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Integrating quantum processor device and control
optimization in a gradient-based framework

Xiaotong Ni'®™, Hui-Hai Zhao?, Lei Wang>*, Feng Wu@®' and Jianxin Chen®

In a quantum processor, the device design and external controls together contribute to the quality of the target quantum
operations. As we continuously seek better alternative qubit platforms, we explore the increasingly large device and control design
space. Thus, optimization becomes more and more challenging. In this work, we demonstrate that the figure of merit reflecting a
design goal can be made differentiable with respect to the device and control parameters. In addition, we can compute the
gradient of the design objective efficiently in a similar manner to the back-propagation algorithm and then utilize the gradient to
optimize the device and the control parameters jointly and efficiently. Therefore, our work extends the scope of the quantum
optimal control to device design and provides an efficient optimization method. We also demonstrate the viability of gradient-
based joint optimization over the device and control parameters through a few examples based on the superconducting qubits.
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INTRODUCTION

Quantum mechanics provides an entirely new way to think about
information processing. Information is stored in quantum systems
and the dynamics are described by the Schrédinger equation or
the master equation. To achieve desired operations, we need to
design systems with suitable Hamiltonians and dissipation as well
as time-dependent external controls. Concrete examples of such
quantum information processing tasks include quantum comput-
ing, quantum simulation, quantum error correction, and quantum
metrology. At this level of abstraction, it is clear that we are
dealing with optimization problems that consist of both
Hamiltonian design and control. Traditionally, the optimization
of the design'™ and the optimization of the control>~” are usually
studied separately. In this work, we treat them as equal
components in a single optimization problem and use gradient
information to speed up optimization.

We consider superconducting circuits, which are one of the
most promising hardware platforms due to their device design
versatility and fabrication scalability. While the design versatility
allows for many qubit and coupling types®~'’, it also makes the
quest of finding the best design harder due to the larger
parameter space. As mentioned earlier, the optimization of the
device design is further complicated by the fact that we need to
consider the control schemes simultaneously, which has been
noted in previous work'®'®, For example, complex control
schemes are needed for bosonic code qubits, and often numerical
optimization is required to obtain the best gate perfor-
mances®®~2, In scenarios where we cannot estimate the control
performances with analytical formulas, the optimization problem
of the qubit design inevitably becomes a joint optimization
problem of design and control with an even larger parameter
space. A common strategy to handle large optimization problems
is using efficiently computed gradients to help us traverse the
optimization landscape. One milestone in this direction is the
GRadient Ascent Pulse Engineering (GRAPE) algorithm®. In this
work, we showed that the figure of merit of a target goal such as

the gate fidelity can be made differentiable with respect to the
parameters from the device and the control together. The
gradients can be computed in a single computation similar to
the GRAPE algorithm and the back-propagation algorithm?3. More
accurately, the ratio of the time needed to compute the figure of
merit and its gradient is independent of the number of control
parameters. This makes our method feasible not only for
optimizing complex pulse shapes but also for optimizing large
processor device designs, and more interestingly, jointly optimiz-
ing the design and control.

RESULTS
Integrating design and control aspects

In this work, we mainly focus on the two stages of quantum
processor design that involve finding optimal values of the device
parameters in the system Hamiltonian and deriving optimal control
pulses to maximize the performance of the target quantum
processor. When the device parameters are determined and we
only need to optimize over the control parameters for better
performance or robustness, this is precisely what quantum optimal
control and robust control do. In contrast, we may sometimes need
to optimize the spectral or other properties of the device
Hamiltonian itself, e.g., for determining tunable ZZ-interaction
on-off ratios?*?> or for designing 4-local interaction couplers’.

Now we introduce our framework that unifies the above two
scenarios, optimizing a system’s performance over the control
parameters and the device parameters jointly as illustrated in
Fig. 1. The Hamiltonian of a quantum system with control fields
takes the following form:

(A1) = Haw (7) + > rE 0 (R). 0
k=1

where Hgey, Ci, and f, are the device Hamiltonian, control

operators, and control fields, respectively, and h and € denote
the device and control parameters, respectively. The goal is to
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Fig. 1 Illustration of joint optimization in circuit quantum
electrodynamics systems. Both device designs and control pulses
contain many parameters, and together they determine the fidelity
of the quantum operations. In this work, we consider the problem of
optimizing them together.

optimize h and € for certain objectives, such as implementing a
specific unitary operator within a given time 7. This extended
setup formulates a device-control codesign problem. In
Supplementary Note |, we explain why we expect that
optimizing h and ¢ simultaneously will be more efficient
compared to the case where we artificially break the optimiza-

tion problem into two and optimize h and ¢ alternatively.

