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Halving the cost of quantum algorithms
with randomization
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Quantum signal processing (QSP) provides a systematic framework for implementing a polynomial
transformation of a linear operator, and unifies nearly all known quantum algorithms. In parallel, recent
works have developed randomized compiling, a technique that promotes a unitary gate to a quantum
channel and enables a quadratic suppression of error (i.e., ϵ→ O(ϵ2)) at little to no overhead. Here we
integrate randomized compiling into QSP through Stochastic Quantum Signal Processing. Our
algorithm implements a probabilistic mixture of polynomials, strategically chosen so that the average
evolution converges to that of a target function, with an error quadratically smaller than that of an
equivalent individual polynomial. Because nearly all QSP-based algorithms exhibit query complexities
scaling asOðlogð1=ϵÞÞ—stemming from a result in functional analysis—this error suppression reduces
their query complexity by a factor that asymptotically approaches 1/2. By the unifying capabilities of
QSP, this reduction extends broadly to quantum algorithms, which we demonstrate on algorithms for
real and imaginary time evolution, phase estimation, ground state preparation, and matrix inversion.

Classical randomness plays apivotal role in the designof quantumprotocols
and algorithms. In the near-term, randomized benchmarking1 is central to
calibrating andassessing thequality ofquantumgates, andquasi-probability
methods like probabilistic error cancellation and noise twirling can help
reduce noise2. Similarly, random circuit sampling is central to quantum
supremacy experiments3, and randomized measurements provide a pow-
erful probe into the properties of complex quantum systems4. As we pro-
gress towards quantum advantage and early fault-tolerant quantum
hardware, many lines of research aim to reduce the requirements of tradi-
tional quantum algorithms by incorporating classical randomness5–7.

Randomized compiling is a key example of leveraging classical ran-
domness to improve quantum computation8–10. As its name suggests, this
process randomly compiles gates at execution time, or equivalently, pro-
motes a unitary gate to a quantum channel that is a probabilistic mixture of
unitaries. Remarkably, randomized compiling can quadratically suppresses
gate errors without increasing the cost of circuit synthesis. Yet, applications
of this technique to quantum algorithms have so far been restricted to
Trotterized Hamiltonian simulation11–15 and phase estimation16, leaving a
vacuum of applications to other algorithms.

In an effort to fill this gap of randomized quantum algorithms, we
propose using quantum signal processing (QSP)17,18 as a medium for
achieving widespread advantage of randomized compiling. QSP pre-
pares a polynomial transformation of a linear operator, and has been
shown to encompass nearly all quantum algorithms, fromHamiltonian

simulation and quantum search, to matrix inversion and fast integer
factoring19,20.

In this work, we achieve exactly this goal. We merge randomized
compiling with QSP by developing Stochastic Quantum Signal Processing
(Stochastic QSP). By virtue of randomized compiling, our construction
quadratically suppresses the error in a QSP polynomial approximation of a
target function. To study how this suppression impacts the cost of QSP-
based algorithms,we showthat an elementary result in the approximationof
smooth functions implies that nearly all QSP-based algorithms achieve a
query complexity that scales with the error ϵ asOðlogð1=ϵÞÞ, which we also
empirically confirm. Hence the quadratic suppression of error afforded by
stochastic QSP translates to an asymptotic halving of the cost of a QSP-
based algorithm over their deterministic counterparts (asymptotic in the
limit of logð1=ϵÞ dominating the cost). In realizing this cost reduction, we
“combine the strengths of QSP and randomization,” as hypothesized
in ref. 21.

An outline of this work is as follows.We first present the notation used
in this paper below. Then, in the Results section, we review QSP and other
preliminary topics, and subsequently present our main result on stochastic
QSP. Here we also benchmark the performance of stochastic QSP for var-
ious quantum algorithms, including real and imaginary time evolution,
phase estimation, ground state preparation, and matrix inversion. The
proofs and generalizations of our construction are provided in theMethods
and Supplementary Information.
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Notation:
We will study functions F(x) on the domain x ∈ [−1, 1] and use the

function norm

k Fk½�1;1� :¼ max
x2½�1;1�

jFðxÞj; ð1Þ

where we will focus on functions bounded as ∥F∥[−1, 1] ≤ 1.
A convenient set of functions on this domain are the Chebyshev

polynomials. The order n Chebyshev polynomial is defined as TnðxÞ ¼
cosðn arccosðxÞÞ for integern ≥ 0, and is apolynomial of degreenwithparity
nmod 2 (i.e., either even or odd) and bounded magnitude ∥Tn∥[−1, 1] = 1.
The Chebyshev polynomials furnish an orthogonal basis in which an
arbitrary function on x ∈ [−1, 1] can be expanded:

FðxÞ ¼ c0
2
þ
X1
n¼1

cnTnðxÞ; cn ¼
2
π

Z 1

�1

FðxÞTnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx; ð2Þ

where cn are the Chebyshev coefficients.
In this work we will also study unitary and non-unitary transforma-

tions. We will denote an operator by a Latin character, say A, and the
associated channel by the corresponding calligraphic character:
AðρÞ ¼ AρAy. In analyzing these operators, we will consider the spectral

norm k A k¼ supjψi Ajψi
�� �� and the trace norm k Ak1 ¼ trð

ffiffiffiffiffiffiffiffiffi
AyA

p
Þ,

which equate to the maximal singular value and the sum of singular values,
respectively.

Another relevant metric is the diamond norm, defined for a channel
E as:

kEk� ¼ sup
ρ

ðE � I ÞðρÞ�� ��
1
; ð3Þ

where this supremum is taken over normalized density matrices ρ in a
possibly-enlargedHilbert space, andI is the identity channel. The diamond
norm induces the diamond distance between two channels:

d�ðE;F Þ :¼ 1
2
k E � Fk�: ð4Þ

For channels AðρÞ ¼ AρAy and BðρÞ ¼ BρBy with spectral norms ∥A∥,
∥B∥≤1, the diamond distance is upper bounded as (see Lemma 4 of ref. 22
for proof):

d�ðA;BÞ ¼ 1
2
k A� Bk� ≤ k A� B k : ð5Þ

Results
The goal of this work is to integrate randomized compiling into QSP, and
thereby establish a framework for designing randomized quantum algo-
rithms that achieve reduced query complexities. Our main result is the
fulfillment of this goal through Stochastic QSP: we replace a single QSP
polynomial with a channel that is a probabilistic mixture of QSP poly-
nomials, each strategically crafted to exploit randomized compiling and
quadratically suppress error. As we show, this furnishes randomized QSP-
based algorithms with roughly half the cost of their deterministic counter-
parts. In order to develop stochastic QSP and prove ourmain result, we first
review its essential components: QSP, polynomial approximations to
smooth functions, and randomized compiling.

