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Check for updates

Shumpei Masuda 1,2 , Shunsuke Kamimura 1,3, Tsuyoshi Yamamoto 4, Takaaki Aoki 1 &
Akiyoshi Tomonaga 1,2

A periodically driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which
provides a promising route to a quantum computer with a long lifetime. However, the system is
vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace.
Therefore, we require a refrigeration technology that confines the system in the qubit subspace. We
theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron
tunneling at tunneling junctions, called quantum circuit refrigerators (QCR). Rates of QCR-induced
deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias
voltage across the tunneling junctions. UnwantedQCR-inducedbit flips are greatly suppressed due to
quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can
serve as a tunable dissipation source that stabilizes Kerr-cat qubits.

In thequantumregime,where thenonlinearity is greater than the photon loss
rate, a periodically driven superconducting nonlinear resonator can operate
as a Kerr-cat qubit, providing a promising route to a quantum computer1–5.
For example, aKerr-cat qubit canbe implementedby aparametrically-driven
superconducting resonator with the Kerr nonlinearity, Kerr parametric
oscillator (KPO)6–8, and a superconducting nonlinear asymmetric inductive
element (SNAIL)9,10. Two meta-stable states of the driven superconducting
resonators are utilized as a Kerr-cat qubit. Because of their long lifetime, the
bit-flip error is much smaller than the phase-flip error. This biased nature of
errors enables us to perform quantum error corrections with less overhead
compared to other qubits with unbiased errors11,12. Qubit-gate operations
have been intensely studied4,5,13–17 and demonstrated9,18, and high error-
correctionperformanceby concatenating theXZZXsurface code12withKerr-
cat qubits19 was examined. Kerr-cat qubits also find applications to quantum
annealing4,20–27 and Boltzmann sampling28, and offer a platform to study
quantum phase transitions29–31 and quantum chaos1,32,33.

Kerr-cat qubits are vulnerable to pure dephasing of the resonator, which
causes excitations outside the qubit subspace. Such leakage errors into excited
states are hard to correct by quantum error-correction protocols, which only
deal with errors in the qubit subspace. Although engineered two-photon loss
realized with the help of a dissipative mode13,34 and frequency-selective
dissipation35 can mitigate unwanted excitations, no experimental demon-
stration with a KPO or a SNAIL has been reported. On the other hand,
external single-photon loss in the resonator can reduce the excitations by

transferring the population from excited states to the qubit subspace, but it
generates phase-flips of the Kerr-cat qubit (errors in the qubit subspace)21.
Therefore, thephoton loss rate needs tobe smallwhile still being large enough
to mitigate the effects of pure dephasing. Since it is difficult to determine the
amplitude of the pure dephasing before measurement, and the amplitude
depends on the parameters used for an operation of the Kerr-cat qubit,
making the photon loss tunable is a solution to meet the above requirement.

The electron tunneling through a microscopic junction can occur
accompanied by energy exchange with the environment36–40. Thus, con-
trolled electron tunneling offers a way to selectively cool or heat devices in a
cryogenic refrigerator41. Remarkably, on-chip refrigeration of a super-
conducting resonator, which is based on the photon-assisted electron tun-
neling through normal metal–insulator–superconductor (NIS) junctions,
was demonstrated42,43. This device, called a quantum circuit refrigerator
(QCR), can operate as a tunable source of dissipation for quantum-electric
devices such as qubits44–47. More recently, the qubit reset with QCR was
demonstrated48,49. While several works on the effect of the QCR on linear
resonators, two-level systems and transmons have been reported, it remains
largely unexplored for periodically driven systems such as KPOs. Although
it is intuitively expected that the QCR can cool KPOs more or less, it is
nontrivial how the following characteristics of KPOs affect the effectiveness
of the QCR: (i) the system is periodically driven, and its effective energy
eigenstates exist in a rotating frame; (ii) the system typically has degenerate
energy eigenstates with the biased errors. Another important question is
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whether the biased nature of errors of KPOs will be preserved under the
operation of the QCR.

We study the effect of electron tunneling throughmicroscopic junctions
on a periodically driven superconducting resonator, particularly considering
a superconductor–insulator–normal metal–insulator–superconductor
(SINIS) junction coupled to aKPO.Wedevelop themaster equation that can
describe the effect of the electron tunnelings on the coherence of the KPO as
well as the inter-level population transfers. The performance of the cooling
based on the QCR is examined with the master equation. We also study
drawbacks of the QCR such as the QCR-induced phase flip and bit flip. We
show that the QCR-induced bit flip is suppressed by more than six orders of
magnitude when relevant energy levels of the KPO degenerate due to
quantum interference of the tunneling processes, and thus, the biased nature
of errors is preserved.

Although our theory can be applied to a broader class of super-
conducting circuits, we particularly consider a KPO coupled to a SINIS

junction of which the schematic is shown in Fig. 1A. When the SINIS
junction is biased by a voltage VB, the tunneling of quasiparticles occurs
through the junctions. The normal metal island of the SINIS junction is
capacitively coupled to the KPO. The quasiparticle tunneling causes the
change in the electric charge of the normal metal island and influences the
KPO via the aforementioned capacitive coupling. The interaction between
quasiparticles and the KPOmediated by the normal metal island can cause
transitions between energy levels of the KPO accompanied by the quasi-
particle tunneling. A tunneling quasiparticle can absorb energy from the
KPO. Such quasiparticle tunneling is sometimes called photon-assisted
tunneling36. The bias voltage can be used to control the rate of deexcitations
(cooling) and excitations (heating) of the KPO. Figure 1B shows the energy
diagram for single-quasiparticle tunneling corresponding to a bias voltage
where the photon-assisted quasiparticle tunneling is observed. By absorbing
energy from the KPO, a quasiparticle can tunnel to an unoccupied higher-
energy state on the opposite side of the junction.
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Fig. 1 | Schematic of the system. A Schematic of the SINIS junction coupled to the
KPO.VB is thebiasvoltage applied to theSINIS junction.Cc is the coupling capacitance.
The arrows indicate quasiparticle tunnelings. B Energy diagram for the single-
quasiparticle tunneling at a bias voltageVB < 2Δ/e. The black solid curves at the normal
metal and the superconductors represent theFermi-Dirac distribution function and the
density of states in the superconductors, respectively. The colored and shaded areas
represent theoccupied andunoccupied states, respectively.The straightarrows indicate
the quasiparticle tunnelings from an initial energy state (beginning of the arrow) to a
final energy state (end of the arrow). Thewavy arrows indicate energy absorption from
theKPO.CEffective circuit of the systemcomposedof aNIS junction, theKPO,and the
coupling capacitance Cc. The part in orange is the normal-metal island of the NIS
junction with q excess quasiparticles, and the part shaded by light blue is the KPO

formed with capacitanceC and a SQUIDwith the Josephson energy EJ and an external
magnetic fluxΦex(t). The circuit has only one of the NIS junctions with the junction
capacitance Cj and the tunneling resistance RT. Cm is the capacitance of the metallic
island to the ground, which includes the capacitance of another junction. V =VB/2 is
the bias voltage applied to a single NIS junction. D Energy diagram of the KPO. The
horizontal solid and dashed lines represent even and odd parity energy eigenstates,
respectively. The two lowest degenerate levels shaded by light blue are qubit states. The
red arrows indicate excitations induced by the pure dephasing. The blue solid (dashed)
arrows indicate deexcitations by the QCR to opposite (the same) parity energy levels.
E Bloch sphere of the Kerr-cat qubit. Schematic drawings of the Wigner functions
corresponding to the eigenstates of X, Y, and Z Pauli operators and excited states
outside the qubit subspace are presented.
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Figure 1C is the effective circuit of the system used to discuss the effect
of one of the NIS junctions. Another junction is regarded as a capacitor, in
which capacitance is included in the capacitance of themetallic island to the
ground44. The SQUIDof theKPO is subjected to anoscillatingmagneticflux
with the angular frequency ωp

7. Cc is the coupling capacitance between the
normal-metal island and the KPO. The effectiveHamiltonian of the KPO is
written, in a rotating frame at ωp/2, as

HðRFÞ
KPO=_ ¼ ΔKPOa

ya� χ

2
ayayaaþ βða2 þ ay2Þ; ð1Þ

where ΔKPO, χ, and β are the detuning, the Kerr nonlinearity, and the
amplitude of the pump field, respectively (see, e.g., ref. 7 and subsection
“Unitary transformations” in the Methods section for the derivations and
the definitions of the parameters). In this paper, we consider the case that
ΔKPO = 0. The schematic energy diagram of the KPO is sketched in Fig. 1D,
where the order of the energy levels is determined by the energy in the lab
frame, and is opposite to that in the rotating frame. The two lowest energy
levels are degenerate and written as

∣ϕ0
� ¼ Nþð∣αi þ ∣� αiÞ;

∣ϕ1
� ¼ N�ð∣αi � ∣� αiÞ; ð2Þ

with coherent states ∣± αi, where α ¼
ffiffiffiffiffiffiffiffiffiffi
2β=χ

p
andN ± ¼ ð2 ± 2e�2α2 Þ�1=2

.
These states define a Kerr-cat qubit. Because of their degeneracy and

orthogonality, ∣ϕ± α

� ¼ ð∣ϕ0
�
± ∣ϕ1

�Þ= ffiffiffi
2

p
are also energy eigenstates

orthogonal to each other. We have ∣ϕ± α

� ’ ∣± αi for sufficiently large α.