Compared to the optimal control problem where h is fixed, the
extended setup will open more possibilities. For example, we
can optimize the device parameters h for a gate implementa-
tion that is robust against control fluctuations and deviations
(see “optimizing device and control parameters for robust
control”). In comparison, with conventional quantum control,
we only optimize over control parameters for robust schemes.
In “efficient gradient computation for both device and control
parameters”, we give a procedure to efficiently compute the
gradients for both device and control parameters through
backpropagation.

iSWAP gate with fluxonium qubits

We will demonstrate our method for an iSWAP between two
capacitively coupled fluxonium qubits, the diagram of which is
depicted in Fig. 2a. The Hamiltonian of the system is

H(t) = Heq1 + Heo(t) + Jening, 2)

where Jc is the coupling strength between the two qubits, and Hg;
is the Hamiltonian of the i-th fluxonium qubit'®, defined as follows:

1
Hrj = 4Ec;n? + EELJ(% + Qexts)’ — Enjcos(g;), 3)

where Ec, E;, and E, are the charging energy, the Josephson
energy, and the inductive energy, respectively, ¢; is the phase
operator, and n; is the conjugate charge operator. We set the
external flux of the second qubit to be a time-dependent control
field initially at m, while for the first qubit, the external flux is fixed
to be m, that is, @ex,1 =T and @ex2(0) =m. The waveform of
Pext2(t) is chosen to be a trapezoid pulse as shown in Fig. 2b,
which is given by

t 2t, t, —t
Pexe2 (1) =T+ @, min{ReLU (—> 1,RelU (M) }
ramp tramp
(4)
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Fig. 2 Device and control parameters optimized for the iSWAP
gate. a Circuit diagram of two fluxonium qubits coupled by a
capacitor. Each circuit component corresponds to a term in the
Hamiltonian, and we label the components with their energy
parameters. The capacitive coupling strength Jc is determined by
the capacitance of each qubit and between these two qubits.
b Time-dependent part of the control pulse shape. It corresponds to
the second term on the right-hand side in Eq. (4).

where @, and tjeay are the external flux bias and holding time of
the plateau of the waveform, t;amp is the time for the rising and
falling edges, and ReLU(x) = max(x,0) is a commonly used
activation function in neural networks. We call E¢, Ej, E;, and Jc the
device parameters, and the parameters in @y (t) are the control
parameters (Though @ »(t) was part of the device Hamiltonian, it
comes from the external flux control, so the parameters therein
are more appropriately regarded as control parameters). These are
all parameters involved in the optimization.

Some details of the construction of the finite dimensional
Hamiltonian are provided in what follows. We first write the
Hamiltonian of the single-qubit fluxonium in the discretized phase
basis over a finite range of phase values. To obtain sufficiently
accurate low-energy eigenstates for the optimization task, we
select the range to be ¢ € [-5m, 5] and the number of basis
points to be npasis = 400.

We select the average fidelity to be the objective function. The
leakage is small for the iSWAP gate scheme, and the optimized
results have a leakage smaller than 10~*. Therefore, it is a good
approximation to compute the fidelity based on the truncated
4 x4 unitary matrix. However, there are usually single qubit
phases accumulated during the implementation of the gate, and
we can compensate for these phases at a very low cost?®.
Therefore, we will use a modified average fidelity F,,(U) with phase
compensation included (see Supplementary Note IV). We include
other terms in the total objective function, and the exact forms of
these terms will be given in Supplementary Note V. First, we
include a penalty Pgecon Which roughly estimates the infidelity
caused by the decoherence of T; and T,. We will not pursue an
accurate decoherence model as it varies drastically for different
experimental setups. Instead, all the losses listed in ref.?” have
closed-form expressions that allow us to compute their gradients
straightforwardly. In practice, we usually go through a few
iterations of experimental testing for one chip design. So in the
later iterations, we can optimize based on the decoherence model
measured in the earlier iterations. Another two penalties we
include are Pqpis and P,,. Pypiss discourages the 0 « 1 frequencies of
the two fluxonium qubits from being too close. P,, prevents the
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ZZ-crosstalk from being too large when both fluxonium qubits are
at their sweet spots. Both Py and P,, are useful for realizing
single qubit gates including the idling gate with low crosstalk
errors. The last one is Py, which forces the fluxonium parameters
to be realistic for fabrication. In total, we set the objective function
for minimization to be