QSP
The quantum signal processing (QSP) algorithm is a systematic method of
implementing polynomial transformations on a quantum subsystem17,18,23.
QSP works by interleaving a signal operator U, and a signal processing

operator S, both taken to be SU(2) rotations about different axes. Con-
ventionally, U is an x-rotation through a fixed angle, and the S a z-rotation
through a variable angle ϕ:

UðxÞ ¼ x i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
x

" #
; SðϕÞ ¼ eiϕZ: ð6Þ

Then, with a set of d + 1 QSP phases ϕ
!¼ ðϕ0; ϕ1; . . . ; ϕdÞ 2 Rdþ1, the

following QSP sequence is defined as an interleaved product of U and S,
whose matrix elements are polynomials in x:

U
ϕ
!ðxÞ ¼ Sðϕ0Þ

Qd
i¼1

UðxÞSðϕiÞ

¼ PðxÞ iQðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

iQ�ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
P�ðxÞ

" #
;

ð7Þ

where P(x) and Q(x) are polynomials parameterized by~ϕ that obey:

1: degðPÞ≤ d; degðQÞ≤ d� 1

2:PðxÞ hasparity dmod 2; andQðxÞ hasparity ðd� 1Þmod 2

3: jPðxÞj2 þ ð1� x2ÞjQðxÞj2 ¼ 1; 8 x 2 ½�1; 1�:
ð8Þ

This result implies that one canpreparepolynomials inxbyprojecting into a
block of U!ϕ, e.g., h0jU!ϕj0i ¼ PðxÞ. While this class of polynomials is
limited by the conditions of Eq. (8), one can show that by projecting into
other bases (e.g., the j þ ih þ j basis), and incorporating linear-
combination-of-unitaries circuits24–26, QSP can encode an arbitrary
degree-d polynomial that need only obey ∥P∥[−1, 1]≤1

20. For any such
polynomial, the correspondingQSPphases ϕ

!
canbe efficiently determined

classically27–31, thus amounting to merely a pre-computation step. As per
Eq. (7), the cost of realizing such a degree-d polynomial is d queries toU(x).

Remarkably, QSP can be generalized to implement polynomial
transformations of linear operators through its extension to the quantum
eigenvalue transformation (QET)18,23 and quantum singular value trans-
formation (QSVT)20. This is achieved analogous to QSP: provided access to
a unitary U[A] that block-encodes an operator A, one can construct a
sequence of U[A] and parameterized rotations that encodes a polynomial
P(A):

U½A� ¼ A �
� �

� �
7!U

ϕ
!½A� ¼ PðAÞ �

� �

� �
; ð9Þ

where the unspecified entries ensure unitarity. In essence, this applies QSP
within each eigenspace (or singular value space) ofA, andoutputs adegree-d
polynomialP(A) actingon the eigenvalues (or singular values) ofA. The cost
of realizing this is d queries to the block-encoding, translating to a run-
time O(d).

QET and QSVT are powerful algorithms, shown to unify and simplify
most known quantum algorithms, while maintaining near-optimal query
complexities20. An algorithmcanbe cast into the language ofQET/QSVTby
constructing a polynomial approximation to a matrix function that solves
the problem of interest. For instance, in Hamiltonian simulation, one can
design a polynomial P(H) ≈ e−iHt to simulate time evolution18,23. Algorithms
encompassed in this framework include the elementary algorithms of
search, simulation, and phase estimation19,22, as well as more intricate
algorithms, like matrix inversion5,32,33, and ground state preparation6,7.

In this work, we use the term“QSP” in place of “QET” and “QSVT”,
following the conventional parlance.However, this should be understood to
be QET/QSVT when acting on a linear operator rather than a scalar.

Polynomial approximations to smooth functions
As emphasized above, the utility of QSP lies in generating matrix functions
without the need tounitarily diagonalize the underlyingmatrix. Specifically,
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QSP enables the approximation of a matrix function F(A) ≈ P(A) by a
polynomialP(A), where the accuracy of this approximation can be tuned by
increasing the degree of P(x). Because the cost of QSP-based algorithms
scales with the polynomial degree, their complexity rests on results in
approximation theory.

Tomake this connection concrete, consider thedecaying exponential
function e−βx for a parameter β > 0. In QSP, this function is employed to
prepare thermal states and estimate partition functions at inverse tem-
perature β20. It is well established that e−βx can be approximated to within
additive error ϵ over x ∈ [−1, 1] by a polynomial of degree
d ¼ Oð

ffiffiffi
β

p
logð1=ϵÞÞ20,34. Similarly, consider the error function erf(kx) for

a parameter k > 0, which is used in QSP to approximate the step function
by selecting a large k and is applicable to ground state preparation6,35. Prior
work has proven that erf(kx) can be approximated towithin additive error
ϵ by a polynomial of degree d ¼ Oðk logð1=ϵÞÞ20,34. In both cases, the
degree grows with which decreasing error and increasing parameters
β or k.

Observe that in each of these examples, the degree of the polynomial
scales with the error as Oðlogð1=ϵÞÞ. This scaling is a generic feature of
polynomial approximations to smooth functions, which originates from the
expansion of a function on x ∈ [−1, 1] in the basis of Chebyshev poly-
nomials (see Eq. (2)):

FðxÞ ¼ c0
2
þ

X1
n¼1

cnTnðxÞ: ð10Þ

As we prove in the Supplementary Information Section I, if F(x) is C∞

function (i.e., continuous and infinitely differentiable), then its Chebyshev
coefficients decay super-polynomially as jcnj ¼ e�Oðnr Þ for some exponent
r > 0.

For a large class of smooth functions, it is found that r = 136, such that
∣cn∣ = e−O(n) decays geometrically. In this case, a truncation of the Chebyshev

series at order d, PðxÞ ¼ Pd
n¼0 cnTnðxÞ, furnishes a degree d polynomial

approximation to F(x) that suffers error

max
x2½�1;1�

∣PðxÞ � FðxÞ∣ ¼ max
x2½�1;1�

P1
n¼dþ1

cnTnðxÞ
�����

�����
≤

P1
n¼dþ1

jcnj ¼
P1

n¼dþ1
e�OðnÞ ¼ e�OðdÞ:

ð11Þ

Hence, to guarantee an error at most ϵ, it suffices to choose a
degree d ¼ Oðlogð1=ϵÞÞ.

In practice many polynomial approximations are constructed via
truncated Chebyshev series. This includes polynomial approximations to a
wide range of functions relevant to quantum algorithms, including the
decaying exponential e−βx, trigonometric functions sinðtxÞ, cosðtxÞ, the step
function Θ(x), the inverse function 1/x, and beyond. (Although the step
functionΘ(x) and the inverse function 1/x exhibit singularities at x = 0, and
thus are not C∞ functions, they can however be approximated by C∞

functions by excluding a small region around their singularity. This strategy
is used in practice, and renders these function amenable to results on
polynomial approximations to smooth functions.) Accordingly, these
approximations all exhibit degrees that scale with the error as
d ¼ Oðlogð1=ϵÞÞ, which carries over to the complexity of their corre-
sponding QSP-based algorithms.

Randomized compiling and the mixing lemma
In order to incorporate randomization into QSP, we will use randomized
compiling. Formally introduced in ref. 8, randomized compiling replaces a
deterministic quantum circuit with a circuit sampled from a distribution.
This process can be viewed as replacing a unitary operation with a a
quantum channel that is a probabilistic mixture of unitaries.

Remarkably, if this mixture is chosen strategically, randomized com-
piling enables a quadratic suppression of error: if an individual gate

approximates a target unitary with error ϵ, the randomly compiled channel
can approximate the corresponding target channel with error O(ϵ2). This
error suppression is achieved at little to no increase in overhead, requiring
only the ability to classically sample a distribution and implement gates
on the fly.