We work on a basis in which ∣ϕ± α

�
are along the z-axis of the Bloch sphere

[Fig. 1E]. BecauseHðRFÞ
KPO conserves parity, its linearly independent eigenstates

can be taken so that they have either even or odd parity.We represent energy

eigenstateswith evenandoddparity as ∣ϕ2n
�
and ∣ϕ2nþ1

�
, respectively,where

n(≥0) is an integer.
As experimentally observed in ref. 27 and shown numerically in sub-

section “Pure dephasing and single-photon loss” in theMethods section, the
pure dephasing of the KPO causes transitions from ∣ϕ0;1i to excited states
with the same parity [Fig. 1D]. The role of the QCR is to bring the popu-
lation of the states back to the qubit subspace by absorbing excess energy
from the KPO. The main purpose of this paper is to present the cooling
performance of the QCR and possible drawbacks such as QCR-induced
phaseflip (transition between ∣ϕ0

�
and ∣ϕ1

�
) andbitflip (transition between

∣ϕαi and ∣ϕ�αi).

Results
Master equation and rate of QCR-induced transitions
TheHamiltonianof the systemcomposedof quasiparticles in aNIS junction
and the effective circuit in Fig. 1C is written as

Htot ¼ HQP þ HT þH0; ð3Þ

where HQP is the Hamiltonian of quasiparticles given by

HQP ¼
X
k;σ

ðεk � eVÞcykσckσ þ
X
l;σ

εld
y
lσdlσ : ð4Þ

Here, e is the elementary charge, and subscript QP indicates quasiparticle. ckσ
and dlσ are the annihilation operators for quasiparticles in the super-
conducting electrode and the normal-metal island, respectively. εk and εl are
the energies of quasiparticleswithwavenumbersk and l, while σdenotes their
spins. In our model, quasiparticles in the superconducting electrodes are
treated as quasiparticles in the normal-metal island except that the density of
states is different (the semiconductor model)50,51. The energy shift of−eV in
the first term represents the effect of the bias voltage V =VB/2. Tunneling
HamiltonianHT represents the tunnelingofquasiparticles and the interaction

between quasiparticles and the superconducting circuit, and is written as44

HT ¼
X
k;l;σ

Tlkd
y
lσckσe

�iφN þ h:c:; ð5Þ

where φN is a dimensionless flux, that is, ℏφN/e is the flux, ΦN, defined by
time integration of the node voltage. The factor e�iφN represents the shift of
the electric charge in the normal-metal island accompanied by quasiparticle
tunneling. The Hamiltonian of the effective circuit is written as

H0 ¼
ðQN þ QjÞ2

2CN
þ ½Qþ αcðQN þ QjÞ�2

2Cr
� EJ ðtÞ cos

2e
_
Φ

� �
; ð6Þ

where CN =Cc+ Cm+ Cj,Cr ¼ C þ αcCΣm, αc =Cc/CN, CΣm ¼ Cm þ Cj,
Qj =CjV, and QN is the conjugate charge of the flux at the normal-metal
island ΦN (see ref. 44 for the derivation of the Hamiltonian of a similar
circuit).Φ is the flux at the KPO, andQ is its conjugate charge.We have the
commutation relations, [Φ, Q] = [ΦN, QN] = iℏ. We assume that the
Josephson energy EJ(t) is modulated as EJ ðtÞ ¼ EJ þ δEJ cosðωptÞ via a
time-dependent magnetic flux in the SQUID (see subsection “Unitary
transformations” in the Methods section).

For later convenience and for moving into the rotating frame at fre-
quency ωRF =ωp/2, we apply unitary transformations, by whichHT andH0

are transformed toHðRFÞ
T andHðRFÞ

0 whileHQP is unchanged (see subsection
“Unitary transformations” in the Methods section for details). In the
rotating-wave approximation, HðRFÞ

0 is written as

HðRFÞ
0 ¼

X
q

e2q2

2CN
∣q
�
q
�
∣

� �
þ HðRFÞ

KPO; ð7Þ

whereQN ∣q
� ¼ eq∣q

�
, andq is an integerdenoting the excess chargenumber

in the normal-metal island. On the other hand, HðRFÞ
T can be written as

HðRFÞ
T ðtÞ ¼ P

m;δm;q

P
k;l;σ

eiωRFδmt hδmþmj exp � i
_ αceΦ

	 
jmiTlkd
y
lσckσ ∣q� 1; δmþm

�
q;m
�

∣
n

þhδmþmj exp i
_ αceΦ
	 
jmiT�

lkc
y
kσdlσ ∣qþ 1; δmþm

�
q;m
�

∣
o
;

ð8Þ

where ∣mi denotes a Fock state of the KPO. The first and second indices of
∣q;mið¼ ∣qi � ∣miÞ denote the state of the normal-metal island and the
KPO, respectively. We will regard HðRFÞ

T ðtÞ as a perturbation in the
derivation of the master equation for the KPO.

Suppose that ∣ψμðμ0Þi is an eigenstate ofH ¼ HQP þ HðRFÞ
0 with energy

Eμðμ0Þ, and we have

H∣ψμ

E
¼ Eμ∣ψμ

E
; hψμjψμ0 i ¼ δμμ0 : ð9Þ

We divide the system into two parts: the KPO and the others, that is,
quasiparticles and the normal-metal island. The latter is called the
environment. An eigenstate of H can be expressed as
∣ψμi ¼ ∣ϕμ; Eμið¼ ∣ϕμi � ∣EμiÞ, where ∣ϕμi is an eigenstate of HðRFÞ

KPO with
energyEϕμ

and ∣Eμi denotes a state of the environmentwith energyEEμ . The
reduced density matrix for the KPO is obtained by tracing out the
environment and is written as

ρKPOðtÞ ¼
X
Eμ

hEμjρðtÞjEμi ¼
X
ϕμ ;ϕμ0

ρKPOϕμ ;ϕμ0
ðtÞ∣ϕμ

E
ϕμ0

D
∣ ð10Þ

with thedensitymatrixof the total systemρ(t) and thematrix elements given
by

ρKPOϕμ ;ϕμ0
ðtÞ ¼

X
Eμ

hϕμ; EμjρðtÞjϕμ0 ; Eμi: ð11Þ
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We can derive the master equation for the KPO by tracing out the
environment from the equation of motion for the total system and also by
taking into account the effect of another NIS junction (see subsection
“Derivation of the master equation” in the Methods section for the deri-
vation). The master equation is written as

ρKPOϕμ ;ϕμ0
ðt þ ΔtÞ ¼ ρKPOϕμ;ϕμ0

ðtÞ � iωϕμ;ϕμ0
ΔtρKPOϕμ;ϕμ0

ðtÞ

þP
ϕν

P0
ϕν0

Γð1Þðϕμ; ϕμ0 ; ϕν ; ϕν0 ;VÞΔtρKPOϕν ;ϕν0
ðtÞ

þP0
ϕξ

Γð2Þðϕμ; ϕμ0 ; ϕξ ;VÞΔtρKPOϕξ ;ϕμ0
ðtÞ

þP00
ϕξ

Γð3Þðϕμ; ϕμ0 ; ϕξ ;VÞΔtρKPOϕμ;ϕξ
ðtÞ;

ð12Þ

where ωϕμ;ϕμ0
¼ ðEϕμ

� Eϕμ0
Þ=_, and

Γð1Þðϕμ;ϕμ0 ;ϕν ;ϕν0 ;VÞ ¼ 2
e2RT

P
δm;δm0;q

pq

×
R
dεknsðεkÞ½1� f ðεk;TSÞ�f ðεðf ;δm;1Þ

l ;TN Þηðf ;δmÞ
ϕμ;ϕν

ηðf ;δm
0Þ

ϕμ0 ;ϕν0

� ��h
þR

dεknsðεkÞf ðεk;TSÞ½1� f ðεðb;δm;1Þ
l ;TN Þ�ηðb;δmÞ

ϕμ ;ϕν
ðηðb;δm0Þ

ϕμ0 ;ϕν0
Þ�
i
;

Γð2Þðϕμ; ϕμ0 ;ϕξ ;VÞ ¼ � 1
e2RT

P
δm;δm0;q

P
ϕν

pq

×
R
dεknsðεkÞ½1� f ðεk;TSÞ�f ðεðf ;δm;2Þ

l ;TN Þ ηðf ;δmÞ
ϕν ;ϕμ

� ��
ηðf ;δm

0Þ
ϕν ;ϕξ

h
þR

dεknsðεkÞf ðεk;TSÞ½1� f ðεðb;δm;2Þ
l ;TN Þ� ηðb;δmÞ

ϕν ;ϕμ

� ��
ηðb;δm

0 Þ
ϕν ;ϕξ

i
;

Γð3Þðϕμ; ϕμ0 ;ϕξ ;VÞ ¼ � 1
e2RT

P
δm;δm0;q

P
ϕν

pq

×
R
dεknsðεkÞ½1� f ðεk;TSÞ�f ðεðf ;δm;3Þ

l ;TN Þηðf ;δmÞ
ϕν ;ϕμ0

ηðf ;δm
0Þ

ϕν ;ϕξ

� ��h
þR

dεknsðεkÞf ðεk;TSÞ½1� f ðεðb;δm;3Þ
l ;TN Þ�ηðb;δmÞ

ϕν ;ϕμ0
ηðb;δm

0Þ
ϕν ;ϕξ

� ��i
;

ð13Þ

and ns is the density of states of the quasiparticles in the superconducting
electrode given by

nsðεÞ ¼ Re
εþ iγDΔffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðεþ iγDΔÞ2 � Δ2
q

8><>:
9>=>;
















; ð14Þ

with the superconductor gap parameter Δ and the Dynes parameter γD
52.