O =In(1 — Fn(U) + Pdecoh + Prpift + Pzz + Pim)- (5)

Another desired feature of the iSWAP gate scheme is
robustness against control errors. Here, we demonstrate how we
can improve the robustness of the gate fidelity F.,(U) with respect
to the amplitude parameter ¢, in Eq. (4). To do this, we set
AC , = (£49,,0, ... ,0), ie, all the control parameters in Ac »
other than ¢, are set to 0. Then, we can construct the robustness
objective function O,,4 from O according to Eq. (15). We use the
Adam optimizer® to minimize the objective functions O and Oayg.
For the initial condition and optimizer hyperparameters listed in
Supplementary Note V, the objective functions during optimiza-
tion are shown in Fig. 3, and the comparison of the result’s
robustness is shown in Fig. 4. As shown in Fig. 4, the parameters
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Fig. 3 iSWAP gate optimization loss during training. The blue

curve corresponds to the optimization of O in Eq. (5) and the orange
curve corresponds to O, in Eq. (15). The curves are smoothed
using the Savitzky-Golay filter. The optimization of O, is
interrupted and continued again at iteration 80000 (see Supple-
mentary Note V for more discussion).
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Fig. 4 Robustness of the iSWAP gate with respect to the control
parameter ¢,. For different A, we compute O(add (B, 9,,A9)).
The blue and orange dots mark the Ag,, values used to perform the
optimization. The orange dotted curve is a translation of the orange
curve. The curvature of the orange dotted curve is smaller than that
of the blue curve. Therefore, the parameters obtained from the
robustness optimization are more robust.

Published in partnership with The University of New South Wales

X. Ni et al.

npj

3
Pavg Obtained by optimizing O, are indeed more robust with
respect to the errors in ¢, compared to p obtained by optimizing
O, and the minimum is lower. The latter effect was unintended.
Retrospectively, due to the change of the objective function, p,,q
escaped the local minimum of p.

This example shows that the joint gradient optimization is
viable for a practical problem. Both capacitively coupled
fluxonium qubits and the control pulse Eq. (4) have been realized
in the experiment?®, and the results match the numerical
simulation well (see the supplementary material of ref.2°). Thus
we expect the gain from the optimization can be transferred to
experiments as long as we have an accurate decoherence model.
We reach a local minimum of objective O for both the device and
control parameters in a single run of the gradient optimization.
The time Tgyq and Tgag needed for computing O and V O are
reported in Supplementary Note V. The ratio Tgad/Tfwd ~ 4 is
close to the bound proved in ref. 3°. In Supplementary Note Ill, we
show the ratio Tgraq/Trwd <4 for diagonalizing fluxonium Hamilto-
nians as the system size and the number of parameters grow. The
speedup compared to finite-difference is about three times for
iSWAP optimization with seven device parameters and three
control parameters, but it will scale linearly with the number of
parameters needed to describe more complex qubit structures or
large processors with more qubits. Since simulating quantum
processors is highly computationally intensive, we will have an
even more significant absolute speedup.

Adiabatic flux-tuning gates with transmon qubits

Several popular cQED 2-qubit gate schemes are adia-
batic'618253132 For these adiabatic gate schemes, we can obtain
a good estimate of the gate performance solely based on the
spectral properties of the Hamiltonian. An example is that we can
use the on-off ratio of the ZZ-interactions to benchmark the
design of a tunable coupler. More generally, there is a class of
“optimal design” problems where we only optimize the design
parameters, while the control parameters are implicitly deter-
mined from the design parameters. Unsurprisingly, our gradient
optimization techniques can also be applied to this class of
problems, which we will demonstrate in the following example.
Moreover, we will use the example to show how our method can
be applied to transmons and how it can be applied to a chip-level
optimization problem. The example is based on adiabatic flux-
tuning CPhase gates obtained via ZZ-interactions caused by
introducing one of the computational bases near an avoided
crossing with a non-computational eigenstate.