The precise error suppression is quantified by the Hastings-Campbell
mixing lemma:

Lemma 1. (Hastings-Campbell Mixing Lemma9,10). Let V be a target
unitary operator, and VðρÞ ¼ VρVy the corresponding channel. Suppose
there exist m unitaries fUjgmj¼1

and an associated probability distribution
pj that approximate V as

k Uj � V k ≤ a for all j; and
Xm
j¼1

pjUj � V

�����
�����≤ b; ð12Þ

for some a, b > 0. Then, the corresponding channelΛðρÞ ¼ Pm
j¼1 pjUjρU

y
j

approximates V as

k Λ� Vk� ≤ a2 þ 2b: ð13Þ

This lemma enables a quadratic suppression of error if one can
specify an ensemble of unitaries {Uj} that each achieve spectral error
a = ϵ, and a distribution pj such that b = O(ϵ2). Then, while an indi-
vidual unitary Uj suffers diamond norm error O(ϵ), the channel Λ
achieves error ≤a2 + 2b = O(ϵ2). Importantly, because Λ is a prob-
abilistic mixture of the unitaries {Uj}, the cost of simulating Λ is no
more expensive than the cost of sampling pj and implementing an
individual unitary Uj.

Themixing lemmahas been leveraged to improve a variety of quantum
protocols through randomized compiling. Noteworthy examples include
reducing the cost of gate synthesis9,10,37–39, tightening fault-tolerance
thresholds for general noise models8, and enhancing the precision of state
preparation40,41. On the algorithmic side, the mixing lemma has been
merged with Trotterization to significantly reduce the complexity of che-
mical simulations11,13, double the order of Trotter formulae14, and accelerate
imaginary time evolution42,43. Here we continue this campaign by extending
randomized compiling to QSP. As QSP unifies nearly all quantum
algorithms19, this paves the way for new randomized quantum algorithms
with reduced query complexities.

The mixing lemma for block-encodings
As emphasized in above, QSP polynomials are constructed as block-
encodings. That is, a QSP polynomial P(A) is encoded in a block of a higher
dimensional unitaryU, and accessed asPðAÞ ¼ ΠUΠ0 for some orthogonal
projectorsΠ;Π0. Conventionally, as in Eq. (9), the projectors are taken to be
Π ¼ Π0 ¼ j0ih0j � I, such that P(A) is encoded in the j0ih0j block of the
unitary.

To apply themixing lemma toQSP, it is thereforenecessary to establish
a variant of the mixing lemma for operators block-encoded in unitary
transformations. For the sake of simplicity, we present this theorem for an
operator encoded in the j0ih0j block of a unitary:

Lemma 2. (Mixing Lemma for Block-Encodings: j0ih0j Block). LetV be a
unitary that block-encodes a (possibly non-unitary) target operator S as S =
(〈0∣ ⊗ I)V(∣0〉 ⊗ I). Suppose there exist m unitaries fUjgmj¼1

that block-
encode operatorsRj asRj= (〈0∣⊗ I)Uj(∣0〉⊗ I). Also suppose there exists an
associated probability distribution pj such that

k Rj � S k ≤ a for all j;

Pm
j¼1

pjRj � S

�����
�����≤ b: ð14Þ
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Then, the corresponding unitary channel ΛðρÞ ¼ Pm
j¼1 pjUjρU

y
j approx-

imates the action of the channel V as

�Λ� �V�� ��
� ≤ a

2 þ 2b; ð15Þ

where �Λ and �V are channels that access the block-encodings of Λ and V by
appending an ancilla qubit and projecting onto j0i:

�ΛðρÞ ¼ ð 0h ∣� IÞ � Λ ∣0i 0h ∣� ρ
� � � ð∣0i � IÞ

�VðρÞ ¼ ð 0h ∣� IÞ � V ∣0i 0h ∣� ρ
� � � ð∣0i � IÞ: ð16Þ

For brevity, we defer the proof of this theorem to Supplementary
Information Section II. there, we also showcase an analogous result for
arbitrary block-encodings accessed by projectorsΠ;Π0. Lemma 2 indicates
that by implementing the probabilistic mixture of block-encoding unitaries

ΛðσÞ ¼ Pm
j¼1 pjUjσU

y
j on an input state σ ¼ j0ih0j � ρ, and projecting

the block-encoding qubit onto j0i (hence the projectors j0i � I and
h0j � I), one can reproduce evolution under the target operator S with
diamond norm error a2+ 2b. In short, this result is proven by showing that
the channel �ΛðρÞ is equal to the probabilistic mixture of block-encoded

operators
Pm

j¼1 pjRjρR
y
j , to which themixing lemma applies. Parallel to the

usual mixing lemma, this result enables a quadratic suppression of error by
selecting operators Rj and an associated probability distribution pj such that
a = ϵ and b =O(ϵ2).

Main result: stochastic QSP
Lemma 2 very naturally applies to QSP. In this context, the target operation
is a matrix function: S = F(A), yet the operators we have access to are QSP
polynomials:Rj=Pj(A). A commongoal is to simulate evolutionunderF(A)
as FAðρÞ ¼ FðAÞρFðAÞy, which encompasses algorithms such as time
evolution, linear systems solvers, and ground state preparation, among
many others. Traditionally, one achieves this goal with QSP by finding a
suitable polynomial approximation to F(x) as ∣P(x)− F(x)∣ ≤ ϵ, such that
evolving under this polynomial with QSP as PAðρÞ ¼ PðAÞρPðAÞy suffers
error k PA � FAk� ≤OðϵÞ. If P(x) is a degree d polynomial, this procedure
requires d queries to the block-encoding of A.

Here we exploit the mixing lemma to approximate evolution
under F(A) to the same level of accuracy, but at asymptotically half the
number of queries to the block-encoding.We achieve this by designing
an ensemble of polynomials that each approximate F(A) as
k PjðAÞ � FðAÞ k ≤Oð ffiffiffi

ϵ
p Þ, and an associated probability distribution

that obeys ∥∑jpjPj(A)− F(A)∥ ≤ O(ϵ). Then, Lemma 2 readily implies
that the channel ΛA(ρ) = ∑jPj(A)ρPj(A)

† suffers error
k ΛA � FAk� ≤OðϵÞ. We also show that implementing ΛA requires a
number of queries to the block-encoding ≈d/2+O(1), a cost reduction
stemming from the fact that polynomial approximations of smooth
functions tend to have degrees that scale as d ¼ Oðlogð1=ϵÞÞ. Intui-
tively, this scaling implies that a polynomial that achieves error Oð ffiffiffi

ϵ
p Þ

(e.g., Pj(x)) has a degree that is asymptotically half that of a polynomial
that achieves error O(ϵ) (e.g., P(x)).

