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Many-body entanglement via ‘which-path’
information
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Ron Ruimy1,3, Offek Tziperman1,3, Alexey Gorlach 1, Klaus Mølmer 2 & Ido Kaminer 1

We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to
conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions
with the particles. We show how such interactions can create an interference pattern that vanishes on
average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum
correlations.Measuring the state of the quantumdetector projects the joint-particle wavefunction into
highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector
wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator
detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of
many-body quantum correlations in systems not often associated with these phenomena, such as
atoms in waveguide QED and free electrons in transmission electron microscopy.

The double-slit experiment with matter waves (Fig. 1a) is one of the most
famous experiments in the history of physics1–4. A core concept behind the
double-slit experiment is ‘which-path’ information (Fig. 1b).Any attempt to
observe the path taken by a particle will inhibit it from forming an inter-
ference pattern5. The ‘which-path’ concept became the textbook example of
complementarity in quantummechanics, i.e., the inability to simultaneously
measure certain properties of quantum systems, such as a particle’s position
and momentum. ’

The story of ‘which-path’ information was later connected to weak
measurements6.Whenameasurementdevice (i.e., detector) providespartial
information about a particle trajectory, for example via aweak interaction, it
does not fully inhibit the formation of the interference pattern but instead
decreases its visibility7. Many other variants of ‘which-path’ experiments
have been proposed, such as delayed choice8 and quantum eraser9,10

experiments. Theseworks andmany others highlightmany of themysteries
of quantummechanics, and as popularized by Feynman: “it (the double-slit
experiment) contains the onlymystery”11.

However, there is a key ingredient to quantum mechanics missing
from the conventional which-path experiment: quantum entanglement.
The conventional experiment concerns the measurement of single-particle
observables, whereas observing entanglement requires the measurement of
multi-body correlations12.

Here we propose a multi-particle which-path experiment,
revealing many-body correlations that can be created using the
universal concept of ‘which-path’ information. We show what
operations create multi-particle entanglement in the limited space of
symmetric states13, and what operations reach the full exponentially
large many-body Hilbert space.

At the heart of every ‘which-path’ experiment lies the measurement of
the path, which causes the collapse of the particle trajectory due to its
interaction with the detector. The detector’s state becomes entangled with
the particle’s trajectory. We show that if the detector preserves its quantum
state between its interactions, the trajectories of the different particles can
collectively interfere. Then, although the interference pattern still vanishes
on average, strong quantum correlations between the particles emerge.

The concept we propose applies to a wide range of quantum systems.
Fig. 1 illustrates this concept, depicting a double-slit setup together with the
analogous quantum circuit. We compare three options. Fig. 1a1: conven-
tional interference pattern with no detector, Fig. 1b1: conventional ‘which-
path’ with a classical detector that destroys the interference, and Fig. 1c1: a
quantum detector that preserves coherence between interactions and thus
creates multi-particle quantum correlations.

The analog quantum circuit represents the two paths of the particle
using qubit states ∣0i and ∣1i. The splitting and interference of the trajec-
tories are represented by Hadamard gates. The two orthogonal final inter-
ference patterns are identified using ∣0i and ∣1i after the Hadamard gate,
with ∣0i being the ordinary interference pattern without the detector. The
detector’s ‘which-path’ measurement is a conditional operator that entan-
gles the detector with the particle. To model the conventional ‘which-path’
experiment, we reset the detector state after interacting with each particle.
The reset randomizes the particle measurement outcomes and diminishes
the interference pattern. In contrast, if the detector preserves its quantum
state between interactionswith all the particles, theirmeasurement outcome
becomes correlated.

We consider two quantum detector models: either a fermionic or a
bosonic system. The former is a qubit state describing a binary “yes/no”
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measurement outcome. The latter is a quantum harmonic oscillator
describing a photonic or a vibrational mode excited by the particle. The
fermionic detector implements a Pauli X gate, and then the ‘which-path’
experiment generates the highly entangled Greenberger-Horne-Zeilinger
state12. The bosonic detector implements a conditional displacement, and
then the ‘which-path’ experiment generates a many-body quantum walk13.

We focus below on the bosonic detector, which could be implemented
in a wide range of systems. We exemplify the implications using two con-
crete systems: quantum emitters such as atoms or quantum dots emitting
light into a common mode, such as a waveguide or cavity14,15, or free elec-
trons interacting with a cavity before interfering in a transmission electron
microscope (TEM)3. In both systems, we show how to create many-body
correlations and how to control the corresponding detector state, for the
generation of desired quantum photonic states.

Results
Quantum circuit model
The interaction of each particle with the detector’s harmonic oscillator state
can be modeled using a conditional displacement operator16:

CDðgÞ ¼ I � ∣0i 0h ∣þ DðgÞ � ∣1i 1h ∣

DðgÞ � ega
y�g�a:

ð1Þ

Here, ∣0i,∣1i are the particle states corresponding to the different paths, and
a†, a are the creation and annihilation operators that act on bosonic detector
states denoted by ∣iph. The displacement operator D(g)17 depends on the
particle-detector interaction strength represented by the (complex)
parameter g, satisfying DðgÞ∣αiph ¼ ∣αþ giph for every coherent state

∣αiph � e�
jαj2
2
P1

n¼0
αnffiffiffi
n!

p ∣niph, with ∣niph being the number states.

A classical detector is modeled by applying the gatesH ⋅ CD(g) ⋅H on
the joint particle-detector wavefunction and then tracing out its state. Then,
using the formula for the inner-product of two coherent states
hβjαi ¼ e�

1
2 jαj2þjβj2�2β�αð Þ17, the final state of each particle becomes amixed

density matrix:

ρf ¼
1
2

1þ e�
1
2jgj2 0

0 1� e�
1
2jgj2

 !
: ð2Þ

Thepurity of this state isγf ¼ trðρ2f Þ ¼ 1
2 þ 1

2 e
�jgj2 .As ∣g∣ increases, the state

transitions from completely pure (perfect interference fringes, weak or no
detection) to completely mixed (no fringes, strong detection). For strong
detection (large ∣g∣), the chance to measure all the k particles in the original
fringe (state ∣0i) is exponentially small in the number of particles 2�k

� �
.