The Fermi-Dirac distribution function is defined by f ðE;TÞ ¼
1=½eE=ðkBTÞ þ 1� with kB the Boltzmann constant, and TN and TS the
electron temperature at the normal-metal island and the superconducting
electrodes, respectively. The probability, denoted by pq, that the state of the
normal-metal island is ∣q

�
, is determined using the elastic tunneling of

quasiparticles, inwhichquasiparticles donot exchange energywith theKPO
(see subsection “Probability pq” in the Methods section). In Eq. (13),

P0
ϕν0
,P0

ϕξ
, and

P00
ϕξ
, respectively, denote the summationwith respect to the state

of the KPO, ϕν0 , ϕξ, and ϕξ, which satisfy

Eϕμ
� Eϕν

þ _ωpδm
2 ¼ Eϕμ0

� Eϕν0
þ _ωpδm

0

2 ;

�Eϕμ
þ _ωpδm

2 ¼ �Eϕξ
þ _ωpδm

0

2 ;

�Eϕμ0
þ _ωpδm

2 ¼ �Eϕξ
þ _ωpδm

0

2 :

ð15Þ

And, ηðf ;δmÞ
ϕμ;ϕν

and ηðb;δmÞ
ϕμ;ϕν

are defined by

ηðf ;δmÞ
ϕμ;ϕν

¼ P
m
hδmþmjDðiρ

1
2
cÞjmihϕμjδmþmihmjϕνi

ηðb;δmÞ
ϕμ;ϕν

¼ P
m
hδmþmjDð�iρ

1
2
cÞjmihϕμjδmþmihmjϕνi

¼ ðηðf ;�δmÞ
ϕν ;ϕμ

Þ�;

ð16Þ

while εðf ;δm;iÞ
l and εðb;δm;iÞ

l for i = 1, 2, 3 are defined by

εðf ;δm;1Þ
l ¼ Eϕμ

� Eϕν
þ εk � eV þ EN ð1þ 2qÞ þ _ωpδm

2 ;

εðf ;δm;2Þ
l ¼ Eϕν

� Eϕμ
þ εk � eV þ EN ð1þ 2qÞ þ _ωpδm

2 ;

εðf ;δm;3Þ
l ¼ Eϕν

� Eϕμ0
þ εk � eV þ EN ð1þ 2qÞ þ _ωpδm

2 ;

εðb;δm;1Þ
l ¼ Eϕν

� Eϕμ
þ εk � eV � EN ð1� 2qÞ � _ωpδm

2 ;

εðb;δm;2Þ
l ¼ Eϕμ

� Eϕν
þ εk � eV � EN ð1� 2qÞ � _ωpδm

2 ;

εðb;δm;3Þ
l ¼ Eϕμ0

� Eϕν
þ εk � eV � EN ð1� 2qÞ � _ωpδm

2 :

ð17Þ

Here, EN = e2/(2CN). In Eq. (16), ρc is the interaction parameter defined by
ρc ¼ α2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=ð8EJ Þ

p
with EC = e2/(2Cr). The translation operator D(X) is

defined as DðXÞ ¼ exp½Xay � X�a�. hm0jDðiρ
1
2
cÞjmi is given as53

hm0jDðiρ
1
2
cÞjmi ¼

e�
ρc
2 ilρ

l
2
c

ffiffiffiffiffi
m0!
m!

q
Llm0 ðρcÞ for m ≥ m0;

e�
ρc
2 i�lρ

� l
2

c

ffiffiffiffiffi
m!
m0!

q
L�l
m ðρcÞ for m <m0;

8><>: ð18Þ

where l ¼ m�m0, and Llm is the generalized Laguerre polynomials. The
superscript f of ηϕμ;ϕν and εl denotes the forward tunneling where the
number of quasiparticles increases in the normal-metal island, while b
denotes opposite (backward) tunneling. Because of Eq. (12), Γ(1)(ϕi, ϕi, ϕj, ϕj,
V) canbe regarded as the rate of the transition from jϕji to ∣ϕi

�
causedby the

QCR and is quantitatively studied in the following section. The other Γs are
also important to describe the dynamics of the KPO.

Cooling performance of QCR
We quantitatively examine the cooling performance of the QCR which is
controlledwith the bias voltageV. The results presented in the figures below
are obtained through numerical simulations. Figure 2A shows the voltage
dependence of the dominant transition rates relevant to cooling, heating,
and phase flip of the KPO for experimentally feasible parameters, while
Fig. 2B shows the rates of other transitions to the qubit states. The transition
rates from excited states to the qubit states (cooling rates) can be changedby
more than four orders of magnitude for the used parameters. The cooling
rates dominate over heating rates, especially for 30 GHz < eV/h < 50GHz as
shown inFig. 2A.These results suggest that theQCRcan serve as an on-chip
refrigerator for the KPO reducing the population of excited states, and the
coolingpower canbe tunedover awide rangeby thebias voltage.Thephase-
flip rate also increaseswithV as do the cooling rates.Wenote that the results
in Fig. 2A, B, D are the rates of the QCR-induced transitions. In our theory,
these rates are independent of the transitions caused by other decoherence
sources such as the single-photon loss and the pure dephasing, which are
considered later.

The bias voltage dependence of the transition rates can be understood
from an energy diagram of a NIS junction for single-quasiparticle tunnel-
ings [Fig. 2C], which also shows theminimumvoltage at which each type of
photon-assisted electron tunnelings can occur for TN,S = 0. The voltage is
given by V ð2Þ

a ¼ ðΔ� 2_ωRFÞ=e, V ð1Þ
a ¼ ðΔ� _ωRFÞ=e, and V ð1Þ

e ¼ ðΔþ
_ωRFÞ=e for two-photon-absorption, single-photon-absorption, and single-
photon-emission processes, respectively. The rate for transition ∣ϕ2i !
∣ϕ1i jumps at aroundV ¼ V ð1Þ

a for sufficiently lowTN,S as seen in the result
atTN,S = 10mK in Fig. 2A. It suggests that this transition is due to the single-
photon-absorption process. For the same reason, we consider that the
opposite-parity (same-parity) transitions in Fig. 2A, B are causedmainly by
a single-photon (two-photon) process. Note that two-photon-absorption
processes can occur at a smaller voltage than the single-photon-absorption
processes. On the other hand, with more experimentally feasible tempera-
tures (TN,S = 100mK), the increase of transition rates with respect to V is
gradual and starts at smaller voltages than that forTN,S = 0. This is due to the
temperature effect of the normal-metal island,whichhas a smoothvariation
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of the Fermi distribution function. Figure 2D shows the α dependence of
relevant transition rates for eV/h = 45GHz. It is seen that the cooling and
heating rates are insensitive toα forα > 1.5,which is in the typical parameter
regime of the Kerr-cat qubit, and the cooling rates are two orders of mag-
nitude higher than the heating rates. Therefore, the cooling effect is robust
against changes in α. On the other hand, the phase-flip rate monotonically
increases with α. We attribute this to the fact that the QCR approximately
works as a source of single-photon losswith this bias voltage regime, and the
single-photon loss causes the effective phase flip with the rate proportional
to ∣α∣25. We also note that α = 0 corresponds to a transmon-type qubit, and
the rate of the transition from ∣ϕ1i to ∣ϕ0i is the cooling rate for the
transmon, while the rate of the transition from ∣ϕ0i to ∣ϕ1i is the heat-
ing rate.

