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quantum circuit refrigerator

M| Check for updates

Shumpei Masuda ® '2
Akiyoshi Tomonaga ® '

, Shunsuke Kamimura ® '3, Tsuyoshi Yamamoto ®*, Takaaki Aoki®' &

A periodically driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which
provides a promising route to a quantum computer with a long lifetime. However, the system is
vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace.
Therefore, we require a refrigeration technology that confines the system in the qubit subspace. We
theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron
tunneling at tunneling junctions, called quantum circuit refrigerators (QCR). Rates of QCR-induced
deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias
voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to
quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can
serve as a tunable dissipation source that stabilizes Kerr-cat qubits.

In the quantum regime, where the nonlinearity is greater than the photon loss
rate, a periodically driven superconducting nonlinear resonator can operate
as a Kerr-cat qubit, providing a promising route to a quantum computer'™.
For example, a Kerr-cat qubit can be implemented by a parametrically-driven
superconducting resonator with the Kerr nonlinearity, Kerr parametric
oscillator (KPO)*™*, and a superconducting nonlinear asymmetric inductive
element (SNAIL)™". Two meta-stable states of the driven superconducting
resonators are utilized as a Kerr-cat qubit. Because of their long lifetime, the
bit-flip error is much smaller than the phase-flip error. This biased nature of
errors enables us to perform quantum error corrections with less overhead
compared to other qubits with unbiased errors'"”. Qubit-gate operations
have been intensely studied">"""” and demonstrated”, and high error-
correction performance by concatenating the XZZX surface code'” with Kerr-
cat qubits'’ was examined. Kerr-cat qubits also find applications to quantum
annealing*”*” and Boltzmann sampling”, and offer a platform to study
quantum phase transitions” ' and quantum chaos"*>”.

Kerr-cat qubits are vulnerable to pure dephasing of the resonator, which
causes excitations outside the qubit subspace. Such leakage errors into excited
states are hard to correct by quantum error-correction protocols, which only
deal with errors in the qubit subspace. Although engineered two-photon loss
realized with the help of a dissipative mode* and frequency-selective
dissipation” can mitigate unwanted excitations, no experimental demon-
stration with a KPO or a SNAIL has been reported. On the other hand,
external single-photon loss in the resonator can reduce the excitations by

transferring the population from excited states to the qubit subspace, but it
generates phase-flips of the Kerr-cat qubit (errors in the qubit subspace)™.
Therefore, the photon loss rate needs to be small while still being large enough
to mitigate the effects of pure dephasing. Since it is difficult to determine the
amplitude of the pure dephasing before measurement, and the amplitude
depends on the parameters used for an operation of the Kerr-cat qubit,
making the photon loss tunable is a solution to meet the above requirement.

The electron tunneling through a microscopic junction can occur
accompanied by energy exchange with the environment™ ™. Thus, con-
trolled electron tunneling offers a way to selectively cool or heat devices in a
cryogenic refrigerator’’. Remarkably, on-chip refrigeration of a super-
conducting resonator, which is based on the photon-assisted electron tun-
neling through normal metal-insulator-superconductor (NIS) junctions,
was demonstrated'>"’. This device, called a quantum circuit refrigerator
(QCR), can operate as a tunable source of dissipation for quantum-electric
devices such as qubits*™. More recently, the qubit reset with QCR was
demonstrated*®*. While several works on the effect of the QCR on linear
resonators, two-level systems and transmons have been reported, it remains
largely unexplored for periodically driven systems such as KPOs. Although
it is intuitively expected that the QCR can cool KPOs more or less, it is
nontrivial how the following characteristics of KPOs affect the effectiveness
of the QCR: (i) the system is periodically driven, and its effective energy
eigenstates exist in a rotating frame; (ii) the system typically has degenerate
energy eigenstates with the biased errors. Another important question is
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whether the biased nature of errors of KPOs will be preserved under the
operation of the QCR.

We study the effect of electron tunneling through microscopic junctions
on a periodically driven superconducting resonator, particularly considering
a  superconductor-insulator-normal  metal-insulator-superconductor
(SINIS) junction coupled to a KPO. We develop the master equation that can
describe the effect of the electron tunnelings on the coherence of the KPO as
well as the inter-level population transfers. The performance of the cooling
based on the QCR is examined with the master equation. We also study
drawbacks of the QCR such as the QCR-induced phase flip and bit flip. We
show that the QCR-induced bit flip is suppressed by more than six orders of
magnitude when relevant energy levels of the KPO degenerate due to
quantum interference of the tunneling processes, and thus, the biased nature
of errors is preserved.

Although our theory can be applied to a broader class of super-
conducting circuits, we particularly consider a KPO coupled to a SINIS
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junction of which the schematic is shown in Fig. 1A. When the SINIS
junction is biased by a voltage V3, the tunneling of quasiparticles occurs
through the junctions. The normal metal island of the SINIS junction is
capacitively coupled to the KPO. The quasiparticle tunneling causes the
change in the electric charge of the normal metal island and influences the
KPO via the aforementioned capacitive coupling. The interaction between
quasiparticles and the KPO mediated by the normal metal island can cause
transitions between energy levels of the KPO accompanied by the quasi-
particle tunneling. A tunneling quasiparticle can absorb energy from the
KPO. Such quasiparticle tunneling is sometimes called photon-assisted
tunneling™. The bias voltage can be used to control the rate of deexcitations
(cooling) and excitations (heating) of the KPO. Figure 1B shows the energy
diagram for single-quasiparticle tunneling corresponding to a bias voltage
where the photon-assisted quasiparticle tunneling is observed. By absorbing
energy from the KPO, a quasiparticle can tunnel to an unoccupied higher-
energy state on the opposite side of the junction.
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Fig. 1 | Schematic of the system. A Schematic of the SINIS junction coupled to the
KPO. Vs the bias voltage applied to the SINIS junction. C, is the coupling capacitance.
The arrows indicate quasiparticle tunnelings. B Energy diagram for the single-
quasiparticle tunneling at a bias voltage Vi < 2A/e. The black solid curves at the normal
metal and the superconductors represent the Fermi-Dirac distribution function and the
density of states in the superconductors, respectively. The colored and shaded areas
represent the occupied and unoccupied states, respectively. The straight arrows indicate
the quasiparticle tunnelings from an initial energy state (beginning of the arrow) to a
final energy state (end of the arrow). The wavy arrows indicate energy absorption from
the KPO. C Effective circuit of the system composed of a NIS junction, the KPO, and the
coupling capacitance C.. The part in orange is the normal-metal island of the NIS
junction with g excess quasiparticles, and the part shaded by light blue is the KPO

formed with capacitance C and a SQUID with the Josephson energy E;and an external
magnetic flux @,(#). The circuit has only one of the NIS junctions with the junction
capacitance C; and the tunneling resistance Rr. C,, is the capacitance of the metallic
island to the ground, which includes the capacitance of another junction. V= V/2 is
the bias voltage applied to a single NIS junction. D Energy diagram of the KPO. The
horizontal solid and dashed lines represent even and odd parity energy eigenstates,
respectively. The two lowest degenerate levels shaded by light blue are qubit states. The
red arrows indicate excitations induced by the pure dephasing. The blue solid (dashed)
arrows indicate deexcitations by the QCR to opposite (the same) parity energy levels.
E Bloch sphere of the Kerr-cat qubit. Schematic drawings of the Wigner functions
corresponding to the eigenstates of X, Y, and Z Pauli operators and excited states
outside the qubit subspace are presented.
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Figure 1C is the effective circuit of the system used to discuss the effect
of one of the NIS junctions. Another junction is regarded as a capacitor, in
which capacitance is included in the capacitance of the metallic island to the
ground”. The SQUID of the KPO is subjected to an oscillating magnetic flux
with the angular frequency w,’”. C. is the coupling capacitance between the
normal-metal island and the KPO. The effective Hamiltonian of the KPO is
written, in a rotating frame at wp/2, as