Creating the many-body quantum state
Wenow consider the same experiment but with the quantum detector. The

final joint particle-detector state is ∣ψf

E
¼ H � CDðgÞ � H� ��k∣0i�k∣0iph. It

is convenient to define the non-unitary operators C ± � 1
2 ðI ±DðgÞÞ, in

which case the final state can be written as:

∣ψf

E
¼
Xk
n¼0

X
perm

∣0in∣1ik�n � Cn
þC

k�n
� ∣0iph: ð3Þ

Formally,∑perm represents the sum over all unique sequences ∣s1s2 . . . sk
�

where each si is either 0 or 1, and the total number of zeros is n and the total
number of ones is k− n. The probability to measure n particles in the state
∣0i and k − n particles in the state ∣1i is then (SM1.1):

Pn;k�n ¼
ð�1Þn
4k

k

n

� �X2n
j¼0

X2ðk�nÞ

i¼0

2n

j

� �
2ðk� nÞ

i

� �
ð�1Þje�1

2jgj2jk�i�jj2 :

ð4Þ

This process is akin to a random walk with quantum coin tosses13,18

deciding whether to displace the detector state at each step. The same final
state is reached through different paths, i.e., different sequences of dis-
placements. These paths constructively interfere and thus, for strong
interactions, the probability of measuring all k particles in the same final

Fig. 1 | The multi-particle ‘which-path’ experiment: implementations in double-
slit setups, with analog quantum circuit representations. (a1). Conventional
`which-path' experiment: with no detector, the particle is split into two paths that are
later combined, creating an interference pattern. a2 The Hadamard H gate repre-
sents both the splitting and combining of the paths. b1 Conventional `which-path'
experiment: a classical detector in one of the paths destroys the interference pattern.
b2 The detection can be modeled using a unitary operator changing the detector
state conditioned on the particle state. Each R gate resets the detector state such that

it has no memory. c1 `Which-path' experiment with a quantum detector: the
detector interaction entangles it with the particles, resulting in multi-particle
quantum correlations. c2 Without the R gates, the detector correlates the particles
because its state is maintained between its interactions with them. The detector can
be modeled by conditional gates such as CNOT for a qubit detector or conditional
displacement for a harmonic-oscillator detector. The latter case is analyzed below,
denoted by D(g) with interaction strength g, describing for example a photonic
cavity.
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state is approximately 1ffiffiffiffi
πk

p (see methods), which strongly amplifies the

exponentially small probability of the classical detector. The mathematical
reason for this interference can be understood from the norm of the

operator Cn
þC

k�n
� , which equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nnðk�nÞðk�nÞ

kk

q
(see methods). The norm is

maximal when n = 0, k and minimal when n = k/2, implying that there is a
tendency for the particles to bunch together in one output or in the other.
This bunching holds resemblance to bosonic interference phenomena
although the particles in our description are distinguishable (either in
temporal or spatial degrees of freedom). The bosonic behavior can be
understood from the fact that the detector state is symmetric to permuta-
tions of the particles, resulting in boson-like interference.

To illustrate the implication of this result, we consider repeating this
which-path experiment many times, each with ~k = 100 particles. Both
classical and quantum detectors will show no interference pattern on
average. However, in each repetition of the experiment, all the k = 100 par-
ticles will form the same fringe with a probability >0.1 using a quantum
detector rather than 10−30 using a classical detector.

The paths of eachparticle canbe describedas a spin 1/2 system, and the
total state ofN particles that are symmetric to permutation can be described
in the subspace of maximal total angular momentum or Dicke states14. The
key component that creates themany-body correlations is a non-destructive
measurement of the angularmomentumprojection, i.e., howmanyparticles
pass through each path. Similar correlations can be obtained by measuring
in this basis with a classical detector, albeit this cannot create quantum
photonic states in the detector (still, previous works showed that such a
detection can entangle particles19–22).

Since the operator CD(g) is fully entangling in the limit of g≫ 1, by
measuring the detector’s final state, the particles’ state can collapse into an
entangled state. For example, for k = 2, measuring the detector will give a
Bell state or aHadamard state, with a 50%− 50%chance (seemethods). Bell
states are important resources for quantummetrology, providing precision
beyond the standard quantum limit23, as is one of the goals of quantum
electron microscopy24–28. Going beyond k = 2 can create more complex
entangled states, similar to N00N states, which can provide Heisenberg-
limited scaling for quantum metrology23. We note that the state of the
quantum detector can be indirectly measured using post-selection on
additional particles.

To prove the entanglement of the multi-particle state, we can control
the particle interferometry (the final Hadamard gate): measuring the par-
ticles in orthogonal bases will break a Bell inequality. For example,

measuring the particle states before and after applying the final Hadamard
gate, will show correlations that are unobtainable classically.

Furthermore, adjusting the relative phase of the coherent displace-
ments (phase of g), can break the symmetry between the particles. This can
be done by tuning the relative arrival timeof the particles in the optical cycle.
This way we can control the complex quantum state of multiple particles,
tapping into the vast potential of their exponential Hilbert space. By con-
trolling the initial conditions and studying the emergent dynamics, our
multi-particle ‘which-path’ implements a quantum simulator.

The detector’s quantum state
The ‘which-path’ experiment canbeused to control the quantumstate of the
detector. If n particles are measured in the state ∣0i and k-n in the state ∣1i,
then the detector state is ∣ψf iph / Cn

þC
k�n
� ∣0iph. This state can be highly

non-Gaussian. If the k particles are measured in ∣0i, the final state takes the
form of a 1D grid of coherent states:

∣ψf iph /
Xk
n¼0

k

n

� �
∣ðk� nÞiph: ð5Þ

Figure 2c shows the Wigner function29 of this state for g = π, and its x
and p quadrature representations as a function of g. The detector state
transitions from a Gaussian squeezed state to a non-Gaussian grid state for
larger g values. Our scheme can create a Gottesman-Kitaev-Preskill (GKP)
detector’s state30 up to Gaussian operations. For a GKP state with squeezing
r, we can take g ¼ ffiffiffiffiffi

2π
p

er . The goal of 10dB squeezing, a threshold for fault-
tolerant quantum computation31, requires 3 particles with r = 3, and then
the post-selection probability to create this GKP state is 31.3% (see
methods)32.

We find that the limit of weak g creates a squeezed vacuum state17 with

squeezing of r ¼ 1
2 ln

kjgj2
2 þ 1

� 	
. The probability to post-select this state

depends only on the squeezing, rather than on the number of particles, and
is equal to e−r (see methods). For larger g values, already a single particle
deterministically generates a Schrodinger cat state of the form ∣ψf i /
∣0iph ± ∣giph where the ±sign is decided by the particle measurement out-

come (∣0i or ∣1i).