For two capacitively coupled tunable transmons, the Hamilto-
nian has the form

H((pext) = HU ((Pext) + Ht,Z(O) +Jcmny, (6)
where H,; is the transmon Hamiltonian

1
Ht.i((pext) = 4ECJ”I'2 - EEJJ,eff((pext) Z(‘n> <n + 1‘ + h.C.), (7)
n
with E)j et (@ext) = EJil €OS(Peyi/2)|. For simplicity, we have set all
effective offset charges to be n;=0.
The desired properties that we will try to optimize in this
example are:

® large ZZ-interactions at the gate operating point;

® Sufficiently small ZZ-interactions at the idle point, so that
single qubit gates including the identity gate have good
fidelities;

® Long coherence times.

As we approach an avoided crossing between a computational
basis and an eigenstate outside the computational subspace, the
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Fig. 5 Value of objective O.nip during the optimization. O, is
defined in Eq. (11). The curve is almost flat after 3000 iterations. This
suggests we have reached a local minimum or a region with small
gradients.

ZZ-interactions will be larger, and we need to change the
Hamiltonian slower to avoid leakage. For typical Hamiltonian
parameters, we cannot reach the avoided crossing point
adiabatically in a reasonable time compared to the coherence
time. Therefore, as a first attempt, we use the following routine to
estimate the gate operating points:

1. Initialize the flux @e,: = 0 to the idle points.
. Changing the flux @ex; + AQP = Qe
3. Use the following stop condition Eq. (8) to check whether it
is close to the avoided crossing. If the stop condition is
satisfied, we set @ooP = @, and use @i to compute the

objective function Eq. (10). If not, go back to step 2.

We choose the stop condition to be based on the overlap
between the instantaneous eigenstates {i(@e,)} and the bare
states {Wj(@ex)}, Wwhere 1 <i<4 and 1<, k<2. The instantaneous
eigenstates {{{(@ex)} are the eigenstates of the total Hamiltonian
H(@ext), and the bare states {W(@ex)} are the tensor products of jth
and kth single transmon eigenstates. The stop condition is then

. 2
ml.m%: ‘(wi(<pext)‘w/k((»oext)>| <M7 (8)
where we set M=0.8 in this example. Then, we can use the
procedure specified in Supplementary Note VI to compute the
gradient of the above algorithm with a conditional loop.

The magnitudes of the ZZ interactions at the idle point and the
gate operating point are computed from the energy of four
computational basis states:

Ez7(@ext) = |Eoo + E11 — Eo1 — Enol, 9)

where Ej are the eigenvalues corresponding to instantaneous
eigenstates by {Yi(@ex)}, which has the largest overlap with
{Wi(@exr)}. Because we never reach the middle of the avoided
crossing, the above Ej’s can be defined unambiguously. Again, we
will include a few additional terms in the objective function to
estimate the infidelity caused by decoherence and ensure the
functionality of single qubit operations. The objective function for
minimization is

0= EZZ(QDZ;(;p)/Pdecoh * Cscale + PZZA,idIe

+ > _(Pm.i + Pani) + Proit, (10)
1

where Pyecon is @ penalty determined by the coherence time,

Pzzidle PUnishes large ZZ-interactions when qubits are at sweet

spots, Pym; ensures the Ej/Ec ratio is large, P,,; requires the

anharmonicity to be large enough for single qubit gates, and

Pspits forces the 0 < 1 frequencies of the two transmons to be
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different. The exact formulas for these terms can be found in
Supplementary Note VII. In the above equation, 5o is
determined by Eq. (8).

We can extend this optimization problem to a chip-level setting.
We consider the surface code scheme presented in ref. 33, In short,
the plan is to have three types of transmon qubits with different
parameters arranged in a certain way on a 2D lattice. Sorting by
their 0 < 1 transition frequencies, we label the three different
types of transmon qubits as H(igh), M(iddle), and L(ow). We want
to have a CPhase gate between the H-M and M-L qubit pairs, while
we still want the crosstalk to be small when idling. Since H and L
transmons are spatially separated, we will assume their interac-
tions are small and ignore them in this example. Therefore, we will
add the objective function for H-M and H-L qubit pairs together:

Ochip = OH—m + Om-L — Ptimm — Pahm- (11)

We need to subtract the last two terms because they are
counted twice in Oym and Op.. We can then use Adam?® to
perform the optimization. The loss during optimization is shown in
Fig. 5, and details about the optimization can be found in
Supplementary Note VII.

