Table 1 Binary representation of the single-qubit Clifford group \({{\mathcal{C}}}_{1}\)

From: Hardware-tailored diagonalization circuits

U

I

H

S

HSH

HS

SH

UXU

X

Z

iXZ

X

− iXZ

Z

UZU

Z

X

Z

− iXZ

X

iXZ

α(0, 1)

0

0

0

3

0

1

α(1, 0)

0

0

1

0

3

0

\(A=\left[\begin{array}{cc}{a}^{xx}&{a}^{xz}\\ {a}^{zx}&{a}^{zz}\end{array}\right]\)

\(\left[\begin{array}{cc}1&0\\ 0&1\\ \end{array}\right]\)

\(\left[\begin{array}{cc}0&1\\ 1&0\\ \end{array}\right]\)

\(\left[\begin{array}{cc}1&0\\ 1&1\\ \end{array}\right]\)

\(\left[\begin{array}{cc}1&1\\ 0&1\\ \end{array}\right]\)

\(\left[\begin{array}{cc}1&1\\ 1&0\\ \end{array}\right]\)

\(\left[\begin{array}{cc}0&1\\ 1&1\\ \end{array}\right]\)

  1. Every \(U\in {{\mathcal{C}}}_{1}\) is a product of H and S = diag(1, i). The six matrices \(A\in \,{\text{GL}}\,({{\mathbb{F}}}_{2}^{2})\) isomorphically correspond to the permutations of {X, Y, Z}.