Physical implementations
This section proposes two implementations of the multi-particle ‘which-
path’ experiment. The first is an electron holography setup33–35 with a

Fig. 2 | Quantum correlations in the particles and in the detector. (a,b). Particle
correlations: Comparing the “which-path” variants with classical (a) and quantum
(b) detectors. The probability tomeasuren of the total k = 6particles in the ∣0i state is
presented as a function of the particle-detector coupling strength g (a1, b1), showing
strong anti-correlations in the limit of strong coupling (a2, b2). c Detector

correlations: The state of the quantum detector (a quantum harmonic oscillator)
presented in the p (c1) and x (c2) quadratures, as a function of the coupling strength,
post-selected on all particles measured in the ∣0i state. The Wigner function in the
limit of strong coupling (c3) is highly non-Gaussian, taking the form of a (GKP-like)
grid of coherent states.
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microwave cavity in one of the paths, resembling the typical image of a
double-slit setup (Fig. 3). The second is a waveguide-QED setup in which
multiple emitters interact with the same mode (Fig. 4). In this case, the
“paths” are taken by electrons of the emitters in different internal states.

Any implementation requires the realization of two components with
sufficiently high fidelity: (1) Hadamard gate: To combine or separate the
particle states into two distinct states representing the logical states. (2) Con-
ditional displacement gate: State-selective interaction between the particle and
the detector, displacing the detector state without back-action on the particle.

Our first proposed implementation. relies on split-illumination
holography36 in a transmission electron microscope (Fig. 3b). Denoting
the electron’s left and right paths by ∣0i and ∣1i, their interference creates
the fringe pattern that corresponds to the state ∣0i þ ∣1i. The orthogonal
state is the fringe with a quarter of a wavelength offset that corresponds to
the state ∣0i � ∣1i. Then, dividing the measurement screen into equal
sections quarter wavelength apart enables observing the correlation
between the final states of the electrons. Fig. 3b shows that the overlap
between the fringes limits their distinguishability, smearing themeasured
anti-correlations (see methods and ref. 37).

Figure 3a shows that using an electron beam-splitter to convert the
fringes into separate paths creates more pronounced anti-correlation. The
electron beam-splitter can be realized in many different ways such as
crystals38,39, diffraction gratings40, and more advanced phase masks41, each
with different pros and cons like limited fidelity. Additional proposed rea-
lizations include laser42 or microwave43 fields and electron mirrors44. The
electron beam-splitters could be optimized to have two inputs and outputs,
as expected from trueHadamard gates. The electron beam-splitters can also
be used for splitting the electron before the cavity interaction (e.g., instead of
a bi-prism). There, the electron beam-splitter should not be optimized for
fidelity but used to provide round spot size enabling precise electron beam
overlap andbetter transverse coherence. If the initial beam-splitter is lossyor
hasmore than twooutputs, then they can be eliminated bymeasuring them,
essentially post-selecting only electrons that passed through the desired
outputs. In the second electron beam-splitter, this could not be tolerated as
lost electrons destroy the many-body entanglement.

For this implementation to work, the quantum detector must satisfy
several conditions: (1) The cavity lifetime (T1) and coherence time (T2)
should be long enough such that it interacts with all the electrons before
losing the quantum nature of its state. (2) The cavity should be cooled to
limit thermal fluctuations. (3) The coupling strength g of the electron with
the photonic mode should be strong enough, with g ¼
ie
2_ω

R1
�1 Evac

z ðzÞeiωz=vdz integrating the cavity vacuum field Evac
z along the

electron trajectory in one of its paths. (4)A single-mode of the cavity should
dominate its interaction with the electron, meaning that the modes are well

Fig. 3 | Implementation of the multi-particle
‘which-path’ scheme using split-illumination off-
axis electron holography. The setup splits and then
combines back an electron beam. A microwave
cavity is placed in one of the paths. The two paths
interfere either on a two-port beam-splitter (a1) or
on screen (b1) divided into colored sections that
denote the two-port outputs. The beam-splitter
output results in pronounced anti-correlated dis-
tribution (a2), while the inerference on a screen
result in a less pronounced but still clear anti-
correlated distribution (b2).

Fig. 4 | Implementation of the multi-particle ‘which-path’ scheme using
waveguide-QEDwith quantum emitters such as atoms in aΛ configuration.One
of the electronic transitions couples to the driving laser (a). The two ground states
represent the two “paths'', ∣0i and ∣1i. Coherent control pulses act asHadamard gates
(b). Weak illumination pulses couple each emitter in the correct state to the wave-
guide, creating a conditional displacement (c).
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isolated and that the other modes are only weakly coupled to the electrons,
for example, due to different phase-matching conditions45. (5) All the
electrons arrive either at the same time to thedetector, orperiodically in time
such that they are lockedwith the cycle of themode. (6) The photonicmode
frequencyω should be of sufficiently low such that it does not induce back-
action on the electron, i.e., satisfying ω≪ v

ðkgÞ2σz
, where k is the number of

electrons, v is the electron velocity and σz is the spatial extent of the free-
electron wavepacket along its direction of motion z (see methods). (7) The
electron is paraxial, and its energy is much higher than that of the photon,
implying that the scattering matrix describing their interaction is given
by46,47 (see methods and48):

S ¼ ege
iω
v zay�g�e�

iω
v za: ð6Þ

and can be reduced to the ordinary displacement operator by assuming
negligible photon back-action.

Condition (3) is especially challenging, yet critical for strong entan-
glement. In recent years substantial effort has been invested to increase the
coupling between electrons and photonic modes, primarily in the optical
regime, to achieve single-electron-single-photon coupling (g ~ 1)45,49,50. Due
to their higher flexibility in design, microwave cavities could lead to
breakthroughs in this regard as we recently investigated51.

Our interferometry proposal closely relates to the works of
Okamoto24–26, who proposed interferometry of electrons that strongly
interact with superconducting qubits. There, the electrons get entangled to
such qubits, creating GHZ states. Our work also relates to interference
experiments of electrons passing nearby semiconductors and metallic sur-
faces, interacting with the electron gas inside them52,53, showing a con-
trollable washing-out of the interference pattern. In contrast to our work, in
such experiments, the electron emits distinguishable photons, acting as a
classical detector. All these experiments could be viewed as part of the
general family of which-path experiments, with various types of detectors.
Our work shows how all these experiments can lead to the phenomena of
many-body quantum correlations.