DISCUSSION

In this work, we extend the optimal control framework to
superconducting circuit parameters. We showcase that we can
optimize over the device and control parameters jointly for a
figure of merit reflecting a design goal through reverse-mode
gradient computation. This suggests that there is almost no
downside in terms of the efficiency to add device parameters to
the optimization variables.

We can extend the proposed framework to other stages of
quantum processor design or to cover more realistic scenarios, for
example:

1. Robust design. We give an example of joint optimization
with uncertainties in control parameters, but in practice, the
device parameters can also be off-target. In “optimization
with uncertainties of device parameters”, we provide one
method to modify the objective function to include the
variation of device parameters. Another way to handle
inaccuracies in the fabrication of superconducting quantum
processors is using laser annealing®* to modify the device
parameters after measuring them in the experiments.

2. Electromagnetic simulation. The Hamiltonian representation
with device parameters such as Ec, E;, and E; we discussed in
the paper is an intermediate representation when designing
a quantum processor. This representation is derived from
the underlying lumped-element circuit representation,
which is derived from the processor's two-dimensional
(2D)/three-dimensional (3D) layout representation. The
lumped-element circuit or layout representations could
have more freedom or design choices. Moreover, the layout
representation allows us to estimate substantial losses, such
as the dielectric loss, based on the electric field energy
distribution on the interfaces with contamination. However,
electromagnetic simulations, which are used to evaluate the
layout design, are very computationally expensive. This
means that the gradient evaluation of the Hamiltonian
parameters for the layout parameters may be of substantial
importance, as they will significantly reduce the number of
iterations. We leave this for future study.

3. Task-oriented optimization. Most optimal control use
cases focus on optimizing control solutions to realize a
given quantum operation. However, when designing a
large quantum processors, we need to consider multiple
types of quantum operations acting on different qubits.
Apart from unitary gates, we also need to take other basic
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operations like reset and readout into account. To write
down the objective function for optimization, we need to
first choose a concrete application such as a NISQ (noisy
intermediate-scale quantum) algorithm or an implemen-
tation of quantum error correction. When considering
NISQ applications, the overall performance will also
depend on native gates available on the device and the
compilation scheme used. In “adiabatic flux-tuning gates
with transmon qubits”, we illustrate how we can
simultaneously optimize the ZZ-interaction on-off ratios
on different pairs of transmon qubits on a square lattice
amenable to fault-tolerant quantum error correction
architectures such as the surface code. This can be
viewed as the first step toward task-oriented optimization
for chip design and control.

METHODS

Efficient gradient computation for both device and control
parameters

Here, we discuss an efficient method for computing the gradient of both
the device and control parameters. It is efficient in the sense that the
gradient is computed in a single run. Assuming the time Tg,q needed for
computing objective function O(X) is estimated in terms of FLOPs where a
FLOP is a floating point multiply-add operation, then the time Ty,q for
computing the gradient V O satisfies

Tgrad < mwad: (1 2)

where m is a constant and independent of the dimension of X3°. However,
if one use finite difference O(X + AX) — O(X) to estimate V O, one need to
evaluate O for n = dim(X) + 1 times. Therefore, the relative speedup n/m
grows linearly with the number of parameters dim(X). Please refer to
Supplementary Note Il for more details about the comparison.

For a superconducting processor using qubits as its basic components,
the total Hilbert space can be decomposed correspondingly as
H = Q,Hi, where each H,; is typically an infinite-dimensional Hilbert
space. The time-independent Hamiltonian Hge, in Eq. (1) can be typically
described by the Hamiltonian

Hdev(ﬁ) = ZHi + ZgU ﬂ ﬂ E) (13)

where H; and §; are single component Hamiltonian and coupling operators
defined on H;, respectively. The concrete form of S; depends on the type of
coupling between qubits. For notational simplicity, we assume that there is
a single type of coupling, but our computation method naturally
generalizes to the situation where there are multiple types. We will also

assume that there is a single control operator C;(h ) (see Eq. (1)) for each
subsystem H,;.