Dynamics and stationary state of a KPO under operation of QCR
We study the dynamics and stationary states of the KPO under the
operation of the QCR.We assume that, initially the QCR is off and the state
of theKPO is ∣ϕ0i. TheQCR is turned on at t = tQCR as illustrated in Fig. 3A.
We take into account the pure dephasing γp and the single-photon loss κ of
the KPOwhich are not derived from the QCR, by including the second and

the third terms of Eq. (35) in our equation ofmotion in addition to the effect
of the QCR represented by Eq. (12) (see subsection “Pure dephasing and
single-photon loss” in the Methods section). To distinguish the single-
photon loss from theQCR-induced photon loss, we refer to it as the original
single-photon loss. Relevant inter-level transitions for t < tQCR and t > tQCR
are illustrated in Fig. 3A.

Figure 3B shows the time dependence of Pi, the population of ∣ϕi
�
. For

t < tQCR, Pi(>0) increases with time while P0 decreases. (We numerically
integrated the equation of motion using a fourth-order Runge-Kutta
method in order to simulate the dynamics of the KPO.) The increase of P1 is
due to the phase flip from ∣ϕ0i to ∣ϕ1i, indicated by a black arrow in Fig. 3A,
caused by the original single-photon loss. The increase of Pi(>1) is due to
heating induced by the pure dephasing denoted by the red arrows. For
t > tQCR, Pi(>1) decreases, and Pi(≤1) increases due to the cooling effect
represented by blue arrows. For sufficiently large t, ∣ϕ0i and ∣ϕ1i are equally
populated due to the phase flip. The population of the qubit states P0+ P1
increases at t = tQCR for eV/h = 45GHz as shown in Fig. 3C, because of high
QCR-induced cooling rates dominating over γp. An increase in P0 + P1 is
not seen for eV/h = 5GHz because κ and γp govern the dynamics of the
KPO. In Fig. 3D the population of the qubit states for the stationary state is
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Fig. 2 | QCR-induced inter-level transitions. A Voltage dependence of the rates of
dominant transitions corresponding to phase flip (black), cooling (blue), and heating
(red) of the KPO for α = 2. The parameters used are ρc = 5 × 10−5, χ/2π = 10MHz,ωc/
2π = 7 GHz, Δ = 200 μeV, ΔKPO/2π = 0MHz, RT = 50 kΩ, γD = 10−4, β/2π = 20MHz,
andTN,S = 100mK. The values of the parameters, except for ρc, are comparable to the
onesmeasured or used in the experiments27,42. The value of ρc is smaller than that used
in the previouswork44. The data points in gray color are forTN,S = 10mK.The voltage
indicated by the black triangles areV ð2Þ

a , V ð1Þ
a , and V ð1Þ

e in (C). The green vertical line

indicates eV/h = 45 GHz used in (D). B The same things as (A) but for other tran-
sitions from excited states to the qubit states.C Schematic of energy diagram of a NIS
junction. The dark green, light blue, and red arrows indicate two-photon-absorption,
single-photon-absorption, and single-photon-emission processes, respectively. The
minimum voltages at which these processes can occur are V ð2Þ

a , V ð1Þ
a , and V ð1Þ

e for
TN,S = 0, respectively. We have eV ð2Þ

a =h ’ 34 GHz, eV ð1Þ
a =h ’41 GHz, and

eV ð1Þ
e =h ’55 GHz for the parameters used. D α dependence of relevant transition

rates for eV/h = 45 GHz. The color scheme is the same as in (A).
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exhibited as a function of the bias voltage for two different γp with κ = 2γp.
The population can be higher than 0.93 by tuning the bias voltage while it is
~0.3 when the QCR is off. The population for smaller γp becomes higher
than for larger γp at eV/h = 35 GHz. This is because less cooling rate is
sufficient to see the effectiveness of the QCR for smaller γp. In the small
voltage regime eV/h ≤ 15 GHz, theQCR is effectively off, and thepopulation
is determined by the ratio γp/κ. On the other hand, for large voltage regime
eV/h ≥ 55GHz, QCR-induced transitions dominate the effect of γp and κ.
Therefore, the population is insensitive to γp and κ.

Biased nature of noise is preserved under operation of QCR
So far, we studied the effect of the QCR especially on the population Pi,
which is the diagonal element of the density matrix of the KPO ρKPOϕi;ϕi

. Now
we study the effect of the QCR on the off-diagonal elements of the density
matrix, and present that the biased nature of errors of the KPO is preserved
even under operation of the QCR, that is, the bit-flip rate is much smaller
than the phase-flip rate. In order to see the impact of the QCR on the off-
diagonal elements, we assume that the initial state is ∣ϕαi / ∣ϕ0i þ ∣ϕ1i. If
decoherence caused by the QCR significantly enhances the decay of the off-
diagonal elements, ρKPOϕ0;ϕ1

and ρKPOϕ1;ϕ0
, the KPO rapidly approaches the mixed

state of ∣ϕαi and ∣ϕ�αi. This can be interpreted as the QCR enhances bit
flips, and the biased nature of errors of the KPO is lost. Importantly, as
shown below, such decoherence is suppressed when ∣ϕ0i and ∣ϕ1i are
degenerate.

According to Eq. (12), the Γs relevant to the change in ρKPOϕ0 ;ϕ1
are Γ(1)(ϕ0,

ϕ1, ϕi, ϕj), Γ
(2)(ϕ0, ϕ1, ϕi), and Γ(3)(ϕ0, ϕ1, ϕi). In Fig. 4A, we present four

dominant ones much greater than the others, Γ(1)(ϕ0, ϕ1, ϕ0, ϕ1), Γ
(1)(ϕ0, ϕ1,

ϕ1,ϕ0),Γ
(2)(ϕ0,ϕ1,ϕ0), andΓ

(3)(ϕ0,ϕ1,ϕ1),where thefirst two are positive and
increase the off-diagonal element while the latter two are negative and
decrease the off-diagonal element as illustrated in Fig. 4B. Here, Γ(1)(ϕ0, ϕ1,
ϕ1, ϕ0) is the effect of the quantum interference arising from the degeneracy
of ∣ϕ0

�
and ∣ϕ1

�
, and its role is to preserve the coherence of the KPO (see

subsection “Quantum interference effect associated with the level degen-
eracy” in the Methods section for the definition of the interference effect).
Although its amplitude is smaller than the other three, its impact on the bit-
flip rate is remarkable. Figure 4C shows the bit-flip rate (transition rate from
∣ϕα

�
to ∣ϕ�α

�
) as a function ofα.We define theQCR-induced bit-flip rate as

Γb�flip ¼ limΔt!0hϕ�αjρKPOðΔtÞjϕ�αi=Δt, where ρKPO(Δt) is calculated
using Eq. (12) with ρKPOð0Þ ¼ ∣ϕαihϕα∣. Here, ϕ�α / ∣ϕ0i � ∣ϕ1i, and
〈ϕα∣ϕ−α〉 = 0. If we neglect the quantum interference between the
degenerate levels, i.e., let Γ(1)(ϕ0, ϕ1, ϕ1, ϕ0) = 0 in Eq. (12), the bit-flip rate
increases with α, and the phase-flip rate shown in Fig. 2D does not sig-
nificantly dominate over the bit-flip rate, that is, the biasednature of errors is
not preserved. On the other hand, if we use Γ(1)(ϕ0, ϕ1, ϕ1, ϕ0) given in
Eq. (13), the bit-flip rate steeply decreases as α increases and scales similarly
to the case of single-photon loss, that is, the bit-flip rate is proportional to
α2e�4α2 (see subsection “Pure dephasing and single-photon loss” in the
Methods section). Then, the bit-flip rate ismuch smaller than the phase-flip
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Fig. 3 | Dynamics and stationary state of the KPO. A Schedule of the QCR and
relevant inter-level transitions when the QCR is off (left) and on (right). B Time
dependence of the population of energy levels Pi and C the population of the qubit
states P0 + P1, for κ/2π = 1.6 kHz and γp/2π = 0.8 kHz. The values of κ and γp are
comparable to the ones measured for flux-tunable superconducting qubits58,59.

D Population of the qubit states of the stationary state as a function of V for κ = 2γp.
Insets are the Husimi Q function of the stationary states for γp/2π = 0.8 kHz. The
other parameters used are the same as in Fig. 2.
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rate, and therefore the biased nature of errors is preserved under operation
of the QCR.

We examine the stability of ∣ϕα
�
under operation of the QCR by

simulating the dynamics with the initial state of ∣ϕα
�
and with eV/

h = 40GHz.We used a smaller bias voltage than in Fig. 3 to keep the QCR-
induced phase-flip rate around 106 s−1 [see Fig. 2A]. The population of ∣ϕα

�
,

denoted by Pα, is kept higher when the QCR is on than when the QCR is off
as shown in Fig. 4D. It is noteworthy that if we neglect the quantum
interference between the degenerate levels, Pα decreases even more rapidly
thanwhen theQCR is off. The population of qubit states is kept higher than
0.83 when the QCR is on due to the cooling effect, while it decreases
approximately to 0.3 when the QCR is off as shown in Fig. 3D. Thus, the
Kerr-cat qubit is stabilized by the energy absorption by the QCR and
the quantum interference between the degenerate levels. Figure 4E shows
the Husimi Q function, hα0jρKPOjα0i, at different times. The Q function
widely spreads when the QCR is off because of the heating effect of the pure
dephasing (see the result for t = 48 μs). On the other hand, it is confined
around α0 ¼ ± 2 when the QCR is on.