Presentation. Therefore, rather than implement a degree d polynomial,
one can instead sample over an ensemble of polynomials of average
degree ≈ d/2 + O(1), while retaining the same level of precision. As the
corresponding channel is constructed as a probabilistic mixture of QSP
sequences, we term this algorithm Stochastic Quantum Signal Processing:

Theorem 1. (Stochastic QSP). Suppose that F(x) is a bounded function
∥F∥[−1, 1]≤ 1 with a Chebyshev expansion

FðxÞ ¼
X1
n¼0

cnTnðxÞ ð17Þ

on the domain x ∈ [−1, 1], where for some degree d ≥ 2 the coefficients
decay as

jcnj≤Ce�qn for all n≥ d=2; ð18Þ

for some constantsC, q > 0. Suppose furthermore that a degree-d truncation
of F(x), PðxÞ ¼ Pd

n¼0 cnTnðxÞ, achieves an approximation error of ϵ as:

∣FðxÞ � PðxÞ∣≤
X1

n¼dþ1

jcnj ¼: ϵ; ð19Þ

such that a QSP implementation of the channel PAðρÞ ¼ PðAÞρPðAÞy for
some operatorA deviates from the target channelFAðρÞ ¼ FðAÞρFðAÞy by
an error

k PA � FAk� ≤ 2ϵ ¼ OðϵÞ; ð20Þ

while making d queries to the block-encoding of A.
Then there exists an ensemble of ≈ d/2 polynomials {Pj(x)} of degree

deg(Pj) ≤ d, and an associated probability distribution pj such that:

∣PjðxÞ � FðxÞ∣≤ 2 ffiffiffi
ϵ

p
����P
j¼1

pjPjðxÞ � FðxÞ
����≤ ϵ; ð21Þ

while the average degree of these polynomials is

d avg :¼
X
j¼1

pjdegðPjÞ

≤
d
2
þ logðCÞ

2q
� logð1� e�qÞ

2q
þ 1

2
þ 1
1� e�q

¼ d
2
þ Oð1Þ:

ð22Þ

Therefore, according to themixing lemma for block-encodings (Lemma 2),
the channel ΛA(ρ) =∑j=1pjPj(A)ρPj(A)

† suffers error

k ΛA � FAk� ≤ 6ϵ ¼ OðϵÞ; ð23Þ

while making davg≤ d/2 + O(1) queries to a block-encoding of A in
expectation. The cost reduction realized by this channel is (here, ≲ neglects
the terms independent of d and C in Eq. (22), which are less relevant than
logðCÞ=2q in practice)

davg
d

≲
1
2

1þ logðCÞ
qd

	 

; ð24Þ

which approaches 1/2 in the limit of large d.
We include theproofof this theorem in theMethods section.As ahigh-

level overview, we construct the polynomial ensemble by selecting each
polynomial to be the degree≈ d/2 truncation of theChebyshev expansion of
F(x), plus a single higher-order term in the expansion up to degree d.
Inclusion of the degree d/2 truncation guarantees that the first condition of
the mixing lemma is satisfied with error Oð ffiffiffi

ϵ
p Þ, and sampling the higher

order terms reproduces the degree d truncation in expectation, thus satis-
fying the second condition of the mixing lemma with error O(ϵ). Next, the
probability distribution is chosen to be proportional to the coefficients of the
Chebyshev expansion. Because these are assumed to decay exponentially,
the corresponding probability mass is concentrated around d/2, and so the
average degree equates to d/2+ O(1). For visual intuition of this behavior,
we provide an illustration of our stochastic QSP construction in Fig. 1.

Interpretation. Let us first take a minute to interpret this result. According
to Theorem 3, stochastic QSP replaces a deterministic polynomial P(x) with
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an ensemble of polynomials {Pj(x)} and probability distribution pj, whose
average evolution achieves the same precision up to a constant factor, but at
asymptotically half the cost. Importantly, this result is agnostic to the
specific polynomial, requiring only that its coefficients decay exponentially
according to Eq. (18). As we showed in above, this condition is generally
satisfied by polynomial approximations to smooth functions, rendering
stochastic QSP applicable to a wide range of algorithms. In practice, the
values of C and q in Eq. (18) can be chosen to minimize the ratio davg/d,
which effectively means minimizing logðCÞ=q.

The channel implemented by stochastic QSP is the probabilistic
mixture of polynomials ΛA(ρ) = ∑jpiPj(A)ρPj(A). As we discussed in the
previous section, this channelmay be realized by implementing an identical
probabilistic mixture of unitaries {Uj} that block-encode the polynomials
{Pj(A)}, and post-selecting on successfully accessing these block-encodings.
In practice, this can be achieved by independently sampling j ~ pj, and
implementing the QSP sequence that block-encodes the polynomial Pj(A).
Because Pj(x) is only bounded as k Pjk½�1;1� ≤ 1þ 2

ffiffiffi
ϵ

p
according to

Eq. (21), this implementation may require rescaling the polynomials by
1þ 2

ffiffiffi
ϵ

p
, which incurs a measurement overhead � ð1þ 2

ffiffiffi
ϵ

p Þ2 that
asymptotically approaches 1.

This procedure of course requires knowledge of the QSP phases for
each polynomial Pj(A). These sets of phases can be determined classically
using an efficient phase-finding algorithm, such as those of refs. 27–31, and
the associated circuits can similarly be pre-compiled. Because the ensemble
consists of ≈d/2 polynomials, each of degree at most d, the total storage
requirement is O(d2) QSP phases. Consequently, stochastic QSP requires
such a classical pre-computation step, with storage and computation cost
poly(d), as in ordinary QSP.

While Theorem 3 introduces stochastic QSP specifically for poly-
nomial approximations obtained from truncated Chebyshev series, it turns
out that this result extends tomore general polynomials. In Sec. IIF,we show
how stochastic QSP applies to polynomials of definite and indefinite parity,
Taylor series, trigonometric polynomials, generalized QSP44, and approx-
imations of the entire QSP unitary. These generalizations establish sto-
chastic QSP as a versatile framework, applicable to the whole apparatus of
QSP algorithms.

Lastly, it is important to note that while stochastic QSP reduces the
expected cost to davg ≈ d/2+O(1), it does not reduce the maximum degree
of the polynomials implemented: some polynomials in the ensemble will
havedegree greater thandavg, withone evenhavingdegreed. This however is
unavoidable. In fact it is necessary for the ensemble to contain polynomials
of degree >d/2 in order to attain a level of error equivalent to a degree-d

polynomial. To see this, observe that if all the polynomials in the ensemble
had degree atmost k < d, then their average∑jpjPj(x) would also be a degree
k < d polynomial. This average polynomial would not be able to achieve a
precision equivalent to that of a degree dpolynomial, thus failing tomeet the
second condition of the mixing lemma. Note however that the distribution
pj concentrates around small values of j, meaning that degrees much larger
than ≈d/2 are rare.

Through this interpretation, stochastic QSP is similar to the “semi-
quantummatrix processing” algorithm of ref. 45 for estimating expectation
values and matrix elements of a matrix-valued function. The authors
achieve this by decomposing a degree-d polynomial approximation of this
function into the Chebyshev basis, and sampling its constituent Chebsyhev
polynomials, and measuring an estimator of the sampled polynomial that
converges to the desired expectation value/matrix element. Like stochastic
QSP, this procedure can reduce the expected cost of certain algorithms to a
value < d if the Chebyshev coefficients decay quickly, but it does not reduce
the maximal degree because the order d Chebyshev polynomial can still be
sampled.However, thismethoddiffers fromstochasticQSP in twokeyways.
First, ref. 45 employs a quasi-probability technique where improvements in
average degree are traded for additional variance in the measurements,
whereas stochastic QSP always implements a normalized probability dis-
tribution. Second, the constructions in ref. 45 explicitly consider a target
observable O and modify their circuit to accommodate a parity measure-
ment Z ⊗ O with an ancilla register. Hence, their construction does not
constitute an approximate realization of a desired matrix function, whereas
stochastic QSP indeed approximates evolution under said matrix function,
thus rendering our approach more modular.