Hypd/h = Apoa’a — %“T‘f“a +p(@ +a), 1)

where Agpo, X, and 8 are the detuning, the Kerr nonlinearity, and the
amplitude of the pump field, respectively (see, e.g., ref. 7 and subsection
“Unitary transformations” in the Methods section for the derivations and
the definitions of the parameters). In this paper, we consider the case that
Axpo = 0. The schematic energy diagram of the KPO is sketched in Fig. 1D,
where the order of the energy levels is determined by the energy in the lab
frame, and is opposite to that in the rotating frame. The two lowest energy
levels are degenerate and written as

|¢0> =
|‘/51> =

with coherent states | + ), where o« = \/2/37 andN, =2+ 212*2"‘2)71/2
These states define a Kerr-cat qubit. Because of their degeneracy and
orthogonality, |¢,,) = (I¢,) +¢;))/+/2 are also energy eigenstates
orthogonal to each other. We have |¢, ,) ~ |+ a) for sufficiently large .

N+(|(X> + | - 0()),

2
N_(la) = | — a)), @

We work on a basis in which ¢ ) are along the z-axis of the Bloch sphere

[Fig. 1E]. Because HE o conserves parity, its linearly independent eigenstates
can be taken so that they have either even or odd parity. We represent energy
eigenstates with even and odd parity as |¢,,, > and|¢,, >, respectively, where
n(20) is an integer.

As experimentally observed in ref. 27 and shown numerically in sub-
section “Pure dephasing and single-photon loss” in the Methods section, the
pure dephasing of the KPO causes transitions from |@ ;) to excited states
with the same parity [Fig. 1D]. The role of the QCR is to bring the popu-
lation of the states back to the qubit subspace by absorbing excess energy
from the KPO. The main purpose of this paper is to present the cooling
performance of the QCR and possible drawbacks such as QCR-induced
phase flip (transition between |¢, ) and |¢, )) and bit flip (transition between

¢,) and |¢_,))

Results

Master equation and rate of QCR-induced transitions

The Hamiltonian of the system composed of quasiparticles in a NIS junction
and the effective circuit in Fig. 1C is written as

Hy = Hgp + Hy + H,, (3)

where Hqp is the Hamiltonian of quasiparticles given by
Hyp = Z(sk — eV)cZUcka + Z eldzrgd,a. (4)
k.o Lo

Here, e is the elementary charge, and subscript QP indicates quasiparticle. ¢,
and dj, are the annihilation operators for quasiparticles in the super-
conducting electrode and the normal-metal island, respectively. & and ¢, are
the energies of quasiparticles with wave numbers k and ], while o denotes their
spins. In our model, quasiparticles in the superconducting electrodes are
treated as quasiparticles in the normal-metal island except that the density of
states is different (the semiconductor model)™*”'. The energy shift of —eV in
the first term represents the effect of the bias voltage V' = V/2. Tunneling
Hamiltonian Hrrepresents the tunneling of quasiparticles and the interaction

between quasiparticles and the superconducting circuit, and is written as*

o
Hy = E Tydyycroe ™ + hoc., (5)
k.o

where @y is a dimensionless flux, that is, gy/e is the flux, Oy, defined by
time integration of the node voltage. The factor e ="~ represents the shift of
the electric charge in the normal-metal island accompanied by quasiparticle
tunneling. The Hamiltonian of the effective circuit is written as

Qv+ Q) [Q+a(Qy+Q)F 2e
H, = - = 6
0 Ky 2C, 5 Cos(’l q))’ ©
where Cy=C,+ C,+ G, C, = C+ «,Cy,,, 4.=CJCy, Cy,, = C,, + C;,

Q;=CV, and Qy is the conjugate charge of the flux at the normal-metal
island @y (see ref. 44 for the derivation of the Hamiltonian of a similar
circuit). @ is the flux at the KPO, and Q is its conjugate charge. We have the
commutation relations, [®, Q]=[®y, Qun]=1ih. We assume that the
Josephson energy Ef(t) is modulated as Ej(t) = E; + 0E; cos(w,t) via a
time-dependent magnetic flux in the SQUID (see subsection “Unitary
transformations” in the Methods section).

For later convenience and for moving into the rotating frame at fre-
quency wgg = w,/2, we apply unitary transformations, by which Hrand H,
are transformed to H ) and Hy (RE) while Hqp is unchanged (see subsection

“Unitary transformatlons > in the Methods section for details). In the
rotating-wave approximation, H, E)RF) is written as

Hi = Z[;c o) al| + HE, %)

where Qylq) = eqlq),and gisan integer denotmg the excess charge number
in the normal-metal island. On the other hand, H'\" pa ) can be written as

H(TRF)(t) = 52 1\; e"”RF‘s""{((Fmﬁ»mIexp[ ae@]\m)ledldckalq 1, 8m+m><q,m|
mdm,q kLo

+ (dm + m| exp[ « etb}lm)T;;{cZodlglq +1,6m+ m><q,m|},
(8)

where |m) denotes a Fock state of the KPO. The first and second indices of
|g, m)(= |q) ® |m)) denote the state of the normal-metal island and the
KPO, respectively. We will regard Hy ®(t) as a perturbation in the
derivation of the master equation for the KPO.

Suppose that |y, ) is an eigenstate of H = Hyp + Hyy () vith energy

E and we have

up')?

le,,> Elwy> Wulwy) =0, ©)

We divide the system into two parts: the KPO and the others, that is,
quasiparticles and the normal-metal island. The latter is called the
environment. An eigenstate of H can be expressed as
|1//H |¢u’5ﬂ>( |¢> ) ®|E,)), where |¢ ) is an eigenstate ofHKPO with
energy E¢ and |£,) denotesastate ofthe env1r0nment with energy E g, .The
reduced density matrix for the KPO is obtained by tracing out the
environment and is written as

proo) = DENPONE) = 5 3, (©19,) (4! (10)
£.u

with the density matrix of the total system p(f) and the matrix elements given
by

gupgu ® = Z(q& & |P(t)|¢,4 ) /4 (11)
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We can derive the master equation for the KPO by tracing out the
environment from the equation of motion for the total system and also by
taking into account the effect of another NIS junction (see subsection
“Derivation of the master equation” in the Methods section for the deri-
vation). The master equation is written as

pgpg (t+At) = pgpg (t)— iwg g, Atpgpfz,(t)

+3 z T, G, 6, VIS (1)

o,

12
#1704y 90 VI, 0 (12)

L CR R IO
3

where Wy 6, = (E¢M —Ey, )/h, and

T 00:6,:9,,V) = a2 p,

dm.om’ q
[j degn (el — fle, T )™ TN)ﬂU o (W(f 5;1))

+J degn(ef e TOI = £ Tyl 500 %)

r(z)((/’,,-, ¢,4w fbg, V) = - EzR > qu
T smom'.q ¢,
x [ degn el = fle TOFE ", T (5 ) 5
+f dekn (Ef e T = £, TN () ]
190,60 V) = -z X Yp,
dm,om',q ¢,

x {f degn (e — (e TV, Tnl 5 (nf )

+[ deeny(e)f (e, To)lL *f(fgh'ém‘3 , TN)]HE;’ fp”‘ (%ﬁﬁ:ﬂ)*]

(13)

and n, is the density of states of the quasiparticles in the superconducting
electrode given by