In general, interference can occur when the system (the KPO, in our
case) has degenerate energy levels that are relevant to its dynamics, whichdo
not have to be the ground states. It is also noteworthy that, even if such
degenerate levels exist, the interference effect can benegligible depending on
the properties of the energy eigenstates. The properties are reflected in the

QCR-transition rates via ηf =b;δmϕμ ;ϕν
. For example, in Fig. 4C, the difference

between the QCR-induced bit-flip rates with and without the interference
effect vanishes for α≪ 1, where the pump amplitude becomes zero, and the
form of the qubit Hamiltonian is the same as a transmon, while the two
lowest levels, ∣0i and ∣1i, are still degenerate in the rotating frame. It implies
that the interference effect is negligible in this parameter regime.

Discussion
Wehave theoretically studied on-chip refrigeration for Kerr-cat qubits with
a QCR.We have examined the QCR-induced deexcitations and excitations
of a KPO by developing a master equation. The rate of the QCR-induced
deexcitations can be controlled by more than four orders of magnitude by
tuning the bias voltage across microscopic junctions. By examining the
QCR-induced bit and phase flips, we have shown that the biased nature of
errors of the qubit is preserved even under operation ofQCR, that is, the bit-
flip rate is much smaller than the phase-flip rate. We have found novel
quantum interference in the tunneling process which occurs when the two
lowest energy levels of the KPO are degenerate, and have revealed that the
QCR-induced bit flip is suppressed by more than six orders of magnitude
due to the quantum interference. Thus, QCR can serve as a tunable dis-
sipation source that stabilizes Kerr-cat qubits, mitigating unwanted heating
due to pure dephasing. Even though we particularly consider a KPO in this
paper, our theory can be applied to more general superconducting circuits.
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Although studying theperformanceof theQCR in specific applications
of KPOs is beyond the scope of this paper, we comment on two possible
applications and directions for future study. A possible application of the
QCR is the stabilization of Kerr-cat qubits during gate-based quantum
computing. The QCR can reduce leakage errors into excited states which
cannot be corrected by quantum error-correction protocols that only deal
with errors in the qubit subspace. The QCR may also find application in
measurement-based state preparation of the Kerr-cat qubit, which was
proposed in ref. 54 and experimentally utilized in refs. 55,56. Homodyne
and heterodyne detections can be used to determine on which side of the
effective double-well potential the KPO is trapped. Therefore, the mea-
surement can tell us that the system is in either of ∣ϕαi and ∣ϕ�αi if the
system is confined in the qubit subspace because ∣ϕαi and ∣ϕ�αi are in
opposite potential wells. However, the total population of the excited states
gives rise to the error of the state preparation. Because aQCR can reduce the
population of excited states, activation of a QCR prior to themeasurement-
based state preparation would increase the fidelity of the state preparation.

We discuss the disadvantages of the use of a QCR. The relevant
drawback of the QCR is the QCR-induced phase flip, which should be
corrected for large-scale quantum computations. This limits the applic-
ability of the QCR to cases where the pure dephasing rate is sufficiently
smaller than the acceptable phase-flip rate, which will vary across different
applications. The simple andwide tunability of the cooling rates of theQCR
will help to adjust the cooling performance balanced against the unwanted
QCR-induced phase flip. However, the use of a QCR will degrade system
coherence to an impractical level for error correction when the pure
dephasing rate is toohigh, although aQCRmay still be useful for qubit reset.
As shown in Fig. 2D, the QCR-induced phase-flip rate decreases as the size
of coherent states α decreases. A possible way to mitigate the issue of the
unwanted QCR-induced phase flip is to find an appropriate α that is small
enough to achieve an acceptably slowQCR-induced phase-flip rate yet large
enough to ensure practical biased noise.

As seen in Fig. 2A, there is a phaseflipwith the rate <103 s−1, even in the
absence of the bias voltage V, due to finite photon-assisted electron tun-
neling. This residual phase flip can be reduced by decreasing the coupling
strength between the QCR and the KPO, although this comes at the cost of
reducing the maximum amplitude of the cooling rate. The heating rate at
V = 0 is <10 s−1, and is therefore negligible.

We summarize the pros and cons of our scheme comparing it with
the previous works based on two-photon dissipation13,34 and frequency-
selective dissipation35. (i) Both of the previous schemes utilize additional
resonators. In contrast, our scheme uses a SINIS junction which is sig-
nificantly smaller in size compared to the resonators. (ii) The frequency-
selective dissipation does not require any additional drives. The two-
photon dissipation is activated by a microwave applied to the additional
resonator, while the QCR is driven by a DC bias voltage across the
junction. (iii) The QCR is insensitive to parameters of the KPO, such as
resonance frequency, nonlinearity parameter, and pump amplitude,
which is a useful feature for scaling up the system. In contrast, the
frequency of the microwave used for the two-photon dissipation
depends on the resonance frequencies of both the qubit and the addi-
tional resonator. For the frequency-selective dissipation, the resonance
frequencies of the additional resonators must be nearly identical, and
these frequencies are determined by the parameters of the KPO. (iv) The
QCR also functions for relatively small values of α, e.g., α = 2, where the
frequency-selective dissipation tends to increase bit flip errors compared
to the case without the dissipation mechanism35. (v) The advantage of
the previous schemes is that phase flip is not enhanced in an ideal
situation, whereas our scheme induces phase flip.

In this paper, weneglected the Johnson-Nyquist noise from thenormal
metal island of theQCR,while the electron temperature of the normalmetal
island was accounted for in the calculation of the QCR-induced transition
rates via the Fermi-Dirac distribution function. Although the Johnson-
Nyquist noise could potentially affect the properties of the attached reso-
nator and qubit, such an effect has not yet been observed in previous QCR

measurements42,43,47–49. We attribute this to the fact that the electron tem-
perature of the normal metal island at the voltage used for cooling is lower
than that at V = 0, due to the tunneling of high-energy electrons enhanced
by the bias voltage41,42, and that the volume of the normal meal island is
small, typically on the order of 0.01 μm342.

In our derivation of the QCR-induced transition rates, the normal
metal island is set in a stationary state determined by elastic electron tun-
neling. This is based on assumptions that the dynamics of the normalmetal
island are governed by elastic electron tunneling, which is much faster than
the photon-assisted electron tunneling for the parameters used, and thus the
stationary state determinedby the elastic electron tunneling provides a good
approximation for the state of thenormalmetal island. In ref. 45, the authors
studied the charge dynamics of the normalmetal island under the operation
of the QCR, and showed that the effect of the charge dynamics on the qubit
reset is limited for typical parameters. They also clarified that when the size
of the normal metal island is much smaller and enters in the quantum dot
regime, the dynamics of the normal metal island becomes significant,
leading to the emergence of different phenomena. Studying charge
dynamics with our system will be an interesting direction for future
research.

Methods
Unitary transformations
We apply unitary transformations Uj, U, and URF to simplify the Hamil-
tonian and to move into a rotating frame at a frequency of ωp/2. We begin
with Uj defined by

Uj ¼ exp
i
_
QjΦN

� �
; ð19Þ

which satisfies UjðQN þ QjÞUy
j ¼ QN . The unitary transformation Uj

simplifies H0 by eliminating Qj as

H0 ¼
Q2

N

2CN
þ ðQþ αcQN Þ2

2Cr
� EJ cos

2e
_
Φ

� �
: ð20Þ

Because there is no ΦN in the Hamiltonian we can further rewrite it as

H0 ¼
X
q

e2q2

2CN
þ ðQþ αceqÞ2

2Cr
� EJ cos

2e
_
Φ

� �� �
∣q
�
q
�
∣; ð21Þ

where q is an integer denoting the number of the excess charge in the
normal-metal island, that is, eq is the charge in the normal-metal island.
Note that Uj does not change HQP and HT.