Our second proposed implementation. relies on k emitters such as
atoms coupled to a 1D waveguide (Fig. 4)15. In this case, the “two paths”
∣0i, ∣1i of our scheme are two hyperfine levels of each emitter.

The Hadamard gate can be implemented via a microwave π/2 pulse
resonant with the ∣0i to ∣1i transition or using Stimulated RamanAdiabatic
Passage54. Then, by turning on a laser tuned for the transition between the
state ∣1i and an excited state ∣ei, the emitters begin to populate the excited
state and radiate into the waveguide. We assume that the transition ∣0i $
∣ei is forbidden by detuning or selection rules, and in this case, emission into
thewaveguide is conditionedon the internal state of the emitters (∣0i or ∣1i).
In the limit where the Rabi frequency associated with the optical transition
∣1i $ ∣ei satisfies ΩR≪ kΓ1D (where Γ1D is the decay rate into the wave-
guide), the emitters are in their linear regime, and the radiation emitted is a
coherent state ∣αi in a single temporal mode. The magnitude of α scales as
the number of emitters occupying the state ∣1i (see SM3.2 for full
derivation).

At the endof theprocess, thenumberof emitters in eachhyperfine state
can bemeasured to herald particular photonic states (indirect post-selection
emitter measurements are possible by subsequent excitations). The system
should satisfy a fewconditions to effectively implement theprotocol: (1)The
collective decay rate into the waveguide should be sufficiently greater than
the decay rate into free space Γ1D≫Γ0. (2)The emitters remain in their linear
regime (ΩR≪ kΓ1D). (3) The dephasing time T�

2 must be far larger than the
total protocol time.When all these conditions aremet, the laser implements
a conditional displacement between the qubit of the hyperfine state and the
propagating pulse in the waveguide.

For a single emitter, the protocol creates the state
∣ψi / ∣0ieð∣0i þ ∣αivðtÞÞ þ ∣1ieð∣0i � ∣αivðtÞÞ, where the indices e, v(t) are
for the emitter and photonic state in temporalmode v(t) which, in the linear

regime (see SM3), matches the temporal shape of the driving fieldw. By
measuring the internal state of the emitter, its emission is heralded into a cat
state. Cat states with large photon numbers are desired for various appli-
cations, yet are very challenging to create, especially in the optical range. The
maximum magnitude of α that can be achieved is approximately deter-
mined by the amplitude of the field emitted to the waveguide mode in the
typical timescale of the decoherence channel (full analysis given in the
SM3.4 and in refs. 55–60):

α � min
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ1D=Γ

0p
;
ffiffiffiffiffiffiffiffiffiffiffiffi
Γ1DT

�
2

pn o
: ð7Þ

Discussion
Ourworkdescribes amulti-particle ‘which-path’ experimentwith adetector
that interacts with multiple particles while maintaining its quantum state.
We find that the particles develop strong correlations due to their path
interference. Moreover, measuring the particles generates useful detector
states (e.g., cat and GKP photonic states), whereas measuring the detector
creates useful entangled particle states. The special case of a fermionic
detector that contain a discrete ’yes/no’ degree of freedom rather than a full
harmonic oscillator can capture a range of schemes used for generating
multi-partite entanglement: Consider a quantum detector described by
conditional gates (suchasCNOTorControlledPhase gates). In this case, the
“path” is encoded on the state of the control qubit, and the detection is
performed via an entanglement with the controlled qubit. Such operations
are routinely used to generate multi-partite entanglement in quantum
information platforms such as superconducting qubits61 and atom-cavity
systems62. Our gedanken experiment thus provides a description of such
experiments in the language of ‘which-path’ information.

So far, we have shown how to reach entangled particle states in the
effectiveHilbert space of symmetric states. However, the interactions in any
many-body which-path scheme can reach the entire exponentially large
Hilbert space. The way to reach the entire Hilbert space we can break the
symmetry between the particles, for example, by shifting the arrival time of
the electrons relative to the optical cycle, or by shifting the positions of the
emitters along the waveguide. This approach can create more complicated
entanglement structures. For example, the shift of the electron arrival time
or emitters position by half the mode cycle creates destructive (rather than
constructive) interference between two consequent particles, completely
altering the correlations. Another way to access the exponentially large
Hilbert spaces is to use a multi-mode quantum detector or multiple
detectors.

Due to the universality of the “which-path” concept, ourmethod could
potentially be implemented in many physical systems such as trapped ions
coupled to joint vibrationalmodes63–65, arrays of superconducting qubits66,67,
quantum dots68, atoms in tweezers69,70 coupled to a waveguide or to a cavity,
atomic ensembles probed by off-resonant light19,21,22, interferometric
experiments with various free particles3,4, and various schemes relying on
single-photon nonlinearities71.

Methods
Quantum circuit model
In the case of a single particle, following the quantum circuits as in Fig. 1 in
the main text, we can explicitly calculate the final joint particle-detector
state. The detector, which is described as a quantum harmonic oscillator, is
initialized in a vacuum photon state ∣0iph while the particle is initialized in
the qubit ∣0i state. The particle in state ∣0i that interacts with the detector
does not change the state in the cavity,while the particle in state ∣1i displaces
the cavity state by gwhich defines the “measurement strength”. This can be
described as a conditional displacement operator that is written asCDðgÞ �
∣0i 0h ∣� I þ ∣1i 1h ∣� DðgÞ; where D(g) is a displacement operator.

∣ψf i ¼ H � CDðgÞ � H∣0i∣0iph
¼ 1

2
∣0i ∣0iph þ ∣giph
� 	

þ 1
2
∣1i ∣0iph � ∣giph
� 	

:
ð8Þ
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In the case of a “memory-less” detector, the cavity state is reset or decoheres
before an additional particle arrives, which can be described by tracing out
the cavity state, in which case the particle state will reduce to be a density
matrix. To evaluate the trace, we use the well-known property of coherent
states hβjαi ¼ e�

1
2 jβj2þjαj2�2β�αð Þ:

X
n

hnj0i hgjni ¼
X
n

hgjni hnj0i ¼ hgj0i ¼ e�
1
2jgj2 : ð9Þ

And so:

ρf ¼
1
2

1þ e�
1
2jgj2 0

0 1� e�
1
2jgj2

 !
: ð10Þ

The purity of this state is:

γf ¼ tr ðρ2f Þ ¼
1þ e�jgj2

2
: ð11Þ

It is now clear how the coupling strength can change the quantum state
of the particle from being completely pure to a completelymixed state. In
an interference experiment, this will correspond to vanishing inter-
ference fringes. If we consider k particles with the detector state being
reset between each of them, we would get ρ�k

f . This density matrix gives
rise to a binomial distribution in the final state with the parameter
1
2 ð1þ e�

1
2jgj2 Þ. Because of that, the probability of all the particles ending

in the same final state is exponentially suppressed, even if the detector is
very weak.