&+ iypA
\/ (e + iypA)* — A

with the superconductor gap parameter A and the Dynes parameter yp™.
The Fermi-Dirac distribution function is defined by f(E,T)=
1/[ef/%D 4- 1] with kg the Boltzmann constant, and Ty and T the
electron temperature at the normal-metal island and the superconducting
electrodes, respectively. The probability, denoted by p,, that the state of the
normal-metal island is |q), is determined using the elastic tunneling of
quasiparticles, in which quasiparticles do not exchange energy with the KPO
(see subsection “Probability p,” in the Methods section). In Eq. (13), Y, 6,
> . and Y o0 respectively, denote the summation with respect to the state
of the KPO, (,by,, ¢5 and ¢, which satisfy

ny(e) = [Re

(14)

hw,0m hw,0m’
Ey —Es +—5— = By —E;, +—5—,
hw,0m hw,0m’
—Ey + s = —Ey +—5—, (15)
hw,0m hw,0m
_E%, + PZ = _E% + P2
(b, 6m)
And, 11¢ ¢ ) and g9, 1€ defined by
(f:6m) _ -3
1 = S (0m + mID(ip)lm) (9, |6m + m) (m]g,)
m
1
Mo, = S(0m + mID(=ip)|m)($,|6m + m)(mlg,)  (16)
m

(f,—rSm))*

while & ™ and "™ for i =1, 2, 3 are defined by

éﬁ&n,l) — E% —Ey +& —eV+Ey(1+29)+ e M
ng‘,ém,Z) = By —E, +g—eV+ Ey(1+29) + ey M
s}f’am) = Ey —E, +&—eV+E(l+29+ oy M
egb‘am‘l) = E; — Egbﬂ +e —eV —Ey(1—2q) — = M’ v
sgb,ém,Z) _ E% —E; +e—eV— Ey(1—2g9)— ha, am7
(bomd) Ey, —Ey +& —eV —Ex(1-29) — hw, am

Here, Ex = ¢’/(2Cy). In Eq. (16), p. is the interaction parameter defined by
p.=a2\/Ec/ (8E;) with Ec= ¢/(2C,). The translation operator D(X) is

defined as D(X) = exp[Xa" — X"al. {m|D(ip)|m) is given as™

A e*TIZpC ! (pe) for m > m',
(' Dliphlm) =4 (18)
e 7i lp, 2, /mﬂ}!L;ll(pC) for m<m’,

where [ = m — m’, and L, is the generalized Laguerre polynomials. The
superscript f of 7, , and & denotes the forward tunneling where the
number of quampartfcles increases in the normal-metal island, while b
denotes opposite (backward) tunneling. Because of Eq. (12), (¢, ¢» 5 ¢,
V) can be regarded as the rate of the transition from |¢,) to |¢;) caused by the
QCR and is quantitatively studied in the following section. The other I's are
also important to describe the dynamics of the KPO.

Cooling performance of QCR

We quantitatively examine the cooling performance of the QCR which is
controlled with the bias voltage V. The results presented in the figures below
are obtained through numerical simulations. Figure 2A shows the voltage
dependence of the dominant transition rates relevant to cooling, heating,
and phase flip of the KPO for experimentally feasible parameters, while
Fig. 2B shows the rates of other transitions to the qubit states. The transition
rates from excited states to the qubit states (cooling rates) can be changed by
more than four orders of magnitude for the used parameters. The cooling
rates dominate over heating rates, especially for 30 GHz < eV/h < 50 GHz as
shown in Fig. 2A. These results suggest that the QCR can serve as an on-chip
refrigerator for the KPO reducing the population of excited states, and the
cooling power can be tuned over a wide range by the bias voltage. The phase-
flip rate also increases with V as do the cooling rates. We note that the results
in Fig. 2A, B, D are the rates of the QCR-induced transitions. In our theory,
these rates are independent of the transitions caused by other decoherence
sources such as the single-photon loss and the pure dephasing, which are
considered later.

The bias voltage dependence of the transition rates can be understood
from an energy diagram of a NIS junction for single-quasiparticle tunnel-
ings [Fig. 2C], which also shows the minimum voltage at which each type of
photon-assisted electron tunnelings can occur for Tys=0. The voltage is
given by V® = (A — 2hwpg) /e, VIV = (A — hawgyg)/e, and VIV = (A +
hwgg)/ e for two-photon-absorption, single-photon-absorption, and single-
photon-emission processes, respectively. The rate for transition |¢,) —
|¢,) jumps ataround V = VU for sufficiently low Ty ¢ as seen in the result
at Ts = 10 mKin Fig. 2A. It suggests that this transition is due to the single-
photon-absorption process. For the same reason, we consider that the
opposite-parity (same-parity) transitions in Fig. 2A, B are caused mainly by
a single-photon (two-photon) process. Note that two-photon-absorption
processes can occur at a smaller voltage than the single-photon-absorption
processes. On the other hand, with more experimentally feasible tempera-
tures (T, = 100 mK), the increase of transition rates with respect to V'is
gradual and starts at smaller voltages than that for Ty = 0. This is due to the
temperature effect of the normal-metal island, which has a smooth variation

npj Quantum Information | (2025)11:26


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-00974-6

Article

>

log, (transition rate * sec)

-+ 2 — ¢1 (Tn,s = 10 mK)

. |
0 10 20 30 40 50 60

eV/h [GHz|

v s

6

5| opposite parity
41 - ¢4 — (bl
3

2

®5 — Po

same parity

log, (transition rate * sec)

1 - 03 — @1
of = G2 — ¢g
Rl ¢4 — ¢0
21 . . . ¢5 _> ¢1
0 10 20 30 40 50 60
eV/h [GHz|

Fig. 2 | QCR-induced inter-level transitions. A Voltage dependence of the rates of
dominant transitions corresponding to phase flip (black), cooling (blue), and heating
(red) of the KPO for a = 2. The parameters used are p, = 5 x 107, y/2m = 10 MHz, w,/
27=7 GHz, A =200 peV, Agpo/27 =0 MHz, Ry = 50 kQ), yp = 10~*, /2= 20 MHz,
and Ty,s = 100 mK. The values of the parameters, except for p,, are comparable to the
ones measured or used in the experiments””*”. The value of p, is smaller than that used
in the previous work"’. The data points in gray color are for Ty s = 10 mK. The voltage
indicated by the black triangles are V®, V), and V! in (C). The green vertical line
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indicates eV/h = 45 GHz used in (D). B The same things as (A) but for other tran-
sitions from excited states to the qubit states. C Schematic of energy diagram of a NIS
junction. The dark green, light blue, and red arrows indicate two-photon-absorption,
single-photon-absorption, and single-photon-emission processes, respectively. The
minimum voltages at which these processes can occur are V&, V), and V() for
Ty,s =0, respectively. We have eV® /h =~ 34 GHz, eV) /h ~41 GHz, and

eVl /h ~55 GHz for the parameters used. D a dependence of relevant transition
rates for eV/h = 45 GHz. The color scheme is the same as in (A).

of the Fermi distribution function. Figure 2D shows the a dependence of
relevant transition rates for eV/h =45 GHz. It is seen that the cooling and
heating rates are insensitive to « for & > 1.5, which is in the typical parameter
regime of the Kerr-cat qubit, and the cooling rates are two orders of mag-
nitude higher than the heating rates. Therefore, the cooling effect is robust
against changes in «. On the other hand, the phase-flip rate monotonically
increases with a. We attribute this to the fact that the QCR approximately
works as a source of single-photon loss with this bias voltage regime, and the
single-photon loss causes the effective phase flip with the rate proportional
to |af”. We also note that a = 0 corresponds to a transmon-type qubit, and
the rate of the transition from |¢,) to |¢,) is the cooling rate for the
transmon, while the rate of the transition from |¢,) to |¢,) is the heat-
ing rate.

