ωop

2kBT
:

(19)

The first term represents the direct effect of magnetic field
noise while the second term is due to the electric field noise that is
converted to effective magnetic field noise by the field gradient
created by the micromagnet. The angular variation in Qð1Þ

ij and the
rather anisotropic character of the magnetic field gradients imply
that the anisotropy of T1 will be intensified when the electric term
is bigger than the direct magnetic term. Noting that α ~ σ and β ~
1/σ, we see that varying σ will change the anisotropy pattern of T1.
As noted above, σ was not measured in the experiment and it
makes sense to vary it to investigate the angular dependence of
T1.
The anisotropy map of T1 is shown in Fig. 3 with (a) σ= 2 × 108

S/m, (b) σ= 2 × 107 S/m, and (c) σ= 2 × 106 S/m. The anisotropy
pattern in Fig. 3a is fairly simple because the magnetic noise is
dominant and the direct magnetic EWJN itself is not very
anisotropic, as can be seen from Eq. (9) and the text following
it. The anisotropy is increased as shown in Fig. 3b where the
magnetic noise is somewhat more comparable to the electric
noise. The anisotropy becomes even larger in Fig. 3c where the
magnetic noise is one order of magnitude smaller than the electric
noise. This pattern looks like the reversal of the anisotropy map of
T2 in Fig. 2a and b. This is natural since T2 of a spin qubit is due to
longitudinal noise while T1 is due to transverse noise. From a
practical point of view, the qubit performance would be improved
when the applied field direction is set to the angles that give
maximal T2 (in the case of Tϕ≪ T1).

When the strength of the applied magnetic field is increased,
there is a crossover from EWJN- to phonon-dominated spin
relaxation. The anisotropy maps for phonons were worked out in
ref. 15. They are determined by the orientation of the field relative
to the crystal axes, not axes coming from the device geometry.
Hence we expect sharp changes in the anisotropy map as the field
is increased beyond about 3 T.

DISCUSSION
The anisotropy pattern for the dephasing time of a spin qubit
comes from the combination of the magnetic field gradient and
the noise electric field, the latter being determined by the
configuration of noise dipoles. By introducing a vector magnet in a
quantum dot device, noise characteristics such as noise dipole
type and/or spatial distribution of noise dipoles can be
experimentally investigated. Another way to obtain similar
information is to exploit a controllable magnetic field gradient
for a spin qubit on a nitrogen-vacancy center in a diamond45,46. In
this case, the gradient can be varied instead of the direction of
applied magnetic field to study noise characteristics.
The anisotropy maps of relaxation times can be explained by a

combination of direct magnetic noise and indirect electric noise.
The magnetic noise part resulting from EWJN is isotropic in the x
−y plane in typical device structures. The electric noise is
mediated by magnetic field gradients, which is the only source
of anisotropy. As a result, the anisotropy gets bigger as the
influence of the electric noise part increases.
To summarize, we have shown anisotropy in relaxation times

and dephasing times using device parameters taken from
quantum dot of Kawakami et al. Making the anisotropy map can
help to understand the noise mechanisms. Specifically, this will
benefit the understanding of solid state quantum processors
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Fig. 3 The anisotropy maps of relaxation time T1. x and y axes are the polar angle θ and the azimuthal angle ϕ with respect to the device's z-
direction, respectively. The conductivity of gates are a σ= 2 × 108 S/m, b σ= 2 × 107 S/m, and c σ= 2 × 106 S/m. The applied field direction (θ,
ϕ) = (π/2, 0) used in the experiment is indicated by red dot.

Table 1. The number of maxima, minima, and saddle points of each
anisotropy map. Nmax is the number of maxima, Nmin is the number of
minima, and Ns is the number of saddle points. The numbers for Fig.
2e and f are not included since they have higher-order critical points.

Map Nmax Nmin Ns

Fig. 2a 2 2 2

Fig. 2b 2 2 2

Fig. 2c 2 2 2

Fig. 2d 2 2 2

Fig. 3a 1 1 0

Fig. 3b 2 2 2

Fig. 3c 2 2 2
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where the causes of noise are still being investigated. Our work
contributes to science in the noisy intermediate-scale quantum
era by suggesting a new experimental method for noise
characterization of spin qubit devices.

METHODS
Device parameters
The parameters for the device of ref. 33 are as follows. The field gradients at
the qubit in units of mT(nm)−1 are ∂Bx/∂x=− 0.20, ∂By/∂x=− 0.05, ∂Bz/∂x
=− 0.27, ∂Bx/∂y=− 0.03, ∂By/∂y= 0.18, and ∂Bz/∂y=− 0.02. The z-
direction of the device is taken to be the growth direction. The variation
in the z-direction is not needed in the two-dimension approximation we
are using. Other important parameters are the thickness of the aluminum
oxide layer l= 100 nm, the dielectric constant ϵd= 13.05 for Si0.7Ge0.347,
and the transverse effective mass m= 0.19me= 1.73 × 10−31 kg. The
lowest orbital excitation frequency is taken as ωorb= 6.84 × 1011 s−1 and
it is related to the spring constants by the equations kx ¼ ky ¼ mω2

orb. As
mentioned above, we take kz→∞ since confinement is strong along the
growth direction. The base temperature is 25mK, while the electron
temperature is about 150mK, the value we use for the calculations.
Another parameter needed as input to the theory is the conductivity σ

of the Au gates. This was not measured in this device, but under similar
growth conditions for Au films a value of σ= 2 × 108 S m−1 was obtained
at the temperatures of the experiment48. We should regard this as a
probably somewhat high order-of-magnitude estimate of σ in the actual
device, and we used a range of values for σ. We take the gate thickness as
w= 25 nm, and the distance from the qubit to the gates d= 137 nm. The
qubit operating frequency is ωop= 2π × 12.9 GHz= 8.11 × 1010 s−1. Two
micromagnets made of cobalt are defined on top of the gates,
approximately 162 nm above the qubit. In the experiments reported in
ref. 33 the applied field B0 was in the x-direction. This paper concerns what
happens if this direction is varied (but with the caveats discussed in
“Magnet Hardness”).
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