We would like to consider now the final state of a detector that is not
“memory-less”. In this case, if we have k particle qubits, the final state is
given by:

∣ψf i ¼ H�kCDðgÞ�kH�k∣0i�k∣0iph: ð12Þ

To evaluate it, we use a few identities:

H � CDðgÞ �H ¼ H � ∣0i 0h ∣� I þ ∣1i 1h ∣� DðgÞ� � � H
¼ I � I þ DðgÞ

2
þ σx �

I � DðgÞ
2

:
ð13Þ

∣ψf i ¼ I � I þ DðgÞ
2

þ σx �
I � DðgÞ

2

� ��k

∣0i�k∣0iph: ð14Þ

We define the non-unitary operators IþDðgÞ
2 � C ± . Importantly, they

commute with each other. And so:

∣ψf i ¼
Xk
n¼0

X
perm

∣0in∣1ik�n � Cn
þC

k�n
� ∣0iph: ð15Þ

We can see that if we finally measure n particles in the ∣0i state, the state of
the detector will be given by the state Cn

þC
k�n
� ∣0iph (up to total normal-

ization). This is a highly entangled and complex state in the general case.
The probability of this scenario can be found by calculating the norm of this
state:

Pn;k�n ¼ Cn
þC

k�n
� ∣0iph








2 ¼ 1

4k
k

n

� �X2n
j¼0

X2ðk�nÞ

i¼0

2n

j

� �
2ðk� nÞ

i

� �
ð�1Þje�jgj2 jk�i�jj2

2 :

ð16Þ
For simplicity, we assume that g is imaginary. In this case,
Dðg=2Þ ¼ eðijgj=

ffiffi
2

p Þp̂, where p̂ is a quadrature of the detector Hilbert space.

Therefore, the probability is given by:

Pn;k�n ¼
1ffiffiffi
π

p
Z

dx cos2n
gxffiffiffi
2

p
� �

sin2ðk�nÞ gxffiffiffi
2

p
� �

e�x2=2: ð17Þ

This formula exemplifies why the particles show the highly uncorrelated
distribution on the screen. Since sine and cosine have zeros at different
points, this integral will be highly suppressed unlessn is equal to zero or tok.
Another way to understand this is to look at the operator norm of the
operatorCn

þC
k�n
� (in the sense of the square root of themaximal eigenvalue

of C�ðk�nÞ
� C�n

þ Cn
þC

k�n
� ). The operator C�ðk�nÞ

� C�n
þ Cn

þC
k�n
� is equal to (up to

unitary transformation) cos2nð gxffiffi
2

p Þsin2ðk�nÞð gxffiffi
2

p Þ. The maximum of the

function can be found to be nn�ðk�nÞðk�nÞ

kk
and so the operator norm isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nn�ðk�nÞðk�nÞ

kk

q
. This function is maximal when n = k, 0 and minimal when

n ~ k/2. This implies that the post-interaction electrons will always tend to
bunch together to the same final state.

We are interested to see the probability of all the particles arriving at the
same detector. For example, the probability of all the particles finishing in
the state ∣0i is given by:

Pk;0 ¼
1

4k
X2k
i¼0

2k

i

� �
e�

jgj2 jk�ij2
2 : ð18Þ

To evaluate this probability, we take the leading term in the sum and use the
Stirling approximation 2k

k

� � � 4kffiffiffiffi
πk

p and therefore:

Pk;0 �
1ffiffiffiffiffi
πk

p
X2k
i¼0

e�
jgj2 i2
2 � 1ffiffiffiffiffi

πk
p

X1
�1

e�
jgj2 i2

2 ¼ 1ffiffiffiffiffi
πk

p θ3 0; e�
jgj2
2

� �
: ð19Þ

Where θ3 is the Elliptic Theta functionwhich converges very fast to unity for
large values of g. And so, we got that the probability of all the particles
arriving at the same final location falls off as the square root instead of
exponentially with the number of transmitted particles. This process is akin
to a quantum coin toss, where the head and tail from different tosses
destructively interfere. The final state turns out to be strongly skewed in
contrast to the conventional common state where half the coins are heads
and half are tails.

Regardless of the measured final state of the particles, the state of the
photonic mode in the detector will be a quantum (i.e., not a coherent state).
One particularly interesting situation is the case when all the particles are
measured in the ∣0i state (which happens with probability Pk,0). In this case,
the state of the photonic mode in the detectors is:

1ffiffiffiffiffiffiffiffi
Pk;0

p Ck
þ∣0iph / ðI þ DðgÞÞk∣0iph /

Xk
n¼0

k

n

� �
∣ðk� nÞg�ph: ð20Þ

And so, the final state turns up to be a 1D grid of coherent states (with a
binomial envelope) centered around kg/2. Such states (if displaced to be
centered around 0) are the basis for the creation of states like GKP states.

In the limit of small g, we can also explore the state more analytically.
Again, we assume g is pure imaginary for simplicity and get:

∣ψf i / Dðkg=2ÞðDð�g=2Þ þ Dðg=2ÞÞk∣0iph ¼ eðikgx̂Þ=
ffiffi
2

p
� cosk gx̂ffiffiffi

2
p
� �

∣0iph;

hxjψf i / eðikgxÞ=
ffiffi
2

p
� cosk gxffiffiffi

2
p
� �

e�x2=2 � eðikgxÞ=
ffiffi
2

p
� e�ððkjgj2Þ=4þ1=2Þx2 :

ð21Þ
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And so, the resulting state is still approximately aGaussian state, specifically
a squeezed displaced state. The state is displaced along the p axis and is
squeezed in x. The squeezing can then be evaluated to be:

e�ððkjgj2Þ=4þ1=2Þx2 � e�x2=2e2r ¼ ψsqueezedðxÞ

r ¼ 1
2
ln

kjgj2
2

þ 1

� �
: ð22Þ

And the probability to post-select (calculated from the norm of the state
Ck
þ∣0iph) is:

PðrÞ ¼ 1ffiffiffi
π

p
Z

dx e�ððkjgj2Þ=2þ1Þx2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkjgj2Þ=2þ 1

p ¼ e�r: ð23Þ

Remarkably, to obtain a given squeezing r, the number of particles required
depends on the coupling strength. However, the probability to obtain this
squeezing does not and is only a property of the squeezing strength.