Dynamics and stationary state of a KPO under operation of QCR
We study the dynamics and stationary states of the KPO under the
operation of the QCR. We assume that, initially the QCR is off and the state
of the KPO is |¢,). The QCR is turned on at t = tqcg as illustrated in Fig. 3A.
We take into account the pure dephasing y, and the single-photon loss « of
the KPO which are not derived from the QCR, by including the second and

the third terms of Eq. (35) in our equation of motion in addition to the effect
of the QCR represented by Eq. (12) (see subsection “Pure dephasing and
single-photon loss” in the Methods section). To distinguish the single-
photon loss from the QCR-induced photon loss, we refer to it as the original
single-photon loss. Relevant inter-level transitions for t < tocg and ¢ > tqcr
are illustrated in Fig. 3A.

Figure 3B shows the time dependence of P;, the population of | (/)i>. For
t<tqcr, Pis0) increases with time while Py decreases. (We numerically
integrated the equation of motion using a fourth-order Runge-Kutta
method in order to simulate the dynamics of the KPO.) The increase of P; is
due to the phase flip from |¢,) to |¢, ), indicated by a black arrow in Fig. 3A,
caused by the original single-photon loss. The increase of P;.1y is due to
heating induced by the pure dephasing denoted by the red arrows. For
t>tqcr, Pis1) decreases, and Py increases due to the cooling effect
represented by blue arrows. For sufficiently large t, |¢,) and |¢, ) are equally
populated due to the phase flip. The population of the qubit states Py + P;
increases at t = tqcg for eV/h = 45 GHz as shown in Fig. 3C, because of high
QCR-induced cooling rates dominating over y,. An increase in Py + P; is
not seen for eV/h =5 GHz because « and y, govern the dynamics of the
KPO. In Fig. 3D the population of the qubit states for the stationary state is
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Fig. 3 | Dynamics and stationary state of the KPO. A Schedule of the QCR and
relevant inter-level transitions when the QCR is off (left) and on (right). B Time
dependence of the population of energy levels P; and C the population of the qubit
states Py + Py, for x/27 = 1.6 kHz and y,,/27 = 0.8 kHz. The values of « and y, are
comparable to the ones measured for flux-tunable superconducting qubits™*’.

1
wn
o 09 i
= eV/h =45 GHz
+~
»v 0.8} i
=
)
0.7}
=
‘S 06
a
S 05}
=
2 5 GHz
& 0.3} —
0 200
1
wn
% 0.9} 5
= N
Z 08 Y
+~ Uort
Ba) X
= {
o 0.7¢ \\
5 \
g O x \
'g l/ 1 *
_§ 0.5} ; /;I- ’7p/277 i
84 041} I/Illl -+-0.8 kHz i
=¥ ) { % 0.4 kHz
0.3k ——p o™ . .
0 10 20 30 40 50 60
eV/h (GHz)

D Population of the qubit states of the stationary state as a function of V for « = 2y,,.
Insets are the Husimi Q function of the stationary states for y,/27 = 0.8 kHz. The
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exhibited as a function of the bias voltage for two different y, with x = 2y,
The population can be higher than 0.93 by tuning the bias voltage while it is
~0.3 when the QCR is off. The population for smaller y, becomes higher
than for larger y, at eV/h=35GHz. This is because less cooling rate is
sufficient to see the effectiveness of the QCR for smaller y,. In the small
voltage regime eV/h < 15 GHz, the QCR s effectively off, and the population
is determined by the ratio y,/«. On the other hand, for large voltage regime
eV/h =55 GHz, QCR-induced transitions dominate the effect of Vp and «.
Therefore, the population is insensitive to y, and «.

Biased nature of noise is preserved under operation of QCR

So far, we studied the effect of the QCR especially on the population P,
which is the diagonal element of the density matrix of the KPO pKP(? Now
we study the effect of the QCR on the off-diagonal elements of the density
matrix, and present that the biased nature of errors of the KPO is preserved
even under operation of the QCR, that is, the bit-flip rate is much smaller
than the phase-flip rate. In order to see the impact of the QCR on the off-
diagonal elements, we assume that the initial state is [¢,) o< [¢,) + |¢,). If
decoherence caused by the QCR signiﬁcantly enhances the decay of the off-
diagonal elements, p and oK 6, ¢ , the KPO rapidly approaches the mixed
state of |¢,) and |¢ ThlS can be interpreted as the QCR enhances bit
flips, and the biased nature of errors of the KPO is lost. Importantly, as
shown below, such decoherence is suppressed when |¢,) and |¢,) are
degenerate.

Accordmg to Eq. (12), the T's relevant to the change in p are T(¢b,
¢ 65 8)), TG0, ¢1, ¢1), and T(¢o, 61, ¢ In Fig. 4A, we present four
dominant ones much greater than the others, T’(¢, ¢y, ¢, ¢1), T (o, ¢1,
b1, 60), T2 (o, b1, Bo), and T (g, ¢y, ¢;), where the first two are positive and
increase the off-diagonal element while the latter two are negative and
decrease the off-diagonal element as illustrated in Fig. 4B. Here, T(¢o, ¢1,
$1> Po) is the effect of the quantum interference arising from the degeneracy
of |¢,) and |¢, ), and its role is to preserve the coherence of the KPO (see
subsection “Quantum interference effect associated with the level degen-
eracy” in the Methods section for the definition of the interference effect).
Although its amplitude is smaller than the other three, its impact on the bit-
flip rate is remarkable. Figure 4C shows the bit-flip rate (transition rate from
[¢,) to|¢_,)) asa function of . We define the QCR-induced bit-flip rate as
Ty_pgip = limy, o (6_,[p*PO(AD)|¢_,) /AL, where p**°(Af) is calculated
using Eq. (12) with pKPO(O) [$,)(¢,|. Here, ¢_, o |¢,) — |¢;), and

(polp_o? =0. If we neglect the quantum interference between the
degenerate levels, i.e., let T(¢, ¢y, ¢1, ¢o) = 0 in Eq. (12), the bit-flip rate
increases with «, and the phase-flip rate shown in Fig. 2D does not sig-
nificantly dominate over the bit-flip rate, that is, the biased nature of errors is
not preserved. On the other hand, if we use T”(¢o, ¢1, ¢1, o) given in
Eq. (13), the bit-flip rate steeply decreases as « increases and scales similarly
to the case of single-photon loss, that is, the bit-flip rate is proportional to
a’e @ (see subsection “Pure dephasing and single-photon loss” in the
Methods section). Then, the bit-flip rate is much smaller than the phase-flip
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Fig. 4 | Stability of the coherent state. A T's relevant to the change in p§"? asa
function of the voltage Vapplied to a NIS junction. The used parameters are the same
as in Fig. 2. B Schematic of the role of the relevant I's for the change of p§"? . T and
I'® abbreviate T®(¢o, ¢;, ¢o) and T¥(Po, ¢y, ¢1), respectively. The blue (red) arrows
indicate that positive (negative) I's preserve (degrade) the coherence of the KPO.
T (¢o, ¢1, B3, Po) is the effect of the quantum interference arising from the degen-
eracy between |¢, ) and |¢, > C The QCR-induced bit-flip rate as a function of a. The
black dotted curve represents the case where the QCR is on, but neglecting the
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quantum interference between the degenerate levels, that is, ™ (¢0, o1 ¢15 Po) =0.
The light-blue dashed line is the theory curve with the form of oc a?e™*¢". D Time
dependence of the population of |¢“> when the QCR is on (purple solid curve) and
when the QCR is off (green dashed curve), for x/27 = 1.6 kHz and y,/27 = 0.8 kHz.
The black thin dashed curve is for the case with I'"(¢g, ¢1, ¢1, ¢) = 0. The triangles
on the top of the figure indicate the time used in (E). E Husimi Q function,
(«']pXFO|a'), at different times, for the case that the QCR is off (left) and on (right).
We used eV/h = 40 GHz for (C-E).
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rate, and therefore the biased nature of errors is preserved under operation
of the QCR.