Utility in quantum algorithms. Stochastic QSP can be integrated into
larger quantum algorithms by replacing a deterministic QSP operation
with the corresponding stochastic QSP channel. This remains true
despite the stochastic QSP channel being incoherent, as it is a probabil-
istic mixture of operations.

As we prove in Theorem 3, the stochastic QSP channel closely
approximates the target channel in the diamond norm, where the target
channel is coherent. Therefore, the stochastic QSP channel can be sub-
stituted in for the target channel in a larger quantum algorithm, incurring
only anO(ϵ) error. This is analogous to the use of ordinary QSP, which also
approximates the target channel to withinO(ϵ) error. The crucial advantage
of stochastic QSP, however, is its efficiency: it achieves this approximation
while requiring asymptotically half the number of queries as ordinary QSP.

This result holds even in more complex scenarios. For instance, if the
target operation is controlled by an ancilla qubit (e.g., in the QSP-based
phase estimation algorithmof ref. 19), then stochasticQSP can approximate
the controlled target operation by an analogous mixture of controlled QSP
operations. This result relies on an extension of the mixing lemma to con-
trolled operations, which we prove in Supplementary Information Sec-
tion II.

Similarly, stochastic QSP is fully compatible with algorithms that use
the entireQSPunitary that block-encodesP(A).We show in Supplementary
InformationSection III that the ensembleofunitaries used in stochasticQSP
approximates not just the block-encoded operator P(A), but also the full
QSP unitary operator U[P(A)] in diamond norm. Examples of such algo-
rithms include the ground state energy estimation and ground state pro-
jection algorithms considered in ref. 5, as well as the use of amplitude
amplification where the projector is constructed through a polynomial
approximation Π = P(A)20.

Generalizations of stochastic QSP
Above, we introduced stochastic QSP tailored specifically to polynomial
approximations obtained from truncated Chebyshev expansions. However,
it turns out that this specialization is not necessary, and that stochastic QSP
is readily generalized to amuchbroader rangeofuse cases. In this section,we
show how our method applies to both definite- and indefinite-parity
polynomials, Taylor series, trigonometric polynomials, generalized QSP44,

Fig. 1 | An illustration of our stochastic QSP construction.According to Theorem
3, we are provided a functionwhose Chebyshev coefficients cn decay exponentially as
∣cn∣ ≤ Ce−qn for n ≥ d/2+ 1. Then, by defining a cutoff degree ≈ d/2 (see Eq. (36)), we
can design an ensemble of polynomials that consists of all lower-order terms n ≤ d/2,
and a single higher-order term d/2 < n ≤ d that is randomly sampled (see Eq. (37)).
The average degree of these polynomials is davg ¼ d

2 þ Oð1Þ.
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and approximating the entire QSP unitary. Here, we present corollaries for
these scenarios and defer their proofs to Supplementary Information Sec-
tion III.

Definite and indefinite parity. The statement of Theorem 3 applies to
functions F(x) of indefinite parity (recall that a function is said to have
definite parity if it is either even or odd; otherwise it has indefinite parity)
and produces an ensemble of polynomials {Pj} that also have indefinite
parity. However, if F(x) has definite parity, it turns out that this con-
struction preserves the parity.

The parity of the implemented polynomials Pj is important because
definite-parity polynomials admit simpler implementations via QSP.
Indeed, by construction QSP can only produce polynomials of definite
parity (see Eqs. (7) and (8)). In general, indefinite parity polynomials require
using a linear combination of unitaries circuit, which demands an extra
ancilla qubit and rescales the resulting block-encoding by 1/2. This rescaling
can be undesirable in algorithm construction because it may necessitate
amplitude amplification to be corrected, and can be avoidedwhen the target
functionF(x) hasdefiniteparity in thefirst place.Wewould like to retain this
optimizedperformance in the context of stochasticQSP,whichwe can show
is indeed the case.

Corollary 1. Consider the setting of Theorem 3, but also suppose that F(x)
has definite party. Then there exists an ensemble of polynomials {Pj} with
the same parity that satisfy the conditions of the theorem.

Note that this corollary also extends to complex-valued functions,
which are usually approximated by QSP by decomposition into their real
and imaginary components. Therefore, for an arbitrary target function,
realizing stochastic QSP requires a circuit nomore complicated than a QSP
circuit that approximates the target function.

Taylor series. As we discussed in Section IIB, Chebyshev expansions of a
smoothC∞ functions admit exponentially-decaying coefficients, and thus
yield polynomial approximations that meet the requisite conditions for
stochastic QSP. Functions of interest in the quantum algorithms litera-
ture commonly exhibit this smoothness property (like cosðxÞ or
expð�βxÞ), or are well-approximated by functions that do (like how the
step function is approximated by erf(kx)).

As such, we often desire a closed-form expression for the coefficients in
the Chebyshev expansion, allowing us to give concrete guarantees for the
values ofC and q required byTheorem3.However, for certain functions likeffiffiffi
x

p
and �x lnðxÞ, which are only smooth in certain domains, obtaining a

closed-form expression for the Chebyshev coefficients is cumbersome, and
the literature generally works with Taylor series instead (see for example
Theorem 68 of ref. 20 and its applications). Fortunately, stochastic QSP
directly generalizes to Taylor series, and expansions into bases of bounded
polynomials more generally.

Corollary 2. Suppose {Bn(x)} are a collection of basis functions of degree n
respectively, which are all bounded as ∥Bn∥[−1, 1]≤ 1. Then the statement of
Theorem 3 holds with Bn(x) in place of Tn(x).

Taylor series methods derive their accuracy from the analysis in Cor-
ollary 66 of ref. 20. The basic idea is the following. Suppose F(x) is analytic
and bounded on the interval [−1, 1], and our goal is to approximate it by a
polynomial on the interval [−1+ δ, 1− δ] for small δ < 1. If FðxÞ ¼P1

n¼0 cnx
n is the Taylor series of F(x) with coefficients ∣cn∣ ≤ 1, then the

error from truncating at degree d is:

sup
jxj≤ 1�δ

X1
n¼dþ1

cnx
n

�����
�����≤

X1
n¼dþ1

ð1� δÞn: ð25Þ

We immediately obtain an exponential decay in truncation error.
This is a slightly weaker condition than the one required for Corollary

2; we require an exponential bound on the coefficients themselves rather

than on the truncation error. But if we are willing to approximate the
stretched function F((1− δ)x) on the interval [−1, 1] instead, then sub-
stituting the Taylor expansion yields

Fðð1� δÞxÞ ¼
X1
n¼0

cnð1� δÞnxn ð26Þ

where the new coefficients cn(1−δ)n exhibit the desired exponential decay,
thus rendering this Taylor series expansion amenable to stochastic QSP.