Next, we perform a unitary transformation

U ¼
X
q

exp
i
_
αceqΦ

� �
∣q
�
q
�
∣ ð22Þ

to simplify H0 in Eq. (21) to

H0 ¼
X
q

e2q2

2CN
þ Q2

2Cr
� EJ cos

2e
_
Φ

� �� �
∣q
�
q
�
∣; ð23Þ

by eliminating αceq from the second term, where we used the fact that
Uq ¼ exp½ i_ αceqΦ� translates the charge operator as
UqðQþ αceqÞUy

q ¼ Q. The operator U changes HT while HQP is unchan-
ged. The effect ofU onHT is discussed later.We further rewriteH0 by using
ϕ ¼ 2e

_ Φ and n =Q/2e as

H0 ¼
P
q

e2q2

2CN
þ 4ECn

2 � EJ ðtÞ cos ϕ
h i

∣q
�
q
�
∣;

¼ P
q

e2q2

2CN
∣q
�
q
�
∣

h i
þHKPOðtÞ;

ð24Þ
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where [ϕ, n] = i, and HKPO(t) is the Hamiltonian of the KPO defined by

HKPOðtÞ ¼ 4ECn
2 � EJ ðtÞ cos ϕ: ð25Þ

We focus on the Hamiltonian of the KPO, HKPO. The magnetic flux
Φ(t) in the SQUID is harmonicallymodulated around itsmean value with a
small amplitude. EJ(t) is represented asEJ ðtÞ ¼ �EJ cosðπΦðtÞ=Φ0Þwhere �EJ
is constant. We assume thatΦðtÞ ¼ Φdc � δpΦ0 cosðωptÞ, whereΦdc, and
δp(≪1) are constant. Then,EJ(t) can be approximated asEJ þ δEJ cosðωptÞ,
where EJ ¼ �EJ cosðπΦdc=Φ0Þ and δEJ ¼ �EJπδp sinðπΦdc=Φ0Þ (see, e.g.,
section 4.1 of ref. 8). The Taylor expansion leads to

HKPOðtÞ ¼ 4ECn
2 � EJ 1� 1

2ϕ
2 þ 1

24ϕ
4 þ � � �� �

�δEJ 1� 1
2ϕ

2 þ 1
24 ϕ

4 þ � � �� �
cosðωptÞ:

ð26Þ

The quadratic time-independent part of the Hamiltonian (26) can be
diagonalized by using relations n =−in0(a− a†) and ϕ = ϕ0(a+ a†), where
n20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=ð32ECÞ

p
and ϕ20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EC=EJ

p
are the zero-point fluctuations.

Taking into account up to the 4th order of ϕ, we obtain

HKPOðtÞ
_ ¼ ωð0Þ

c ayaþ 1
2

� �� χ
12 ðaþ ayÞ4

þ � δEJ

_ þ 2βðaþ ayÞ2 � 2χβ

3ωð0Þ
c
ðaþ ayÞ4

h i
cosðωptÞ;

ð27Þ

where we have defined the resonance frequencyωð0Þ
c ¼ 1

_

ffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
, the Kerr

nonlinearity χ = EC/ℏ, the parametric drive strengthβ ¼ ωð0Þ
c δEJ=ð8EJ Þ.We

neglect the last term in the square braketsbecause it ismuch smaller than the
other terms (χβ≪ωð0Þ

c ). We also drop c-valued terms in the expression
above and obtain

HKPOðtÞ=_ ¼ ωð0Þ
c aya� χ

12
ðaþ ayÞ4 þ 2βðaþ ayÞ2 cosðωptÞ: ð28Þ

Now, we move into a rotating frame at the frequency ωp/2 by trans-
forming the system with unitary operator

URFðtÞ ¼ ei
ωp
2 ta

ya � IN ¼
X
m

ei
mωpt

2 ∣mi mh ∣� IN ; ð29Þ

where IN ¼ P
q∣q

�
q
�
∣. After the unitary transformation, the KPO

Hamiltonian is written as

HðRFÞ
KPOðtÞ
_ ¼ ðωð0Þ

c � ωp=2Þaya� χ
12 ðae�i

ωp
2 t þ ayei

ωp
2 tÞ4

þ 2βðae�i
ωp
2 t þ ayei

ωp
2 tÞ2 cosðωptÞ:

ð30Þ

To obtain Eq. (1), we use the rotating-wave approximation, which is valid
when jωð0Þ

c � ωp=2j, χ/12, and 2β are all much smaller than 2ωp. The
detuning ΔKPO in Eq. (1) is given by ΔKPO =ωc−ωp/2, where ωc is the
dressed resonator frequency defined by ωc ¼ ωð0Þ

c � χ. The term propor-
tional to βaya cosðωptÞ in Eq. (30) is omitted in the rotating-wave
approximation, and therefore the dressed resonator frequency is indepen-
dent of β.

We consider the effect of U and URF on HT. The unitary operators
transform HT as

HðRFÞ
T ¼ URFU HTU

yUy
RF

¼ P
m;m0

P
k;l;σ

P
q;q0

eiωRFtðm0�mÞthm0j exp i
_ αceðq0 � qÞΦ	 
jmi

× ðhq0je�ie_ΦN jqiTlkd
y
lσckσ þ hq0jeie_ΦN jqiT�

lkc
y
kσdlσÞ × ∣q0;m0� q;m

�
∣

¼ P
m;m0

P
k;l;σ

P
q
eiωRFtðm0�mÞt hm0j exp � i

_ αceΦ
	 
jmiTlkd

y
lσckσ ∣q� 1;m0� q;m

�
∣

h
þhm0j exp i

_ αceΦ
	 
jmiT�

lkc
y
kσdlσ ∣qþ 1;m0� q;m

�
∣
i
:

ð31Þ

In the above equation, we used the following fact. Because the unitary
operator Ue ¼ ei

e
_ΦN shifts the charge state as

Ue∣q
� ¼ ∣qþ 1

�
; ð32Þ

we have

hqje�ie_ΦN jq0i ¼ hqjUy
e jq0i

¼ hqþ 1jq0i: ð33Þ

In the derivation of Eq. (32), we used

UeQNU
y
e ¼ QN � e: ð34Þ

The second term in Eq. (31) corresponds to the electron tunneling from the
normal-metal island to the superconducting electrode (note that thepositive
charge in the normal-metal island increases because of this transition). By
using δm ¼ m0 �m in Eq. (31), we can obtain Eq. (8).

Pure dephasing and single-photon loss
We consider a KPO without a SINIS junction. The master equation of the
KPO is given by

dρðtÞ
dt

¼ � i
_
½HðRFÞ

KPO; ρðtÞ� þ
κ

2
D½a�ρðtÞ þ γpD½aya�ρðtÞ; ð35Þ

where D½Ô�ρ ¼ 2ÔρÔ
y � Ô

y
Ôρ� ρÔ

y
Ô13. Here, κ and γp are the single-

photon-loss rate and the pure-dephasing rate, respectively. We define the
transition rate from ∣ψii to ∣ψf i due to the pure dephasing as

Γi!f
p ¼ γphψf jD½aya�ρijψf i; ð36Þ

where ρi ¼ ∣ψi

�
ψi

�
∣ and〈ψf∣ψi〉 = 0.

We examine the transition rates from ∣ψi

� ¼ ∣ϕα
�
to other states. The

transition rates normalized by γp are presented for different final states in
Fig. 5A. The bit-flip rate (transition from ∣ϕαi to ∣ϕ�αi) is suppressed as α
increases, and is explicitly written as

Γ
ϕα!ϕ�α
p =γp ¼ 2α4½ðx2 þ y2Þe�2α2 � 2xy�2

�2 α2 �ðx2 þ y2Þe�2α2 þ 2xy
� �þ α4 ðx2 þ y2Þe�2α2 þ 2xy

� �	 

× ðx2 þ y2Þe�2α2 þ 2xy
	 


;

ð37Þ

with x ¼ 1ffiffi
2

p ðNþ þ N�Þ and y ¼ 1ffiffi
2

p ðNþ � N�Þ.Γϕα!ϕ�α
p =γp in Eq. (37) is

approximated by 2α2e�4α2 for sufficiently large ∣α∣. The transition rates
outside the qubit subspace become much larger than the bit-flip rate as α
increases. Especially transition rates to the adjacent excited states ∣ϕ2;3i are
higher than γp itself for α > 1.4.

Similarly, we define the transition rate from ∣ψii to ∣ψf i due to the
single-photon loss as

Γi!f
κ ¼ κhψf jD½a�ρijψf i: ð38Þ

Figure 5B shows the rate of relevant deexcitations to qubit states and bit flip
caused by the single-photon loss. The bit-flip rate is suppressed as α
increases, and is explicitly written as

Γ
ϕα!ϕ�α
κ =κ ¼ ðx2 � y2Þ2α2e�4α2

þα2 ðx2 þ y2Þe�2α2 � 2xy
� � ðx2 þ y2Þe�2α2 þ 2xy

� �
;

ð39Þ

which is well approximated by 2α2e�4α2 for sufficiently large ∣α∣. The
deexcitation rates asymptotically approach κ, that is, Γ

ϕ0ð1Þ!ϕ3ð2Þ
κ ! κ, which
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is derived by using ∣ϕ2;3i ’ 1ffiffi
2

p ðDðαÞ∣1i∓Dð�αÞ∣1iÞ for sufficiently large
∣α∣, where D(α) is the displacement operator defined
by DðαÞ ¼ exp½αay � α�a�.