We examine the stability of |¢,) under operation of the QCR by
simulating the dynamics with the initial state of |¢,) and with eV/
h =40 GHz. We used a smaller bias voltage than in Fig. 3 to keep the QCR-
induced phase-flip rate around 10°s ™" [see Fig. 2A]. The population of [¢, ),
denoted by P,, is kept higher when the QCR is on than when the QCR is off
as shown in Fig. 4D. It is noteworthy that if we neglect the quantum
interference between the degenerate levels, P, decreases even more rapidly
than when the QCR is off. The population of qubit states is kept higher than
0.83 when the QCR is on due to the cooling effect, while it decreases
approximately to 0.3 when the QCR is off as shown in Fig. 3D. Thus, the
Kerr-cat qubit is stabilized by the energy absorption by the QCR and
the quantum interference between the degenerate levels. Figure 4E shows
the Husimi Q function, (o |p*F°|'), at different times. The Q function
widely spreads when the QCR is off because of the heating effect of the pure
dephasing (see the result for ¢ =48 us). On the other hand, it is confined
around o = *2 when the QCR is on.

In general, interference can occur when the system (the KPO, in our
case) has degenerate energy levels that are relevant to its dynamics, which do
not have to be the ground states. It is also noteworthy that, even if such
degenerate levels exist, the interference effect can be negligible depending on
the properties of the energy eigenstates. The properties are reflected in the

QCR-transition rates via 11f /bb 6,9, - FOT example, in Fig. 4C, the difference
between the QCR-induced bit- ﬂ1p rates with and without the interference
effect vanishes for & < 1, where the pump amplitude becomes zero, and the
form of the qubit Hamiltonian is the same as a transmon, while the two
lowest levels, |0) and |1), are still degenerate in the rotating frame. It implies
that the interference effect is negligible in this parameter regime.

Discussion

We have theoretically studied on-chip refrigeration for Kerr-cat qubits with
a QCR. We have examined the QCR-induced deexcitations and excitations
of a KPO by developing a master equation. The rate of the QCR-induced
deexcitations can be controlled by more than four orders of magnitude by
tuning the bias voltage across microscopic junctions. By examining the
QCR-induced bit and phase flips, we have shown that the biased nature of
errors of the qubit is preserved even under operation of QCR, that is, the bit-
flip rate is much smaller than the phase-flip rate. We have found novel
quantum interference in the tunneling process which occurs when the two
lowest energy levels of the KPO are degenerate, and have revealed that the
QCR-induced bit flip is suppressed by more than six orders of magnitude
due to the quantum interference. Thus, QCR can serve as a tunable dis-
sipation source that stabilizes Kerr-cat qubits, mitigating unwanted heating
due to pure dephasing. Even though we particularly consider a KPO in this
paper, our theory can be applied to more general superconducting circuits.
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Although studying the performance of the QCR in specific applications
of KPOs is beyond the scope of this paper, we comment on two possible
applications and directions for future study. A possible application of the
QCR is the stabilization of Kerr-cat qubits during gate-based quantum
computing. The QCR can reduce leakage errors into excited states which
cannot be corrected by quantum error-correction protocols that only deal
with errors in the qubit subspace. The QCR may also find application in
measurement-based state preparation of the Kerr-cat qubit, which was
proposed in ref. 54 and experimentally utilized in refs. 55,56. Homodyne
and heterodyne detections can be used to determine on which side of the
effective double-well potential the KPO is trapped. Therefore, the mea-
surement can tell us that the system is in either of |¢,) and [¢_,) if the
system is confined in the qubit subspace because |¢,) and [¢_,) are in
opposite potential wells. However, the total population of the excited states
gives rise to the error of the state preparation. Because a QCR can reduce the
population of excited states, activation of a QCR prior to the measurement-
based state preparation would increase the fidelity of the state preparation.

We discuss the disadvantages of the use of a QCR. The relevant
drawback of the QCR is the QCR-induced phase flip, which should be
corrected for large-scale quantum computations. This limits the applic-
ability of the QCR to cases where the pure dephasing rate is sufficiently
smaller than the acceptable phase-flip rate, which will vary across different
applications. The simple and wide tunability of the cooling rates of the QCR
will help to adjust the cooling performance balanced against the unwanted
QCR-induced phase flip. However, the use of a QCR will degrade system
coherence to an impractical level for error correction when the pure
dephasing rate is too high, although a QCR may still be useful for qubit reset.
As shown in Fig. 2D, the QCR-induced phase-flip rate decreases as the size
of coherent states « decreases. A possible way to mitigate the issue of the
unwanted QCR-induced phase flip is to find an appropriate « that is small
enough to achieve an acceptably slow QCR-induced phase-flip rate yet large
enough to ensure practical biased noise.

Asseenin Fig. 2A, there is a phase flip with the rate <10’ s, even in the
absence of the bias voltage V, due to finite photon-assisted electron tun-
neling. This residual phase flip can be reduced by decreasing the coupling
strength between the QCR and the KPO, although this comes at the cost of
reducing the maximum amplitude of the cooling rate. The heating rate at
V=0is <10s7", and is therefore negligible.

We summarize the pros and cons of our scheme comparing it with
the previous works based on two-photon dissipation'*** and frequency-
selective dissipation™. (i) Both of the previous schemes utilize additional
resonators. In contrast, our scheme uses a SINIS junction which is sig-
nificantly smaller in size compared to the resonators. (ii) The frequency-
selective dissipation does not require any additional drives. The two-
photon dissipation is activated by a microwave applied to the additional
resonator, while the QCR is driven by a DC bias voltage across the
junction. (iii) The QCR is insensitive to parameters of the KPO, such as
resonance frequency, nonlinearity parameter, and pump amplitude,
which is a useful feature for scaling up the system. In contrast, the
frequency of the microwave used for the two-photon dissipation
depends on the resonance frequencies of both the qubit and the addi-
tional resonator. For the frequency-selective dissipation, the resonance
frequencies of the additional resonators must be nearly identical, and
these frequencies are determined by the parameters of the KPO. (iv) The
QCR also functions for relatively small values of a, e.g., & = 2, where the
frequency-selective dissipation tends to increase bit flip errors compared
to the case without the dissipation mechanism™. (v) The advantage of
the previous schemes is that phase flip is not enhanced in an ideal
situation, whereas our scheme induces phase flip.

In this paper, we neglected the Johnson-Nyquist noise from the normal
metal island of the QCR, while the electron temperature of the normal metal
island was accounted for in the calculation of the QCR-induced transition
rates via the Fermi-Dirac distribution function. Although the Johnson-
Nyquist noise could potentially affect the properties of the attached reso-
nator and qubit, such an effect has not yet been observed in previous QCR

measurements'>**"~*, We attribute this to the fact that the electron tem-
perature of the normal metal island at the voltage used for cooling is lower
than that at V=0, due to the tunneling of high-energy electrons enhanced
by the bias voltage'"*’, and that the volume of the normal meal island is
small, typically on the order of 0.01 pm**.