Trigonometric polynomials. Recent works6,46 have considered a model
of quantum computation in which a constant-size control register is
strongly coupled to many qubits with an otherwise local connectivity
graph. In such an architecture, controlled time evolution can be imple-
mented through the Trotter approximation, but Hamiltonian simulation
via QSP techniques remains out of reach due to the small size of the
control register. Nonetheless QSP-like transformations of a Hamiltonian
H can be implemented through applying QSP to a controlled time evo-
lution operator.

A controlled time evolution operator is a block-encoding of eiHt.
Applying QSP to this block-encoding generates trigonometric polynomials
∑ncne

inHt. If we select t = π/∥H∥ and let our variable of interest be θ = Ht =
πH/∥H∥, then we can approximate functions F : [− π, π]→ [− 1, 1] using
degree-d trigonometric polynomials:

F θð Þ 	
X
n

cne
inθ: ð27Þ

Hence, by selecting Bn(θ) = e
inθ for the basis functions, we see howCorollary

2 applies in this setting as well. Any method for constructing trigonometric
polynomials can be used as long as the coefficients cn decay exponentially.
Conveniently, we show in Supplementary Information Section I that a C∞

function F(θ) has a Fourier series with exponentially decaying coefficients.
We see that, due to the relationship between Fourier expansions and Che-
byshev expansions, stochastic QSP applies equally well to trigonometric
polynomials as to regular polynomials.

Generalized QSP. Recently a technique was proposed ref. 44 for opti-
mizing QSP implementation, specifically when the block-encoded
operator U is unitary and is encoded via the controlled-U operation. In
this situation the usual constraints on parity can be lifted when synthe-
sizing complex polynomials, enabling polynomials of indefinite parity to
be generated directly through QSP and avoiding rescaling from using an
LCU circuit. For real polynomials it is possible to remove parity con-
straints by using Theorem 56 of ref. 20, but this introduces an undesirable
factor of 1/2 as discussed earlier. Using the methods of ref. 44 this factor
can be avoided.

By this reasoning, stochastic QSP is also compatible with the con-
struction of ref. 47, which halves the asymptotic cost of QSP-based
Hamiltonian simulation by using generalized QSP. This is achieved by
designing a block encoding of both the quantum walk operator and its
inverse, to which generalized QSP may be applied to approximate e−iHt at
roughly half the cost of ordinary QSP. Stochastic QSP could be applied on
top of this algorithm to further reduce the cost by another factor of 1/2,
equating to a total cost reduction of 1/4.

Approximating the QSP unitary. QSP methods typically project out a
single polynomial from the QSP sequence, conventionally taken to be the
polynomialP(A) encoded in the j0ih0j block (see Eqs. (7) and (9)). Indeed
stochastic QSP is concerned with approximating evolution under a
channel by projecting out this component. However, in some
situations22,35 and in amplitude amplification, we are also interested in the
other elements of the QSP sequence—particularly those that influence
the measurements of the ancilla qubit(s) used to construct the block-
encoding.
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These more complex uses of QSP rely on the entire unitary U[P(A)]
that block-encodes the transformed operator P(A). To show that stochastic
QSP can be applied in these situations as well, we demonstrate that sto-
chastic QSP also approximates the operatorU[P(A)] as a whole, rather than
just the P(A) sub-block.

Corollary3. In the setting ofTheorem3, consider the ensemble of quantum
circuits that implement stochastic QSP (i.e., theQSP circuits that implement
{Pj(A)}), upon leaving the QSP ancilla qubit(s) unmeasured. Denoting this
ensemble by {Uj}, the quantum channel ρ ! P

jpjUjρU
y
j approximates the

map ρ→ U[F(A)]ρU[F(A)]† to error O(ϵ) in diamond norm.

Applications
Here we apply stochastic QSP to several common polynomials used in the
quantum algorithms literature to assess its performance in practice. Our
focus will be on polynomial approximations of smooth functions, such that
Theorem 3 is applicable.

As wementioned in Sec. IIB, includes polynomials that approximate
functions with a finite number of singularities. This is achieved by
excluding regions around the singularities, allowing the function to be
replaced by a smooth interpolation that can then be approximated by a
polynomial. As we show, this renders stochastic QSP applicable to com-
monly used discontinuous functions, like the step function Θ(x) and the
inverse function 1/x.

We study the following four polynomials:
1. The Jacobi-Anger expansion of cosine[Ref. 20, Lemma 57]:

cosðtxÞ ¼ J0ðtÞ þ 2
X1
n¼1

ð�1ÞnJ2nðtÞT2nðxÞ; ð28Þ

where the J2n(t) are the Bessel functions of the first kind. To achieve additive
error at most ϵ, this series may be truncated at degree

d ¼ O jtj þ logð1=ϵÞ
logðeþlogð1=ϵÞ=jtjÞ

� �
. This polynomial, in conjunction with the

analogous expansion for sinðtxÞ, furnishes an algorithm for Hamiltonian
simulation with near-optimal query complexity18.

2. The Jacobi-Anger expansion of an exponential decay [Ref. 34, Lemma
14]:

e�βðxþ1Þ ¼ e�β I0ðβÞ þ 2
X1
n¼1

InðβÞTbð�xÞ
" #

; ð29Þ

where the In(β) is the modified Bessel functions of the first kind. This
expansion may be truncated at degree d ¼
O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβþ logð1=ϵÞÞ logð1=ϵÞ

p� � ¼ Oð
ffiffiffi
β

p
logð1=ϵÞÞ to achieve error at most

ϵ. Naturally, the resulting polynomial is commonly used for imaginary time
evolution48,49, thermal state preparation20, andpartition function estimation45.

3. A smooth approximation of 1/x in a domain away from the origin
[Ref. 50, Lemma 14]:

1
x
	 1� ð1� x2Þb

x

¼ 4
Pb�1

n¼0
ð�1Þn2�2b Pb

m¼nþ1

2b

bþm

	 

T2nþ1ðxÞ

ð30Þ

for an even integer b≫ 1. While this series is a degreeO(b) polynomial, its

coefficients decay rapidly, such that it can be further truncated to degree

d ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b logðb=ϵÞ

p� �
while guaranteeing error at most ϵ. The resulting

polynomial is particularly useful for inverting matrices and thus solving
linear systems of equations. If we take the (non-zero) eigenvalues of the
matrix to be lower-bounded as jλj≥ λmin, then in order to ensure that the

polynomial approximation behaves as≈ 1/x over the range of eigenvalues, it
suffices to choose chooses b ¼ O 1

λ2min
logð1=λminϵÞ

� �
. This corresponds to a

truncation degree d ¼ Oðκ logðκ=ϵÞÞ, where κ :¼ 1=λmin is the condition
number. For completeness, we note that algorithms with improved
performance have very recently been discovered33.

4. An approximation of erf(kx) obtained from integrating the Jacobi-
Anger expansion of a Gaussian [Ref. 34, Corollary 1]:

erf ðkxÞ ¼ 2ke�
k2
2ffiffi

π
p I0

k2

2

� �
x

h
þ P1

n¼1
I0

k2

2

� �
ð�1Þn T2nþ1ðxÞ

2nþ1 � T2n�1
2n�1

� ��
:

ð31Þ

To achieve error ϵ, it suffices to truncate this series at degree

d ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ logð1=ϵÞÞ logð1=ϵÞ

q
Þ ¼ Oðk logð1=ϵÞÞ. In practice, this

polynomial is used to approximate the step functionΘ(x) by selecting k≫1.
Notable applications of this approximation include the search problem19,
phase estimation19,22 and ground state preparation6,35.