Derivation of master equation
Suppose that at time t the state of the total system is given by

∣ΨðtÞ� ¼ X
μ

aμðtÞ∣ψμ

E
: ð40Þ

The time evolution of the total system is governed by the Schrödinger
equation,

∂

∂t
aμðtÞ ¼ � i

_
EμaμðtÞ �

i
_

X
ν

VμνðtÞaνðtÞ; ð41Þ

where VμνðtÞ ¼ hψμjHðRFÞ
T ðtÞjψνi. Integrating Eq. (41) over time leads to

the integral equation,

aμðtÞ ¼ e�iEμt=_aμð0Þ �
i
_

X
ν

Z t

0
dse�iEμðt�sÞ=_VμνðsÞaνðsÞ: ð42Þ

The validity of this equation can be easily confirmed by differentiating the
equation with respect to time. Because of Eq. (42) we have

aνðsÞ ¼ e�iEν s=_aνð0Þ �
i
_

X
ξ

Z s

0
ds0e�iEν ðs�s0Þ=_Vνξðs0Þaξðs0Þ: ð43Þ

We use Eq. (43) on the right-hand side of Eq. (42) and repeat the same
procedure to obtain the solution to second order in the perturbation as

aμðtÞ ’ e�iEμt=_aμð0Þ � i
_

P
ν

Z t

0
dse�iEμðt�sÞ=_VμνðsÞe�iEν s=_aνð0Þ

� 1
_2
P
ν;ξ

Z t

0
ds
Z s

0
ds0VμνðsÞVνξðs0Þe�iEμt=_eiωμν seiωνξ s

0
aξð0Þ:

ð44Þ

As seen from Eq. (8), the perturbation can be written as VμνðtÞ ¼P
δmV

ðδmÞ
μν exp½iωRFδmt� with V ðδmÞ

μν ¼ hψμjV ðδmÞjψνi, where

V ðδmÞ ¼ P
m

P
k;l;σ

P
q

hδmþmj exp � i
_ αceΦ

	 
jmi � Tlkd
y
lσckσ ∣q� 1; δmþm

�
q;m
�

∣
n

þhδmþmj exp i
_ αceΦ
	 
jmi � T�

lkc
y
kσdlσ ∣qþ 1; δmþm

�
q;m
�

∣
o
:

ð45Þ

Byusing Eq. (44), we canwrite elements of the densitymatrix, aμðtÞa�μ0 ðtÞ, as

aμðtÞa�μ0 ðtÞ
e
�iωμμ0 t ’ aμð0Þa�μ0 ð0Þ þ i

_

P
ν0

P
δm0

ðV ðδm0 Þ
μ0ν0 Þ

� R t
0 dse

�iðωμ0ν0 þωRFδm
0 Þsaμð0Þa�ν0 ð0Þ

� i
_

P
ν

P
δm

V ðδmÞ
μν

R t
0 dse

iðωμνþωRFδmÞsaνð0Þa�μ0 ð0Þ

þ 1
_2
P
ν;ν0

P
δm;δm0

V ðδmÞ
μν ðV ðδm0 Þ

μ0ν0 Þ
� R t

0 dse
iðωμνþωRFδmÞs R t

0 dse
�iðωμ0ν0 þωRFδm

0Þsaνð0Þa�ν0 ð0Þ

� 1
_2
P
ν;ξ

P
δm;δm0

ðV ðδmÞ
μ0ν Þ�V ðδm0 Þ

ξν

R t
0 ds

R s
0 ds

0e�iðωμ0νþωRFδmÞseiðωξνþωRFδm
0 Þs0aμð0Þa�ξ ð0Þ

� 1
_2
P
ν;ξ

P
δm;δm0

V ðδmÞ
μν ðV ðδm0Þ

ξν Þ� R t
0 ds

R s
0 ds

0eiðωμνþωRFδmÞse�iðωξνþωRFδm
0 Þs0aξð0Þa�μ0 ð0Þ:

ð46Þ

The first term represents the evolution of the density matrix without the
perturbation, the other terms represent the perturbation effects and include
contributions from other elements of the density matrix. By using Eq. (46)
and the results of subsection “Time integrals in Eq. (46)” in the Methods
section, we obtain

aμðtþΔtÞa�
μ0 ðtþΔtÞ

e
�iωμμ0 Δt ¼ aμðtÞa�μ0 ðtÞ

þ πΔt
_

P
ν

P
δm;δm0

2
P0
ϕν0

V ðδmÞ
μν ðV ðδm0 Þ

μ0ν0 Þ
�
δðEϕμ

þ EEμ
� Eϕν

� EEν
þ _ωRFδmÞaνðtÞa�ν0 ðtÞ

"

�P0
ϕξ

ðV ðδmÞ
νμ Þ�V ðδm0Þ

νξ δðEϕν
þ EEν

� Eϕμ
� EEμ

þ _ωRFδmÞaξðtÞa�μ0 ðtÞ

�P00
ϕξ

V ðδmÞ
νμ0 ðV ðδm0Þ

νξ Þ�δðEϕν
þ EEν

� Eϕμ0
� EEμ

þ _ωRFδmÞaμðtÞa�ξ ðtÞ
#
;

ð47Þ

where
P0

ϕν0
,
P0

ϕξ
, and

P00
ϕξ
, respectively, denote the summation with

respect to ϕν0 , ϕξ, and ϕξ which satisfies Eq. (15). Note that in Eq. (47),
we have replaced the time interval t by Δt and shifted the origin of
time by t.

The KPOmaster equation in Eq. (12) can be obtained by tracing out

the environment from Eq. (47). The derivation is based on the following

assumptions: At time t, the density matrix is represented as

ρðtÞ ¼ ρsysðtÞ � ρð0Þenv. Here, ρð0Þenv is a thermal state of the environment

written as ρð0Þenv ¼
P

EpE ∣Ei Eh ∣with energy eigenstates ∣Ei, where pE is the
probability that the state of the environment is ∣Ei. At time t+ Δt,

ρ(t+ Δt) cannot be written as a product state of the system and the

environment in general. We assume that the environment relaxes to the

original state ρð0Þenv in time much shorter than Δt and the system can be
represented again in a product state as ρðt þ ΔtÞ ¼ ρsysðt þ ΔtÞ � ρð0Þenv
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Fig. 5 | Rate of transitions due to the pure dephasing and the single-photon loss. ARate of transitions from ∣ϕα
�
to other states due to the pure dephasing forΔKPO = 0. The

rate is normalized by γp. B Rate of deexcitations and bit flip caused by single-photon loss, where the rate is normalized by κ.
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where ρsysðt þ ΔtÞ ¼ Trenvρðt þ ΔtÞ. This process repeats at each time
step Δt.

To obtain ρKPOϕμ;ϕμ0
ðt þ ΔtÞ we calculate

P
Eμ aμðt þ ΔtÞa�μ0 ðt þ ΔtÞ

using Eq. (47), where ∣Eμ0 i ¼ ∣Eμi. As an example, we consider the
contribution of the termwith aνðtÞa�ν0 ðtÞ in Eq. (47) particularly focusing
on the term including cykσdlσ ∣qþ 1; δmþmihq;m∣ of V(δm) in Eq. (45).
For deriving the contribution of the term to ρKPOϕμ;ϕμ0

ðt þ ΔtÞ, we note the
following points: (a) we consider only the case where ∣Eν

� ¼ ∣Eν0
�

because aνðtÞa�ν0 ðtÞ ¼ 0 otherwise; (b) the summation ∑k,l,σ is repre-
sented as 2∫ dεk∫ dεlns(εk), where ns is the density of state of the quasi-
particles in the superconducting electrode; (c) summation ∑ν can be
represented as

P
Eν

P
ϕν
, and summations

P
Eμ
P

Eν
are unified to

P
QPkl

which represents the sum running over the state of quasiparticles except
formodes k and l because the state ofmodes k and l and the normalmetal

are determined by cykσdlσ ∣qþ 1; δmþmihq;m∣, while the states of other
quasiparticle modes should be the same between ∣Eμi and ∣Eνi; (d)P

QPkl
aνðtÞaν0 ðtÞ leads to the factor pq½1� f ðεk;TSÞ�f ðεl;TN ÞρKPOϕν ;ϕν0

ðtÞ.
Taking into account these points, we find that the contribution from
ρKPOϕν ;ϕν0

ðtÞ to ρKPOϕμ;ϕμ0
ðt þ ΔtÞ is written as

4πjTj2Δt
_

X
δm;δm0;q

X
ϕν

X0

ϕν0

Z
dεknsðεkÞpq½1� f ðεk;TSÞ� f ðεðf ;δm;1Þ

l ;TN Þηðδm;f Þ
ϕμ ;ϕν

ðηðδm0 ;f Þ
ϕμ0 ;ϕν0

Þ�ρKPOϕν ;ϕν0
ðtÞ:

ð48Þ

The contributions from the other terms and another NIS junction to
ρKPOϕμ;ϕμ0

ðt þ ΔtÞ can be calculated in the same manner, and thus Eq. (12) is
obtained. In Eq. (13), we replaced 4π∣T∣2/ℏ by 1/e2RT so that the tunnel
resistance matches the measured one for a sufficiently large V50. The effects
of the two NIS junctions are the same because they are identical in
our model.