In our derivation of the QCR-induced transition rates, the normal
metal island is set in a stationary state determined by elastic electron tun-
neling. This is based on assumptions that the dynamics of the normal metal
island are governed by elastic electron tunneling, which is much faster than
the photon-assisted electron tunneling for the parameters used, and thus the
stationary state determined by the elastic electron tunneling provides a good
approximation for the state of the normal metal island. In ref. 45, the authors
studied the charge dynamics of the normal metal island under the operation
of the QCR, and showed that the effect of the charge dynamics on the qubit
reset is limited for typical parameters. They also clarified that when the size
of the normal metal island is much smaller and enters in the quantum dot
regime, the dynamics of the normal metal island becomes significant,
leading to the emergence of different phenomena. Studying charge
dynamics with our system will be an interesting direction for future
research.

Methods

Unitary transformations

We apply unitary transformations U}, U, and Ugg to simplify the Hamil-
tonian and to move into a rotating frame at a frequency of w,/2. We begin
with U; defined by

i
Uj = exp {% Q,-cDN} (19)
which satisfies Uj(QN + Qj)UJT = Qy. The unitary transformation U;
simplifies H, by eliminating Q; as

2 >
H,= &-}-—(Q—F %Qv)” E; cos(%cb).

= 20
2Cy 2C, (20)

Because there is no @ in the Hamiltonian we can further rewrite it as

of (Q+ae’ 2
H, = ;{ZQV+ 2C, —E]cos(%d))}|q><q|,

where ¢ is an integer denoting the number of the excess charge in the
normal-metal island, that is, eq is the charge in the normal-metal island.
Note that U; does not change Hqp and Hr.

Next, we perform a unitary transformation

@1

i
U= Xq:eXp [5 aceqcb} l4)(dl 22)
to simplify H, in Eq. (21) to
¢ Q@ 2e
Hy=S |—/—+-—=—-FE )
0=2 {ZCN *ac, ;cos<h )} lg){al, (23)

by eliminating a.eq from the second term, where we used the fact that
U, = expl} ar.eq®] translates the charge operator as
Uy (Q+ aceq) U; = Q. The operator U changes Hy while Hqp is unchan-
ged. The effect of U on Hris discussed later. We further rewrite H, by using
¢ =2%dand n=Q/2eas

Hy=Y [% + 4Eon* — Ej(t) cos ¢} lg)(ql,
q

. (24)

= ; {%foﬂ] + Hgpo(1),
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where [¢, n] = i, and Hxpo(?) is the Hamiltonian of the KPO defined by

Hypo(t) = 4Ecn* — E;(t) cos ¢. (25)
We focus on the Hamiltonian of the KPO, Hkpo. The magnetic flux
®(#) in the SQUID is harmonically modulated around its mean value with a
small amplitude. Ej(t) is represented as E (t) = E ; cos(m®(t)/D,) where E 7
is constant. We assume that ®(f) = ©4. — 8 @, cos(w,t), where @y, and
0,(<1) are constant. Then, Ej(t) can be approx1mated asE; + OE cos(a) t),
where E; = E; cos(n®,./®,) and 8E; = E, 78, sin(n®@y ./ @y) (see, e.g.
section 4 1 of ref 8). The Taylor expansion leads to

Hypo(t) =4Ecn* —E;(1 —1¢* + L' + )

—0E; (1 =3¢ +4;0* + -+ ) cos(w,t). (26)

The quadratic time-independent part of the Hamiltonian (26) can be
diagonalized by using relations n = —iny(a — a’) and ¢ = ¢o(a + a'), where

nd = \/E;/(32E) and ¢3 = \/2E_/E, are the zero-point fluctuations.

Taking into account up to the 4th order of ¢, we obtain

H”Om =o®(aa+1) L@+ ah?

27
+ [— S+ 2pa+aly - 26 & (a+ah) ] cos(w,1), @

where we have defined the resonance frequency w*) = 1 | /8E_E, the Kerr
nonlinearity y = E¢/h, the parametric drive strength = w©8E, /(8E,). We
neglect the last term in the square brakets because it is much smaller than the
other terms (yB<w®). We also drop c-valued terms in the expression
above and obtain

Hypo(t)/h = 0Va’a — IX—Z(a + aT)4 +2f(a+ a+)2 cos(wyt).  (28)

Now, we move into a rotating frame at the frequency w,/2 by trans-
forming the system with unitary operator

Upe() = €779 @ Iy = > e im)(m| @ I, (29)
m

where Iy = Zq|q><q|. After the unitary transformation, the KPO
Hamiltonian is written as

O(t) = (@9 —w,/2)a"a - X(ae"_t—kae )
v/ (30)

+ Zﬂ(ae_iMTP' + a*ein) cos(w, 1).

To obtain Eq. (1), we use the rotating-wave approximation, which is valid
when [0© — w,/2l, }/12, and 2 are all much smaller than 2w,. The
detuning Agpo in Eq. (1) is given by Axpo = w. — w,/2, where w, is the
dressed resonator frequency defined by w, = @ — x. The term propor-
tional to [J’aTa cos(wpt) in Eq. (30) is omitted in the rotating-wave
approximation, and therefore the dressed resonator frequency is indepen-
dent of 5.

We consider the effect of U and Urg on Hy. The unitary operators
transform Hp as

(RF T
Hy ' = UpU HyU'Upg
= 3 3 Y et miy | exp[Lae(q — q)®]|m)

mm' kloq,q
X ((q e8| q) Tyed} i, + (1591 q) Thlodig) X 1, m')(q, m|
= 3 5 S e (| exp [~ ot e®] ) Ty yciplq — L) (q.ml

mm' klo q
| expf a.e®] m) Tl i lg + 1, (g .

€29

In the above equation, we used the following fact. Because the unitary
operator U, = ¢/i® shifts the charge state as

Uldq) =lg+1), (32)
we have
—iE Dy | o/ — UT ’
(gle™ ™V q') (qlU] Iq/> (33)
= (q+1lq).
In the derivation of Eq. (32), we used
UQuUf = Qy — (34)

The second term in Eq. (31) corresponds to the electron tunneling from the
normal-metal island to the superconducting electrode (note that the positive
charge in the normal-metal island increases because of this transition). By
using m = m’ — m in Eq. (31), we can obtain Eq. (8).

Pure dephasing and single-photon loss
We consider a KPO without a SINIS junction. The master equation of the
KPO is given by

dp(t)
aplt) _ [H%,FO),

dt h (35)

K
(O] + 5 Dlalp(t) + y,Dla’ alp(2),
where D[O]p = 2(5/3@+ — 0 Op — p@Y)”. Here, « and y,, are the single-
photon-loss rate and the pure-dephasing rate, respectively. We define the
transition rate from |y;) to |y;) due to the pure dephasing as

(36)

I, =y, (y,|Dla'alp,ly,),

where p; = |y;)(y;l and Syfly> =0.

We examine the transition rates from |y;) = |¢, ) to other states. The
transition rates normalized by y, are presented for different final states in
Fig. 5A. The bit-flip rate (transition from |¢,) to |[¢_,)) is suppressed as a
increases, and is explicitly written as

= 2aY(:2 4 yP)e > — ny]2
—2[o?{—(x? +y2)e 2 4 2y} + ot {(x? +y2)e 2 4 2xy}]
X [(2 + y2)e™ + 2xy],

ba=>¢ o
Iy / Yp

(37)

withx = - (N, +N_ )andy_ s(N, —N_). F(p“%(b “/y,inEq.(37)is
approxnnated by 20?4 for sufﬁc1ently large |0c| The transmon rates
outside the qubit subspace become much larger than the bit-flip rate as o
increases. Especially transition rates to the adjacent excited states |¢, ;) are
higher than y, itself for a > 1.4.