Another particularly interesting state of the photonic mode which can
be generated using conditional displacement operators is GKP states. In
recent work32, we proposed a way to generate optical GKP states using free
electrons. There we showed that finite-sized ‘0’ GKP with 10dB squeezing
can be written as:

∣0GKP
�
ph / ðDðπ=2Þ þ Dð�π=2ÞÞ3Sðr ¼ 1:15; θ ¼ 0Þ∣0iph; ð24Þ

where S(ξ) is a squeezing operator17. We will now show that the state of the
photonicmode fromEq. (20)with 3 electrons is equivalent to this state up to
Gaussian operators, i.e., ðI þ DðgÞÞ3∣0iph / DðαÞSðξÞ∣0GKP

�
ph for some g,

ξ, α (all taken to be real). We use some identities of squeezing and dis-
placement operators:

DðαÞSðξÞ∣0GKP
�
ph ¼ DðαÞSðξ þ 1:15ÞSð�1:15Þ Dð

ffiffiffiffiffiffiffiffi
π=2

p
Þ þ Dð�

ffiffiffiffiffiffiffiffi
π=2

p
Þ

� 	3
Sð1:15Þ∣0iph

¼ DðαÞSðξ þ 1:15Þ Dð
ffiffiffiffiffiffiffiffi
π=2

p
e1:15Þ þ Dð�

ffiffiffiffiffiffiffiffi
π=2

p
e1:15Þ

� 	3
∣0iph

¼ DðαÞSðξ þ 1:15ÞDð�
ffiffiffiffiffiffiffiffiffiffi
9π=2

p
e1:15Þ Dð ffiffiffiffiffi

2π
p

e1:15Þ þ I
� �3∣0iph:

ð25Þ

We take ξ =−1.15, α ¼
ffiffiffiffiffiffiffiffiffiffi
9π=2

p
e1:15 and get that g ¼ ffiffiffiffiffi

2π
p

e1:15. And if the
interaction strength would be equal to

ffiffiffiffiffi
2π

p
e1:15 and we post-select 3

particles on the “even” state, we will be left with a state that is only one
displacement and squeezing away from being a 10 dB GKP state:

Sð�ξÞDð�αÞðI þ DðgÞÞ3∣0iph / ∣0GKP
�
ph: ð26Þ

The probability to post-select this state according to Eq. (18)
would be 31.3%.

As we have shown, the final state of the particles and the detectors is
highly entangled. However, if we trace out the detector, the particles will
remain in a mixed state, creating their state highly correlated but classically.
It is a long-standing goal to achieve controllablemulti-partite entanglement
of many particles. This can potentially be achieved by performing mea-
surements on the detector to collapse the joint state into a multi-partite
entangled state including only the particles. Since the particle state is highly
anti-correlated, such states could resemble useful states such as GHZ or
highly squeezed states. To exemplify this concept, we consider the situation
of 2 particleswith the initial state ∣00i interactingwith the detector. Thefinal

state of the joint system is given by:

∣ψf

E
¼ 1

4
∣00i ∣0iph þ 2∣g

�
ph þ ∣2g

�
ph

� 	

þ 1
4
∣11i ∣0iph � 2∣g

�
ph þ ∣2g

�
ph

� 	

þ 1
4
ð∣01i þ ∣10iÞ ∣0iph þ ∣2g

�
ph

� 	
:

ð27Þ

We can define the two following states:

∣Bell i ¼ 1ffiffiffi
2

p ð∣00i þ ∣11iÞ;

∣Hi ¼ 1
2
ð∣00i þ ∣11i þ ∣01i þ ∣10iÞ: ð28Þ

We can see that if we measure the detector state in the coherent basis (via
Homodyne or photon number resolving detection) and if g is large enough,
then with probability 50% the state ∣g

�
will be measured and the particles

will collapse to aBell state ∣Bell i, andwith aprobability of 50%, the states ∣0i
or ∣2g

�
will be measured and the particles will collapse into the equally

populated state (Hadamard state) ∣Hi. Since ∣Hi satisfies the standard
quantum limit and ∣Bell i satisfies the Heisenberg limit, the state we
obtained falls somewhere in between, beating the standard quantum limit.

Quantum electron-photon interactions
In this sub-section, we briefly go over the derivation of the quantum
interaction between swift electrons and quantized photonic modes. Under
the paraxial approximation (i.e., assuming that the electron has a constant
velocity, and that the energy of the electron is much greater than that of the
photon such that the electron’s dispersion can be linearized), the Hamil-
tonian describing the interaction between free electrons and quantized
photonic modes in the Coulomb gauge (∇ ⋅ A = 0) is given by:

H ¼ �i_v � ∂z þ
X
n

_ωna
y
nan þ

X
n

evAn;zðzÞeiknz � an þ evA�
n;zðzÞe�iknzayn:

ð29Þ

Here, v is the velocity of the electronwhich is taken to propagate along the z
axis, ωn and kn are the angular frequency and wavenumber of the n-th
photonicmode,An,z(z) is the projection on the z axis of the amplitude of the
quantized vector potential of then-th photonicmode;an; a

y
n are the creation

and annihilation operators of the n-th mode.
We move to the interaction picture, by taking H0 ¼ �i_v � ∂z þP

n_ωna
y
nan as the free Hamiltonian:

i_
∂∣ΨiI
∂t

¼ VI ∣ΨiI ; ð30Þ

where ∣ΨiI is the joint electron-photon wavefunction in the interaction
picture and

VI ¼
X
n

ev An;zðz þ vtÞe�iωtþiknðzþvtÞ � an þ A�
n;zðz þ vtÞeiωt�iknðzþvtÞayn

� 	
:

ð31Þ

The solution of Eq. (30) at long times can be written as a Magnus
expansion48, and we get the scattering matrix:

S ¼ exp
X1
k¼1

Ωk

 !
; ð32Þ
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where for the case of Eq. (30) only the first two Ω1 and Ω2 are non-zero:

Ω1 ¼ � i
_

Z þ1

�1
dt VIðtÞ;

Ω2 ¼ � i
_

Z þ1

�1

Z þ1

�1
dt1 dt2 ½VIðt1Þ;VIðt2Þ	:

ð33Þ

Importantly, Ω2 gives only the global phase and thus, we can take into
account only Ω1, S ¼ expðΩ1Þ, where:

Ω1 ¼ � i
_

Z þ1

�1
dt
X
n

ev An;zðz þ vtÞe�iωtþiknðzþvtÞ � an þ A�
n;zðz þ vtÞeiωt�iknðzþvtÞayn

� 	
:

ð34Þ

We change the variable inside the integral to x = z+ vt and get:

Ω1 ¼
X
n

gnanb
y
n � g�na

y
nbn

� �
; ð35Þ

where gn ¼ � i
_ e
Rþ1
�1 An;zðξÞeiðkn�ξ=vÞξ dξ, and the energy shift operators

for the electron are:

bn ¼ e�iωnz=v; byn ¼ eiωnz=v: ð36Þ

We note that in the paraxial approximation the operator bn decreases the
energy of the electron by ℏωn. Thus, the final scattering matrix equals46:

S ¼ exp
X
n

gnanb
y
n � g�na

y
nbn

� � !
: ð37Þ

We show how the scatteringmatrix of the electron-photon interaction
can be represented as a conditional displacement operator and underwhich
conditions this approximation is justified. First, we consider the case of a
single photonic mode in Eq. (37), where the coupling to one of themodes is
significantly stronger than the others. Then it is convenient to represent the
scattering matrix as a displacement operator:

S ¼ egba
y�g�bya � DðgbÞ: ð38Þ

Where b is the momentum/energy displacement operator defined
by Eq. (36).

In our work, we discuss the limit where the photon emission has no
recoil on the particle. When the particle emitsN photons, its momentum is
shifted N times, the no recoil condition in this situation reads:

jhψejbN jψeij2 � 1: ð39Þ

For aGaussianparticle shapewith standarddeviationof σz, this is equivalent
to:

e�
Nω2σ2z
2v2 � 1 ! σz≪

v
Nω

: ð40Þ

This condition is equivalent to requiring that the extent of the particle wave
function is significantly shorter than the wavelength divided by the number
of photons. In our experiment, if we have k particles, they will emit a total of
(kg)2 photons, and so our conditionon the spatial duration of the particles is:

σz≪
v

ωðkgÞ2 : ð41Þ

Under this no recoil approximation, we can write b ≈ eiϕ where ϕ is a con-
stant that can be absorbed by g. We further assume that all the particles are
sufficiently close together such thatϕ is the same for all of them, or that they

arrive at the detector periodically with the frequency of the photon (which
can be gated electrically for microwave frequency). In both cases, the scat-
tering matrix becomes a displacement operator that depends on g:

S � DðgÞ: ð42Þ

We now consider the situation where we split the particle into two trajec-
tories such that only one of them ∣1i interacts with the detector, while the
other trajectory corresponding to state ∣0i is far from the detector such that
there is no interaction.We can describe the coupling to the detector g as an
operator in this qubit Hilbert space, g ! ðσzþIÞ

2 � g. In this case, the scat-
tering matrix can be written as:

S � eg
ðσzþIÞ

2 ay�g�ðσzþIÞ
2 a ¼ D

g
2

� 	
� D σzg

2

� 	
: ð43Þ

Which can be written as the conditional displacement operator:

S � ∣0i 0h ∣� I þ ∣1i 1h ∣� DðgÞ � CDðgÞ: ð44Þ

Since a high-fidelity electronbeam-splitter is currently out of reach, it is
interesting to see how the experimental result is modified by replacing the
interferometric two-port output with a traditional electron interference
experiment. In the normal interferometric output case, the measurement
can be understood as a projectivemeasurement into the electron’s state ∣± i.
However, when the electron’s state is interfered onto a screen, the states
correspond toan interferencepatternon the screenwith the general shapeof
an interference of two plane waves with wavenumber k and each one with
angle ± θ relative to the optical axis is:

Sþ ¼ N � cos2ðkθxÞ

S� ¼ N � sin2ðkθxÞ; ð45Þ

with N being the normalization constant. There is significant overlap
between these two patterns, and so an interference experiment cannot
“separate” between them like a beam splitter, making the predicted corre-
lations challenging to observe. However, the interference patterns are
somewhat separated as their peaks and troughs are onto each other, and so
we can imagine tiling the measurement screen in different colors such that
the areas πm− π/4 < kθx < π/4+ πm for any integerm are associated with
one interferometric output (the “+”output), and the rest are associatedwith
the other. In the “which-path” variation with an incoherent detector, all the
x’s are equally likely, and so the two outputs have a 50–50 chance as usual,
resulting in the ordinary binomial distribution. However, in general, if the
electron is expected to go into the “+” output, its chances of going into the
“+” output in the interference experiment are given by:

2
π

Z þπ=4

�π=4
cos2ðxÞ dx ¼ 1

2
þ 1
π
: ð46Þ

And so, if in the interferometric experiment there are n electrons going to
the “+” andm electrons going to the “-”, then in the interference experiment
the n electrons will distribute binomially into “+” with the binomial dis-
tribution 1

2 þ 1
π and them electrons will distribute binomially into “+”with

the binomial distribution 1
2 � 1

π. To calculate such kinds of probabilistic
results, the Poisson-Binomial37 distribution can be used. This will cause
“smearing” of the observed anti-correlations as presented in Fig. 3 in the
main text.

Waveguide QED
In this section, we will showhow awaveguide-QEDplatform can be used to
implement the protocol.We considerN emitters along the x axis coupled to
a one-dimensional waveguide driven by lasers. The emitters have two
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hyperfine ground levels ∣0i; ∣1i and an excited state ∣ei; the decay ∣ei ! ∣1i
is allowedwhile the decay ∣ei ! ∣0i is forbidden (e.g., by selection rules). To
ensure unidirectional emission, a mirror is placed at x = 0. A single emitter
decays into the waveguide at a rate Γ1D and into free space at a rate Γ0.

The equation of motion for the emitters is given by15:

_ρ ¼ �i½HS; ρ	 þ D½
ffiffiffiffiffiffiffi
Γ1D

p
S�	ρþ

X
n

D½
ffiffiffiffi
Γ0

p
σ�n 	ρ; ð47Þ

where the Hamiltonian is HS ¼ ΩSx �
iΓ1D
4

P
j≠k eik0jxk�xjj � eik0ðxkþxjÞ
� �

σkþσ
j
� which contains the laser driving and

the coherent “flip-flop” interactions mediated by the one-dimensional
waveguide. The dissipator D½L	ρ ¼ LρLy � 1

2 fLyL; ρg describes the decay
of the emitters into the waveguide. In all that follows, we assume that the
emitters’ locations are xn = (nλ+ 1/2) and the Hamiltonian simplifies
to HS =ΩSx.