A comment on the derivation of the reduced master equation is in
order. Although we considered a pure state in Eq. (41) when deriving the
reducedmaster equation, the state at t should be regarded as amixed state of
such pure states. In our theory, the probability that the state of the system is
each pure state is accounted for by factors such as pq and the Fermi-Dirac
distribution function.

Time integrals in Eq. 46
We consider the time integrals in Eq. (46). First, we consider the integral

Y1ðω; tÞ ¼
Z t

0
eiðω�ω1Þsds

Z t

0
e�iðω�ω2Þsds; ð49Þ

included in the fourth termof Eq. (46), whereω1 andω2 are constant. ∣Y1(ω,
t)∣peaks atω =ω1 andω2. In this study,we consider the cases inwhich either
ω1 =ω2 or two peaks are well separated.

Whenω1 =ω2, the height of the peak is t
2, while its width is of the order

of 2π/t57. It is known that, for sufficiently large t, Y1 approaches a delta
function, that is,

Y1ðω; tÞ ! 2πtδðω� ω1Þ ¼ 2π_tδðE � E1Þ; ð50Þ

where E1 = ℏω1 = ℏω2. On the other hand, the integral can be neglected
when two peaks are well separated because the height of the peaks is of the
order of

ffiffiffiffiffiffiffiffiffi
δðEÞ

p
.

Next, we consider

Y2ðω; tÞ ¼
Z t

0

Z s

0
dsds0eiðω�ω1Þse�iðω�ω2Þs0 ; ð51Þ

included in thefifth and sixth terms inEq. (46). ∣Y2(ω, t)∣peaks atω =ω1 and
ω2. The integral can be neglectedwhen two peaks arewell separated because

the height of the peaks is of the order of
ffiffiffiffiffiffiffiffiffi
δðEÞ

p
. When ω1 =ω2, Y2(ω, t)

approaches a function represented by

Y2ðω; tÞ ! π_tδðE � E1Þ þ igðE � E1Þ; ð52Þ

where the imaginary part, ig, can be neglected because it is an odd function
about E = E1 and the width becomes very narrow as t increases. By using
these relations, we can obtain Eq. (47) from Eq. (46). The condition for two
peaks to be considered sufficiently separated is that ∣ω1−ω2∣ is sufficiently
larger than 2π/t because the width of each peak is of the order of 2π/t.

Note that the second term inEq. (46) can be neglected for the following
reasons. ∣Eμ0 i should be the same as ∣Eν0 i so that the integral can contribute
to the density matrix of the KPO, however if they are the same V ðδm0Þ

μ0ν0 ¼ 0
and thus the second termbecomes zero.The third termcanalsobeneglected
for the same reason.

Probability pq
Here, we follow the samemethod as ref. 44 to calculate pq, which defines the
probability of the normal-metal island state being ∣q

�
. Because the elastic-

tunneling rate is much larger than inelastic ones44, we assume that pq can be
determined by the elastic-tunneling independently of the KPO state.

The population is written as

pq ¼
1
Z

Yq�1

q0¼0

Γþq0;m;m

Γ�q0þ1;m;m
; ð53Þ

where Z is the normalization factor, and Γ±
q;m;mðVÞ is defined by

Γ±
q;m;mðVÞ ¼ M2

m;m
RK

RT

X
τ¼± 1

~PðτeV � E ±
q Þ; ð54Þ

with E ±
q ¼ e2

2CN
ð1 ± 2qÞ, RK = h/e2, and

~PðEÞ ¼ 1
h

Z 1

�1
dεnsðεÞ½1� f ðεÞ�f ðε� EÞ: ð55Þ

In Eq. (54),M2
m;m is defined by

M2
m;m ¼ e�ρc ½L0mðρcÞ�

2
; ð56Þ

where LlmðρcÞ is the generalized Laguerre polynomials.We also have p0 = 1/
Z and p−q = pq. Equivalently pq is written as

pq ¼
1
Z

Yq�1

q0¼0

P
τ¼± 1

~PðτeV � Eþ
q0 ÞP

τ¼± 1
~PðτeV � E�

q0þ1Þ
: ð57Þ

Quantum interference effect associated with the level
degeneracy
We explain the concept of the interference effect associated with the level
degeneracy, with particular focus on the integrand of the time integrals in
the third line of Eq. (46),

V ðδmÞ
μν ðV ðδm0Þ

μ0ν0 Þ
�
eiðωμνþωRFδmÞse�iðωμ0ν0 þωRFδm

0Þs0aνð0Þa�ν0 ð0Þ; ð58Þ

wherewe replaced the second integral variable swith s0 to distinguish it from
the first. The contribution of this integrand to aμðtÞa�μ0 ðtÞ is schematically
illustrated inFig. 6A.The integrand can alsobe representedby the left pair of
lines in Fig. 6B, aswe consider the casewhere ∣Eμi ¼ ∣Eμ0 i and ∣Eν

� ¼ ∣Eν0
�

in the calculation of the reduced densitymatrix for the KPO, as explained in
the paragraph containing Eq. (10). This integrand can also be interpreted as
the contribution from ρKPOϕν ;ϕν0

ð0Þ to ρKPOϕμ;ϕμ0
ðtÞ, because aνð0Þa�ν0 ð0Þ and
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aμðtÞa�μ0 ðtÞ are related to ρKPOϕν ;ϕν0
ð0Þ and ρKPOϕμ ;ϕμ0

ðtÞ, respectively. The property
of the time integral imposes a condition on the KPO states f∣ϕνi; ∣ϕν0 ig, as
represented by the first line of Eq. (15).When there is a level of degeneracy,
multiple sets of such initial states exist, each with different KPO states
f∣ϕνi; ∣ϕν0 ig that satisfy Eq. (15), but with the same environment states.We
refer to the contributions from such initial states, with different KPO states
f∣ϕνi; ∣ϕν0 ig but the same environment states, as the quantum interference
effect in this paper. Note that we term this contribution “quantum inter-
ference” when the initial environment states are identical as in Fig. 6B. The
contributions should not be called “quantum interference” when the initial
environment states are different, since there is no coherence between the
different environment states.

This integrand is associated with Γð1Þðϕμ; ϕμ0 ; ϕν ; ϕν0 ;VÞ in Eq. (13).
The master equation in Eq. (12) accounts for the quantum interference via
the summation with respect to the state of the KPO, ϕν0 , which satisfies
Eq. (15). As a result, it not only ρKPOϕ0 ;ϕ1

ð0Þ but also ρKPOϕ1 ;ϕ0
ð0Þ affects ρKPOϕ0 ;ϕ1

ðtÞ in
our systemwhereϕ0 andϕ1 aredegenerate. Especially,Γ

(1)(ϕ0,ϕ1,ϕ1,ϕ0,V) is
significant to describe the bit-flip accurately. If the contribution of ρKPOϕ1;ϕ0

ð0Þ
is omitted by putting Γ(1)(ϕ0, ϕ1, ϕ1, ϕ0, V) zero, the QCR-induced bit-flip
rate becomes much larger than the correct one, as shown in Fig. 4C.

Although, this paper considers the case that the two lowest energy levels
are exactly degenerate, the formula of transition rates in Eq. (13) remains
approximately validwhen the degeneracy is only approximate. Todiscuss the
validity of the formula in the presence of a small energy discrepancy, we
consider the time integral

R t
0 dse

iðωμνþωRFδmÞs R t
0 dse

�iðωμ0ν0 þωRFδm
0Þs in the

third line of Eq. (46), particularly focusing on the term including
cykσdlσ ∣qþ 1; δmþm

�
q;m
�

∣ of V(δm) in Eq. (45) as an example. The time
integral can be considered as a function of εl, the energy of a quasiparticle in
mode l, and this function exhibits two peaks, each with a width of 2π/Δt as
explained in subsection “Time integrals in Eq. (46)” in the Methods section.
When the first equation in Eq. (15) is satisfied, the two peaks overlap, and the
function works as a delta function for sufficiently large Δt. If the energy
difference between relevant levels is small enough compared to the width of
thepeaks, the levels canbeconsideredapproximatelydegenerate, andEq. (15)
is approximately satisfied. Assuming that Δt is on the order of 0.1 μs, the
width of the peak is on the order of 2π× 10MHz. Therefore, we consider that
the formula in Eq. (13) is approximately valid when the energy difference
between relevant levels is on theorder of 1MHzor smaller.Here,we assumed
that Δt is on the order of 0.1 μs so that the following conditions are satisfied.
The width of the peaks 2π/Δt is much smaller than the characteristic energy
scale of the Fermi-Dirac distribution function, kBTN,S/h ~ 2GHz, so that the
functionof εl canbe regardedas adelta function;Δt shouldbe short enoughso
that the effect of the other decoherence sources can be neglected in the
estimation of the QCR-induced transition rates. The second condition is
represented asΔt≪ 1/2κα2, where 2κα2 is the effective phase-flip rate caused

by the single-photon loss. Because the gap between the lowest levels and the
first excited state is ~40MHz in this study, the first excited level is considered
apart enough from the lowest levels.
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