Similarly, we define the transition rate from |y;) to |1//f) due to the
single-photon loss as

I = r{yy [ Dlalp;lyy). (38)

Figure 5B shows the rate of relevant deexcitations to qubit states and bit flip
caused by the single-photon loss. The bit-flip rate is suppressed as «
increases, and is explicitly written as
r‘ﬁa*%a/K - )2 2,—4a?
o? ((x +52)e 2 — 2xp) (0 + yH)e 2 + 2xy),
(39)
which is well approximated by 2ae™*

for sufﬁcﬁgently large |a|. The
deexcitation rates asymptotically approach «, that is, T,

*® s x, which

npj Quantum Information | (2025)11:26


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-00974-6

Article

is derived by using |¢, ;) =~
||, where D(a) is the
by D(@) = explaa’ — a*al.

J.(D(oc)|1)+D( a)|1)) for sufficiently large
displacement ~ operator  defined

Derivation of master equation
Suppose that at time ¢ the state of the total system is given by

=3 a,0ly,).
4

The time evolution of the total system is governed by the Schrodinger
equation,

[W(t)) (40)

d i
5,0 =~ Ea,(0) ~ %; V(D (0), (1)

where V,(t) = (y,|H (TRF) (t)ly,). Integrating Eq. (41) over time leads to
the integral equation,

. t
—1i ! —1. —s)/h
a,(t)=e Euf/"a#(o)—ﬁz / Odse BOIRY (a0, (42)

The validity of this equation can be easily confirmed by differentiating the
equation with respect to time. Because of Eq. (42) we have

als)=e ’E‘/S/ha ,(0) — / ds' e Eu(s— S)/hV (s )af(s) (43)

We use Eq. (43) on the right-hand side of Eq. (42) and repeat the same
procedure to obtain the solution to second order in the perturbation as

a,t) =~ e*"%‘/hay(o) Z dse’E#(’ Iy (s)e= s/ a,(0)

- ds / 'V, ()V (s e Butl e us eives q,(0).
(49)

As seen from Eq. (8), the perturbation can be written as V,,(t) =

> om L‘f,’” xpliwgpdmt] with VL‘?,’”) = (y, [VO™|y ), where
yem — s~ Z{ (6m + m| exp[— £ a.e®]|m) - T,,(d;ckalq —1,8m + m)(q, m|
m klo q

+(dm + m| exp[éacedﬂ |m) - T;;czad,Aq +1,0m+ m><q, m|}.

By using Eq. (44), we can write elements of the density matrix, a, (t)a;j, (t),as

a,(ta*, (1)

Ma’“ﬂ" ~ uV(O)a:,(O)Jr;ZaZ(V(M)) fo

(7

,l(ww,,/+ww6m’)say(o)a*' (0)

—ET SV s, 0100

+h22 2 &n)(vifrr/n )) j(t) dsei(w,,,,wm-:im)s J(t) dSeii(w*""'+w”:6m’)s(l”(0)(lj,(0)

v, 8m,6m

_ﬁzsazg V((Sm)) V(r?m)JodS ‘ﬁ) ds’e7'(w»"’/+wk“amjsei<“f'/+w”6m/)S'u”(())a’g(o)
v, dm.om'
D5 VAPV s [t g ) 0)
v, Sm.om'

(46)

The first term represents the evolution of the density matrix without the
perturbation, the other terms represent the perturbation effects and include
contributions from other elements of the density matrix. By using Eq. (46)
and the results of subsection “Time integrals in Eq. (46)” in the Methods
section, we obtain

a,(t+Anar, (t+At)

— s At
e “‘w

a,(t)a, (1)

! 8 oK
I Y 2D VIR (VL) S(E,, +Ee,
b '

v dm,om'

—E; — E¢, + hwgpdm)a,(t)a;, (1)

— E% — E‘g% + hwRFL?m)ag(t)a;,(t)

’ . (o
_¢Z(V(”im)) Vi (B, + B,
§

Sy K
zWW@M&%+%7%7%+m®mmwm,

(47)

where > 6, DY g and E¢ , respectively, denote the summation with
respectto ¢,,, gbf, and ¢¢ which satisfies Eq. (15). Note that in Eq. (47),
we have replaced the time interval ¢ by At and shifted the origin of
time by t.

The KPO master equation in Eq. (12) can be obtained by tracing out
the environment from Eq. (47). The derivation is based on the following

assumptions: At time f, the density matrix is represented as
Pt) = pyys (D) © PO
written as pfﬁl)v = > Pel€) (€] with energy eigenstates |£), where p,. is the

probability that the state of the environment is |£). At time t+ At,
p(t + At) cannot be written as a product state of the system and the

Here, p©) is a thermal state of the environment

environment in general. We assume that the environment relaxes to the

original state p©) in time much shorter than At and the system can be

(45)  represented again in a product state as p(t + Af) = py (f + At) ® PO
A B .
0
?QJ £ -2 - ¢2 — ¢1
> 3 e $3 = ¢o
1 4 - ¢—o¢ I L 4
e —%
~— 51 (=]
& sl o & -6 Pa = P—a
3 S
S| B
8l
-9 -10

1 12 14 16 18 2 22 24 26
«

1 12 14 16 18 2 22 24 26
[0

Fig. 5 | Rate of transitions due to the pure dephasing and the single-photon loss. A Rate of transitions from |¢,, ) to other states due to the pure dephasing for Agpo = 0. The
rate is normalized by y,. B Rate of deexcitations and bit flip caused by single-photon loss, where the rate is normalized by .

npj Quantum Information | (2025)11:26

10


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-00974-6

Article

where p (t + At) = Tr,,p(t + At). This process repeats at each time
step At.

To obtain prg (t + At) we calculate 25 a,(t+ At)a (t+ At)
using Eq. (47), wflere |S ) = |€ ). As an example, we cons1der the
contribution of the term with a,(¢)a}, () in Eq. (47) particularly focusing
on the term including c,tad,,,lq + 1, 8m + m){q, m| of V¥ in Eq. (45).
For deriving the contribution of the term to pKPO (t + At), we note the

following points: (a) we consider only the case where |€,) = |E,,)
because a,(t)a’(t) = 0 otherwise; (b) the summation >y, is repre-
sented as 2f deif deng(y), where n; is the density of state of the quasi-
particles in the superconducting electrode; (c) summation >, can be
representedas ) o 3~ ,and summations 3 €, > ¢, areunifiedtod qp
which represents the sum running over the state of quasiparticles except
for modes k and I because the state of modes k and / and the normal metal
are determined by czod w19 + 1,8m + m)(q, m|, while the states of other
quasiparticle modes should be the same between |£,) and [, ); (d)
ZQPHa,,(t)uy,(t) leads to the factor p,ll— flee, TYIf (e, TN)pgf g ().
Taking into account these points, we find that the contribution from
pgﬁ% (t) to pKPO (t + At) is written as

4n\T| At

ZZ / deyn(e)p,[1 = fle, TOLF ™™ T Gy pEPS ().

Smom'.q ¢,

(48)

The contributions from the other terms and another NIS junction to

gpo (t + At) can be calculated in the same manner, and thus Eq. (12) is
obtained. In Eq. (13), we replaced 47| T|*/# by 1/e’Ry so that the tunnel
resistance matches the measured one for a sufficiently large V*°. The effects
of the two NIS junctions are the same because they are identical in
our model.

A comment on the derivation of the reduced master equation is in
order. Although we considered a pure state in Eq. (41) when deriving the
reduced master equation, the state at t should be regarded as a mixed state of
such pure states. In our theory, the probability that the state of the system is
each pure state is accounted for by factors such as p, and the Fermi-Dirac
distribution function.