All four of these functions feature a cost parameter, namely t,β, b, and k
respectively, whose value determines the truncation degree necessary to
achieve an accurate approximation.

We apply stochastic QSP to these polynomials, and illustrate the cost
reduction ratio davg/d as a function of d in Fig. 2. We rely on the following
procedure to compute davg. First, we select an integer n1, and then
numerically determine values of C, q such that cn≤Ce−qn holds for n ≥ n1.
This is achieved by selecting another integer n2 > n1 and computing C, q
such that Ce−qn goes through the points ðn1; cn1 Þ and ðn2; cn2 Þ. In doing so,
we choose n1, n2 to guarantee cn≤Ce−qn indeed holds for all n ≥ n1, and also
tominimize logðCÞ=q so as to heuristically reduce the dominant term in the
bound on davg in Eq. (22).We also select n1, n2 independent of the degree d;
we find that n1 naturally converges to the degree at which ∣cn∣ starts to decay
exponentially. For cosðtxÞ and erf(kx)wefind that this regime sets in later as
the respective cost parameter increases. Lastly, for each d, the cutoff degree
d* is computed from Eq. (36) (see “Methods”). Then davg is obtained by
explicitly computing the probabilities pj from Eq. (38) (see “Methods”) and
calculating the corresponding weighted average of degrees.

In Fig. 2 we observe the desired phenomenon: the cost reduction ratio
davg/d approaches 1/2 as d increases, with a discrepancy scaling as O(1/d).
Additionally, as the cost parameter increases, the magnitude of the error
terms � logðCÞ=qd can also increase, resulting in a later approach to 1/2.
This is expected because a larger cost parameter requires a larger degree to
maintain the same level of approximation. These results indicate that
indeed, stochastic QSP reduces the query complexity of QSP by approxi-
mately 1/2 in regimes of practical interest.

A more surprising phenomenon is that for some functions and values
of the cost parameter, davg/d approaches 1/2 from below, resulting in
improved performance for small d. This arises becausewe determine davgby
choosingvaluesC,q so as tominimize thedeviation logðCÞ=q. In somecases,
this can result in a value C < 1, or equivalently logðCÞ < 0, which causes the
ratio davg/d to deviate from1/2 by a negative value as per Eq. (22).Moreover,
the sawtooth behavior observed for each function in Fig. 2 is explained by
the presence of the ceiling function in the definition of d* in Eq. (36).When
d is small then the effect of this rounding is more pronounced.

Lastly, we emphasize that the cost reduction realized by stochastic QSP
hinges on the logð1=ϵÞ term in thedegree of thepolynomial approximation. In
scenarios where the degree scales multiplicatively with logð1=ϵÞ (e.g.,
approximations to e−βx, erf(kx), and1/x), thecost reductionquicklyapproaches
1/2. Conversely, in cases where the degree scales additively in logð1=ϵÞ (e.g.,
approximations to cosðtxÞ andsinðtxÞ), the cost reductiononlyapproaches1/2
when the logð1=ϵÞ term dominates. For instance, in Hamiltonian simulation,
the logð1=ϵÞ termmay not dominate in the large t limit, and consequently the
practical cost reduction will instead lie between 1 and 1/2.
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Discussion
Bymerging quantumsignal processing and randomized compiling,wehave
developed stochastic QSP. As we showed, stochastic QSP enables us to lift a
QSP algorithm to its randomized counterpart, and simultaneously shrink
the circuit complexity by a factor of 2. We empirically verified this cost
reduction for various algorithms of interest, including real/imaginary time
evolution,matrix inversion, phase estimation, andground state preparation.
This reduction can also be interpreted as enabling a cost parameter in the
underlying function to increase (e.g., a longer time t in Hamiltonian
simulation) without changing the query complexity. In aggregate, this result
demonstrates that classical randomness is a useful resource for quantum
computing, and can help bring quantumalgorithms closer to the near-term.

Moreover, in this work we did not consider noisy gates, but rather
assumed the ability to perform QSP exactly. As such, we leveraged rando-
mized compiling to suppress error in QSP polynomial approximations to
functions. Nonetheless, as randomized compiling can also suppress noise in
erroneous gates8, this suggests that a practical implementation of stochastic
QSP could benefit from also randomizing over the gate set, as a sort of
doubly-stochastic channel.Along these lines, itwouldbe interesting to study
the requirements and conditions for implementing stochastic QSP on near-
term quantum hardware.

The performance improvement realized through randomized com-
piling suggests further uses of this technique in quantum information.

While here we have applied randomized compiling to quantum algorithms
via QSP, it is likely that randomized compiling can confer a similar
advantage to the traditional constructions of quantum algorithms (e.g.,
Grover search51, or conventional phase estimation via the quantum Fourier
transform52). Further, it would be interesting to search for problems for
which randomized compiling (or a variant thereof) confers a super-
quadratic suppression of error, translating to a cost reduction by a factor
smaller than 1/2 in our context.With an eye toward applications, themixing
lemma could also be used to better understand and generate random uni-
taries and unitary designs53–56, and perhaps even be integrated with ran-
domized measurements4 to improve near-term protocols for studying
quantum systems. Likewise, there is an absence of randomized compiling in
classical simulation algorithms, which could admit similar improvements
for problems aimed to emulate quantum mechanics. Given the ubiquity of
random processes in the physical world, it is only natural that we can
harness randomness to gain deeper insights into quantum systems.

Note: After posting this work, we were made aware of a recent paper57

that also mixes over polynomials to suppress error. Despite this similarity,
our work makes novel contributions: we provide (1) an analytic construc-
tion of the ensemble of polynomials and associated probability distribution,
and (2) a rigorous argument for the cost reduction by a factor of 1/2. These
key contributions establish stochastic QSP as a versatile framework with
strong performance guarantees.

Fig. 2 | Average reduction in polynomial degree and hence circuit depth for some
common polynomials in the literature. davg is computed directly from the prob-
abilities pi in Eq. (38), not from the bound in Eq. (45). The cutoff degree d* is selected

according to Eq. (36), which depends on a choice of C and q obtained from n1, n2—
see the explanation in the main text.
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Methods
Proof of Theorem 3

Proof. The underlying goal of Theorem 3 is to simulate evolution under
F(A) according to the channel FAðρÞ ¼ FðAÞρFðAÞy. For notational con-
venience, let us define the degree t polynomial truncation of the Chebyshev
series of F(x) as

P½t�ðxÞ :¼
Xt

n¼0

cnTnðxÞ: ð32Þ

By the assumption that ∣cn∣ ≤Ce−qn for n ≥ d/2, we find that for t ≥ d/2, this
polynomial truncation suffers an error over x ∈ [−1, 1]:

∣P½t�ðxÞ � FðxÞ∣ ¼ P1
n¼tþ1

cnTnðxÞ
����

����
≤

P1
n¼tþ1

jcnj≤
P1

n¼tþ1
Ce�qn ¼ Ce�qt

1�e�q :

ð33Þ

Therefore, the error suffered by the degree d truncation P[d](x) = P(x) is at
most

jP½d�ðxÞ � FðxÞj≤ Ce�qd

1� e�q
¼: ϵ: ð34Þ

To estimate evolution under FA, one can use QSP to implement the
channel PAðρÞ ¼ P½d�ðAÞρP½d�ðAÞy. Using the diamond norm bound of
Eq. (5), we see that PA suffers error

k PA � FAk� ≤ 2 k P½d�ðAÞ � FðAÞ k
≤ 2 max

x2½�1;1�
∣P½d�ðxÞ � FðxÞ∣

≤ 2ϵ:

ð35Þ

AsP[d](A) is a degreed polynomial, the cost of implementingPA is d queries
to the block-encoding of A.