Our first goal is to find the radiation eigenmodes, for example, whether
the emission is well described by a single temporal mode or not. Mathe-
matically we define a creation operator for the mode as
ay0 ¼

R1
�1 dt0 v0ðt0Þayðt0Þ, with ½aðtÞ; ayðt0Þ	 ¼ δðt � t0Þ and the single

mode pure state as55:

∣ψSMi ¼
X
n

Cnðay0Þ
n

ffiffiffiffi
n!

p ∣0i: ð48Þ

The function vðt0Þ is normalized as
R1
�1 dt0 jv0ðt0Þj2 ¼ 1, ensuring the

bosonic commutation relation for ½a0; ay0	 ¼ 1. If the density matrix in the
most occupied temporal mode has a high fidelity to ∣ψSM

�
ψSM

�
∣, then it is

well described as a single mode state.

An efficient decomposition of the output radiation into temporal
modes is given by diagonalizing the first-order coherence function:

gð1Þðt1; t2Þ ¼ hayðt1Þaðt2Þi ¼
X
i

niv
�
i ðt1Þviðt2Þ; ð49Þ

whereni is the average number of photons in themode vi. To calculate g
(1)(t1,

t2) we utilize input-output theory, which for waveguide-QED in the case
considered, takes the form56,57:

aoutðtÞ ¼ ain � i
ffiffiffiffiffiffiffi
Γ1D

p
S�ðtÞ: ð50Þ

This allows solving for g(1)(t1, t2) with a quantum regression theorem
approach58.

We are further interested in the joint evolution of a single temporal
mode v(t) and the quantum emitters. To model the quantum state of the
emission, we utilize the input-output theory for quantum pulses59, which

allows for calculating the output quantum state of the photonic mode in a
single temporal mode with a single master equation, which reads:

_ρ ¼ �i½HS þ HI ; ρ	 þ D½
ffiffiffiffiffiffiffi
Γ1D

p
S� þ g�0a0	ρþ

X
n

D½
ffiffiffiffi
Γ0

p
σn�	ρ; ð51Þ

where ρ is the joint density matrix of the emitters and the mode v(t),

HI ¼
i
ffiffiffiffiffi
Γ1D

p
2 g�0ðtÞa0Sþ � g0ðtÞay0S�
� 	

,

g0ðtÞ ¼ �v�0ðtÞ
R t
�1 jv0ðt0Þj2dt0

� 	�1=2
. In the limit of weak driving

β � Ω
NΓ1D

≪1, the driving pulse acts as a conditional displacement on the

emitters and the single mode pulse of emitted photons. We will show this
below both analytically with approximations, and in numerical calculations
investigating the validity of these approximations.

To analytically solve the problem, we assume that the number of
excitations ismuch smaller than thenumber of emitters,which is valid in the
weak drive limit: β � Ω

NΓ1D
≪ 1. In this limit, we can make the Holstein-

Primakoff approximation60 to exchange the collective spin raising and
lowering operators S+, S−with bosonic operators c†, cwith commutation [c,
c†] = 1. The steady state solution of the Lindblad equation for the state of the

emitters in this limit is a coherent state ρ ¼ ∣αi αh ∣ with αðtÞ ¼ iΩðtÞ
Γ1D

. This

allows a simple solution for the first-order coherence function:

gð1Þðt1; t2Þ ¼ Γ1DhSþðt1ÞS�ðt2Þi ¼ Γ1Dα
�ðt1Þαðt2Þ: ð52Þ

which shows that the output is a single mode by comparing to Eq. (49).
Since the emission is single mode, the dissipator D½ ffiffiffiffiffiffiffi

Γ1D
p

S� þ g�0a0	ρ
describing the emission into other temporal modes vanishes and we are left
with a closed system evolution described by the Hamiltonian:

HI � i
2

ffiffiffiffiffiffiffi
Γ1D

p ðg�0ðtÞS�ay0 � g0ðtÞSþa0Þ. If the system is constantly pumped
to an eigenstate ∣αi of S−, then HI takes the form:

HI � i
2

ffiffiffiffiffiffiffi
Γ1D

p ðg�0ðtÞαay0 � g0ðtÞα�a0Þ. The unitary time evolution operator
is now a displacement operator:

UðtÞ � exp � 1
2

ffiffiffiffiffiffiffi
Γ1D

p Z t0

0
dt0ðg�0ðt0Þαay0 � g0ðt0Þα�a0Þ

� �
: ð53Þ

Wenow go beyond theHolstein-Primakoff approximation58 and solve
numerically for the state of the emitters and the quantum state in the most
populated mode v0(t). First, we consider the creation of a Schrödinger cat
stateby a single emitter in Fig. 5a. In this case, if theweakdrive limit does not
hold then the emission has multiple temporal modes, and the fidelity of the
Schrödinger cat state in the most occupied mode is reduced, while weakly
driving the emitter will prolong the emission time of the coherent state. In

Fig. 5 | Robustness of quantum photonic state
generation and correlated emitter states. a Fidelity
of the emitted Schrodinger cat state in the most
occupied temporal mode as a function of driving
strength and unwanted decay rate. Strong driving
brings the emitter into its nonlinear regime produ-
cing multiple temporal modes which hinders the
fidelity of the cat state. Unwanted decays effectively
measure the state of the emitter reducing the fidelity
as well. TheWigner functions of generated photonic
states are plotted as insets. b Probability for a
number of emitters to finish in the state ∣1i as a
function of the unwanted decay rate. Large unwan-
ted decays measure if the emitters are in the state ∣0i
or ∣1i reducing the distribution to a binomial dis-
tribution as in the case of a classical detector.
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addition, if there is emission into other spatialmodes, the fidelity will also be
reduced. One therefore would like to minimize Γ0=Γ1D as much as possible.

In Fig. 5b, we study how unwanted decays of the emitters outside the
waveguide alter the probability distribution between the states ∣0i and ∣1i.
Unwanted decays are classical detectors since they distinguish between
emission from the different emitters. Thus, strong unwanted decays pro-
duce binomial distributions in the emitter states, as seen in the top rows of
Fig. 5b.

Data availability
We do not analyse or generate any datasets, because our work proceeds
within a theoretical and mathematical approach. One can obtain the rele-
vant materials from the references below.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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