Time integrals in Eq. 46
We consider the time integrals in Eq. (46). First, we consider the integral

t t
Yl(w, t) — / ei(wfwl)sds/ e*i(wfwz)sds,
0 0

included in the fourth term of Eq. (46), where w; and w, are constant. | Y;(w,
1)] peaks at w = w; and w,. In this study, we consider the cases in which either
w; = w, or two peaks are well separated.
When w; = w,, the height of the peak is £, while its width is of the order
of 2r/¢”. Tt is known that, for sufficiently large #, Y, approaches a delta
function, that is,

(49)

Y (w,t) = 2nté(w — w,) = 2mhtd(E — E,), (50)

where E; = Aw; = hw,. On the other hand, the integral can be neglected
when two peaks are well separated because the height of the peaks is of the

order of \/8(E).

Next, we consider

rt s
Yy(w,t) = / / dsds' '~ e (51)
J 0J 0

included in the fifth and sixth terms in Eq. (46). | Y>(w, )| peaks at w = w; and
w,. The integral can be neglected when two peaks are well separated because

the height of the peaks is of the order of \/8(E). When w; = w,, Yx(w, f)
approaches a function represented by
Y,(w,t) — nhtd(E — E;) + ig(E — E,), (52)

where the imaginary part, ig, can be neglected because it is an odd function
about E = E; and the width becomes very narrow as ¢ increases. By using
these relations, we can obtain Eq. (47) from Eq. (46). The condition for two
peaks to be considered sufficiently separated is that |w;—w,| is sufficiently
larger than 27/t because the width of each peak is of the order of 27/t.

Note that the second term in Eq. (46) can be neglected for the following
reasons. IS ) should be the same as |£,,) so that the integral can contnbute
to the den51ty matrix of the KPO, however if they are the same V# o " =0
and thus the second term becomes zero. The third term can also be neglected
for the same reason.

Probability p,
Here, we follow the same method as ref. 44 to calculate Py which defines the
probability of the normal-metal island state being |q). Because the elastic-
tunneling rate is much larger than inelastic ones*, we assume that p, can be
determined by the elastic-tunneling independently of the KPO state.

The population is written as

145 o
py=- [ =", (53)
1 Zq/:() rq’-}—l‘m‘m
where Z is the normalization factor, and T qimm(V) is defined by
(V) =M, ’; Z B(zeV — EJ), (54)
T=*1
with E* zc (1 +2q), Rg=h/é, and
- 1 [*®
BE) = / den ()1 — F(©)If (e — E). (55)
In Eq. (54), M2, ,, is defined by
My, = e LT (56)

where L, (p,) is the generalized Laguerre polynomials. We also have py = 1/
Z and p_, = p,. Equivalently p, is written as

b = 144 ZT:tlﬁ(TeV_E;;)
i Zq’=0 D rms P(reV — E;+l)

(57)

Quantum interference effect associated with the level
degeneracy

We explain the concept of the interference effect associated with the level
degeneracy, with particular focus on the integrand of the time integrals in
the third line of Eq. (46),

(58)

where we replaced the second integral variable s with s” to distinguish it from
the first. The contribution of this integrand to a, ()ay, (t) is schematically
illustrated in Fig. 6A. The integrand can also be represented by the left pair of
lines in Fig. 6B, as we consider the case where |€,) = |€,,) and |€,) = |€,,)
in the calculation of the reduced density matrix for the KPO, as explained in
the paragraph containing Eq. (10). This integrand can also be interpreted as
the contribution from Py, (‘z (0) to ,oKPO (t), because a,(0)a’,(0) and

’ o i AY4
V;j/m)(v‘fj?y )) e’(“’er“’RF‘sm)Se*’(“’y’x/+“’RF5"’ )s’ a,,(O)aﬁ,(O),
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Fig. 6 | Schematic of integrands in the third line of Eq. (46). A Schematic of the
contribution from the integrand in Eq. (58) to g (t)a (t) The left line represents
V(‘S'")e’(“’ Hewdmsg (0), while the right represents (VM ") " gy +ansdm)s g *(0).
B The left pair of the lines is the same thing as (A), where we used |y, |¢w & >
and &, = &, and &, = &,,. The right pair is associated with the same environment
states as the left, but different KPO states at £ =0, |¢”> and |¢> . The KPO states

corresponding to both the left and right pairs satisfy the first equation in Eq. (15).

a (t)a* (¢) are related to p (0) and p¢ ( t), respectively. The property
of the time integral i 1mposes a ' condition on the KPO states {|¢,),1¢,)}, as
represented by the first line of Eq. (15). When there is a level of degeneracy,
multiple sets of such initial states exist, each with different KPO states

{|¢1/)7 |¢1/)

refer to the contributions from such initial states, with different KPO states

} that satisfy Eq. (15), but with the same environment states. We

{l¢,),1¢,,)} but the same environment states, as the quantum interference
effect in this paper. Note that we term this contribution “quantum inter-
ference” when the initial environment states are identical as in Fig. 6B. The
contributions should not be called “quantum interference” when the initial
environment states are different, since there is no coherence between the
different environment states.

This integrand is associated with 1“(1)((45#7 ¢y b,5 6,5 V) in Eq. (13).
The master equation in Eq. (12) accounts for the quantum interference via
the summation with respect to the state of the KPO, ¢,,, which satisfies
Eq. (15). As aresult, it not only p§¥3 (0) but also pg"? (O) affects pg*o (£) in
our system where ¢ and ¢, are degenerate Espec1a y, T(do, 1, ¢1, ¢0, V)is
significant to describe the bit-flip accurately. If the contribution of pKPfE 0)
is omitted by putting T(¢, ¢y, ¢y, do» V) zero, the QCR-induced bit- ﬂ1p
rate becomes much larger than the correct one, as shown in Fig. 4C.

Although, this paper considers the case that the two lowest energy levels
are exactly degenerate, the formula of transition rates in Eq. (13) remains
approximately valid when the degeneracy is only approximate. To discuss the
validity of the formula in the presence of a small energy discrepancy, we
consider the time integral [ dse“w T ewms [ gse=i 0y @S in the
th1rd line of Eq. (46), particularly focusing on the term including
ckgdla|q +1,8m + m)(q, m| of V® in Eq. (45) as an example. The time
integral can be considered as a function of ¢, the energy of a quasiparticle in
mode [, and this function exhibits two peaks, each with a width of 271/At as
explained in subsection “Time integrals in Eq. (46)” in the Methods section.
When the first equation in Eq. (15) is satisfied, the two peaks overlap, and the
function works as a delta function for sufficiently large At. If the energy
difference between relevant levels is small enough compared to the width of
the peaks, the levels can be considered approximately degenerate, and Eq. (15)
is approximately satisfied. Assuming that At is on the order of 0.1 ps, the
width of the peak is on the order of 2w x 10 MHz. Therefore, we consider that
the formula in Eq. (13) is approximately valid when the energy difference
between relevant levels is on the order of 1 MHz or smaller. Here, we assumed
that At is on the order of 0.1 ys so that the following conditions are satisfied.
The width of the peaks 27/At is much smaller than the characteristic energy
scale of the Fermi-Dirac distribution function, kgTy s/l ~ 2 GHz, so that the
function of ¢, can be regarded as a delta function; At should be short enough so
that the effect of the other decoherence sources can be neglected in the
estimation of the QCR-induced transition rates. The second condition is
represented as At << 1/2xa’, where 2xa is the effective phase-flip rate caused

by the single-photon loss. Because the gap between the lowest levels and the
first excited state is ~40 MHz in this study, the first excited level is considered
apart enough from the lowest levels.
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