Our goal is to reproduce evolution under FA to diamond norm error
O(ϵ) by using a probabilistic mixture of QSP polynomials and invoking the
mixing lemma. We construct these polynomials by truncating the original
series at a cutoff degree d*, selected as follows. Because the mixing lemma
quadratically suppresses error, and the degree scales as logð1=ϵÞ, there
should exist an ensemble of polynomials of degree around d* ≈ d/2 whose
corresponding channel suffers the same error as the original degree d
polynomial. We can then readily determine d* by demanding that it be the
smallest integer suffering error at most

ffiffiffi
ϵ

p
:

Ce�qd�

1� e�q

	 
2

≤ ϵ ¼ Ce�qd

1� e�q
)

d� ¼ d
2
þ logðCÞ

2q
� logð1� e�qÞ

2q


 �
¼ d

2
þ Oð1Þ:

ð36Þ

Because the error suffered by a single polynomial obtained by truncating at
d* is greater than that at d, we have d* < d.

Next, let us define our ensemble of polynomials as

PjðxÞ ¼
P½d��ðxÞ þ cd�þj

pj
Td�þjðxÞ jcd�þjj> 0

0 cd�þj ¼ 0

(
ð37Þ

for j = 1, 2, …, d − d*, where pj is the associated probability distribution
defined as

pj ¼
jcd�þjjPd�d�

k¼1 jcd�þkj
: ð38Þ

Intuitively, each polynomial Pj(x) consists of the degree d* truncation
P½d��ðxÞ, and an additional higher-orderChebyshevpolynomial chosen such
that the average polynomial is the degree d truncation:

Xd�d�

j¼1

pjPjðxÞ ¼ P½d�ðxÞ: ð39Þ

The distribution pj is chosen such that terms with larger Chebyshev coef-
ficients are given more probability mass and are preferentially sampled.
Each polynomial in this ensemble is guaranteed to suffer error

jPjðxÞ � FðxÞj ≤ jP½d��ðxÞ � FðxÞj þ jcd�þjj
pj

≤
P1

n¼d�þ1
jcnj þ

Pd�d�

k¼1
jcd�þkj

≤ 2
P1

n¼d�þ1
jcnj ≤ 2

P1
n¼d�þ1

Ce�qn

¼ 2Ce�qd�

1� e�q
≤ 2

ffiffiffi
ϵ

p ¼ Oð ffiffiffi
ϵ

p Þ:

ð40Þ

This bound also implies that Pj(x) is bounded as k Pjk½�1;1� ≤ 1þ 2
ffiffiffi
ϵ

p
. On

the other hand, the average polynomial suffers error

Xd�d�

j¼1

pjPjðxÞ � FðxÞ
�����

����� ¼ ∣P½d�ðxÞ � FðxÞ∣≤ ϵ: ð41Þ

In the language of the mixing lemma for block-encodings (Lemma 2), this
corresponds to values a ¼ 2

ffiffiffi
ϵ

p
and b = ϵ. Accordingly, the channel

ΛAðρÞ ¼
Pd�d�

j¼1 pjPjðAÞρPjðAÞy suffers error

k ΛA � FAk� ≤ a2 þ 2b ¼ 6ϵ ¼ OðϵÞ: ð42Þ

Lastly, the expected cost of instantiating ΛA(ρ) is the average degree
davg ¼

Pd�d�

j¼1 pjdegðPjÞ, which corresponds to the average number of
queries to the block-encoding. Note that the degrees of these polynomials
are deg(Pj) = d* + j ≤ d. To evaluate the average degree, recall that this
theorem assumes that

jcnj≤Ce�qn for all n≥ d=2; ð43Þ

This implies that the mean of the distribution pj :¼
jcd�þjjPd�d�
k¼1

jcd�þkj
is upper-

bounded by the mean of the geometric distribution ~pj :¼ e�qðd�þjÞPd�d�
k¼1

e�qðd�þkÞ
¼

e�qjPd�d�
k¼1

e�qk
. Hence, we may upper bound davg as

davg ¼ Pd�d�

j¼1
pjdegðPjÞ ¼ d� þ Pd�d�

j¼1
jpj

≤ d� þ Pd�d�

j¼1
j~pj

¼ d� � ðd � d�Þ e�qðd�d�Þ
1�e�qðd�d�Þ þ 1

1�e�q

≤ d� þ 1
1�e�q

¼ d
2 þ logðCÞ

2q � logð1�e�qÞ
2q

l m
þ 1

1�e�q

≤ d
2 þ logðCÞ

2q � logð1�e�qÞ
2q þ 1

2 þ 1
1�e�q

¼ d
2 þ Oð1Þ

ð44Þ

where line 3 follows fromevaluatingmeanof the geometric distribution (i.e.,
evaluating a geometric series), and line 4 from d* < d. Accordingly, the cost
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reduction realized by ΛA is the ratio

davg
d

≤
1
2

1þ logðCÞ
qd

� logð1� e�qÞ
qd

þ 1
d
þ 2

ð1� e�qÞd

	 


	 1
2

1þ logðCÞ
qd

	 
 ð45Þ

where the last line follows from the fact that the logðCÞ contribution
dominates in practice. In the large d limit, the cost reduction approaches 1/2
inverse-polynomially fast.

Lastly, as this construction makes no reference to the eigenvalues or
singular values of A, stochastic QSP applies equally as well to QET and
QSVT, where P(A) acts on the eigenvalues or singular vectors of A,
respectively. In addition, while the presentation of stochastic QSP here is
tailored toward functions expressed in the basis of Chebyshev polynomials,
we extend this result tomore general functions and arbitrary arbitrary bases
in Section IIF.□
Observe from Eq. (37) that each polynomial in the ensemble is constructed
as the degree d* ≈ d/2 truncation plus a higher order term in the Chebyshev
expansion, up to degreed. The degree d* truncation guarantees that the first
condition of the mixing lemma is satisfied with errorOð ffiffiffi

ϵ
p Þ, and sampling

the higher order terms ensures that the second condition of the mixing
lemma is satisfied with error O(ϵ). The specific sampling distribution is
chosen to be proportional to the coefficients of the Chebyshev expansion,
which decay exponentially and lead to an average degree d/2 + O(1).
Through this view, the ensemble of stochastic QSP can be seen as a fixed
low-order term plus higher-order correction terms, which are randomly
sampled according to the QDrift protocol11 to leverage randomized com-
piling. An ensemble of a similar structure, albeit in the context of Trotter-
ization, was recently used in ref. 14 to double the order Trotter formulae
through randomized compiling.

Data availability
The data in Fig. 2 are available by request from the authors.

Code availability
The code used to generate Fig. 2 is available by request from the authors.
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