Even though each component H; has infinite dimensions, typically only
the lowest few energy eigenstates will participate in the computation. This
is indeed the case for the examples presented in this work. Therefore, an
efficient method for performing numerical simulations is to first truncate
the total Hilbert space into this relevant subspace ), H;, where #; is the
low energy subspace under the above assumption. ThIS can be done by

diagonalizing H,-(F)). We can then use the operators from projecting H; S;,
and C; into the subspace | as an approximation and obtain an efficient
finite dimensional Hamiltonian H" for numerical computation. Both the
Hamiltonian diagonalization and the Hilbert space truncation can be made
differentiable. Please refer to Supplementary Note Il for technical details.
Therefore, our approach extend the GRAPE algorithm® to superconducting
circuit device parameters.
The evolved unitary operator at time T can be then derived by solving
the ordinary differential equation (ODE)
. d
ih at u(t)
After we compute U(1), we can use objective functions such as the
average gate fidelity*® to compute how close U(1) and the desired operator
Utarget are. In general, we need to add more terms to the objective

= H(t)U(t). (14)
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functions to ensure the devices are practical. For now, we assume that it is
easy to perform the reverse-mode differentiation for the computation
steps to compute the objective function O(h,c) from U(1). To make the
whole design workflow differentiable, we still need to perform reverse-
mode differentiation through the ODE solver. The adjoint sensitivity
method>® makes this possible. This method computes gradients by solving
a second, augmented ODE backwards in time, independent of the
parameter size. With the gradients computed in reverse mode, we can now
optimize over the device and control parameters jointly and efficiently for
an objective O(h, c).

Optimizing device and control parameters for robust control
The proposed framework may also be used to optimize for solutions
robustly against control noise. Robust optimization over control para-
meters has been extensively studied®=°, Here, we take a sample-based
approach®”3® and define

- 1 N -, —
Ouvg(h, &) = 1> O(h, €+ Acy), (15)

where O(H, C) is the original design goal, e.g., the fidelity or another figure
of merit, N is the number of samples, and ch is the deviation of ¢ caused
by noise in the i-th sample. Optimizing O,,4 will make parameters (E, Q)
robust against the selected noise. Since we can compute the gradient of
O(h, ), we can compute the gradient of Oa‘,g(ﬁ, €) by summing over the

NN ) .
gradients of O(h,c+ Ac;). In this way, we can also use the gradient
information to speed up the robustness optimization.

Optimization with uncertainties of device parameters

Likely, we cannot design and manufacture quantum processors with the
precisely desired device parameters h. Thus, the robustness against
variation of h should be considered in the proposed optimization
framework. As a first attempt, by assuming accurate control, let us define
an objective function similar to Eq. (15)

Oag(h,€) = NZOh+Ah,,c) (16)

where Ah; are possible variations of h sampled from some probability
distribution. However, this is not the most reasonable objective, because
role of device and control parameters are not symmetric. Rather, we have a
chance to calibrate control parameters after we find out the value of real

- —
device parameters h + Ah;. Assuming the calibration is perfect such that
we can find a local minimum for the control parameters

¢; = argmin O(E-i—ATﬁ,E). (17)
¢

Then a more reasonable objective function is

Oavg(h) Zmanh-&-Ah”c,) (18)

Gradient optimization of nested objective functions has been studied in
literature (see ref.4*4! and references therein). Here, we simply take a
similar approach as the previous problem Eq. (15). Let us define

NZ (h + Bh;,C). (19)

We can transform the optimization of Eq. (18) min O.4(h ) to a slightly
different problem

min f(h,{&}).
e (20)

If indeed the above optimization Eq. (20) converges to a local minimum,
then we know
of
—=0, fori=1,...N. 21)
ac,»

Therefore, ¢; achieves a local minimum of O(H-&-A_h;f), and h from
optimization Eq. (20) is also a local minimum of the objective Eq. (18). The
optimization Eq. (20) can be done very similar to the optimization of Eq. (15).
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The only difference is that now we will optimize multiple sets of control
parameters. However, we can still compute the gradient with respect to all sets
of control parameters {c;} in one run of reverse-mode differentiation and each
iteration will take a similar time as optimizing Eq. (15) if N is the same.
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