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Ensuringdataprivacy inmachine learningmodels iscritical, especially indistributedsettingswheremodel
gradients are shared among multiple parties for collaborative learning. Motivated by the increasing
success of recovering input data from the gradients of classical models, this study investigates the
analogous challenge for variational quantum circuits (VQC) as quantum machine learning models. We
highlight thecrucial roleof thedynamical Lie algebra (DLA) indeterminingprivacyvulnerabilities.While the
DLA has been linked to the trainability and simulatability of VQC models, we establish its connection to
privacy for the first time. We show that properties conducive to VQC trainability, such as a polynomial-
sized DLA, also facilitate extracting detailed snapshots of the input, posing a weak privacy breach. We
further investigateconditions for a strongprivacybreach,whereoriginal input data canbe recovered from
snapshots by classical or quantum-assisted methods. We establish properties of the encoding map,
such as classical simulatability, overlap with DLA basis, and its Fourier frequency characteristics that
enable suchaprivacybreachofVQCmodels.Our framework thusguides thedesignofquantummachine
learning models, balancing trainability and robust privacy protection.

In the contemporary technological landscape, data privacy concerns com-
mand increasing attention, particularly within the domain of machine
learning (ML)models that are trainedonsensitive datasets. Privacy concerns
are widespread inmany different applications, including financial records1,2,
healthcare information3–5, and location data6, each providing unique con-
siderations. Furthermore, the multi-national adoption of stringent legal
frameworks7 has further amplified the urgency to improve data privacy.

The introduction of distributed learning frameworks, such as federated
learning8–10, not only promises increased computational efficiency but also
demonstrates the potential for increased privacy in ML tasks. In federated
learning, each user trains a machine learning model, typically a neural
network, locally on their device using their confidential data, meaning that
they only need to send their model gradients to the central server, which
aggregates gradients of all users to calculate the model parameters for the
next training step. As the user does not send their confidential data, but
rather their training gradients, this was proposed as the first solution to
enable collaborative learning while preventing data leakage. However,
subsequent works have shown that neural networks are particularly sus-
ceptible to gradient inversion-based attacks to recover the original input
data11–15. To mitigate the above issue, classical techniques have been pro-
posed to enhance the privacy of distributed learning models, ranging from
gradient encryption-based methods16, the addition of artificial noise in the
gradients to leverage differential-privacy type techniques10, or strategies

involving the use of batch training to perform gradient mixing17. These
techniques, although mitigative in nature, are not fully robust since they
either still leak some input information, add substantial computational
overhead while training the model in the distributed setting, or result in
reduced performance of the model.

A natural question that follows is whether quantum machine learning
can help mitigate the privacy concerns that their classical counterparts
exhibit. Specifically, one is interested in exploring the fundamental question
underpinning the privacy of quantum models: Given the gradients of a
quantummachine learningmodel, howdifficult is it to reconstruct the original
classical data inputs? In search of privacy guarantees with quantum tech-
niques, several quantumdistributed learningproposals have beenpreviously
introduced18–26. Within the field of quantum differential privacy, quantum
noise27 and randomized encoding28 have been reported to have a beneficial
effect. Previous methods for improving privacy in a federated learning
context have ranged from the use of blind quantum computing29, high-
frequency encoding circuits30, and hybrid quantum-classical methods that
combine pre-trained classical models with quantum neural networks31. In
particular, thework of 30 consideredvariational quantumcircuits (VQC)as
quantum machine learning models and suggested that highly expressive
product encodingmaps alongwith an overparameterized hardware efficient
ansatz (HEA) would necessitate an exponential amount of resources (in
terms of the number of qubits n) for an attacker to learn the input from the
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gradients. Their work, although the first and sole one to date to theoretically
analyze the privacy of a specific VQC model architecture, has certain key
drawbacks. The first is that overparameterization of a HEA leads to an
untrainable model, since it mixes very quickly to a 2-design32 and thus leads
to a barren plateau phenomenon33. The authors enforced the requirement of
overparameterization to ensure that there are no spurious local minima in
the optimization landscape and that all local minima are exponentially
concentrated toward global minima34. However, this requires the HEA to
have an exponential depth and thus an exponential number of parameters,
which precludes efficient training due to an exponential memory require-
ment to store andupdate the parameters. Secondly, the difficulty of inverting
gradients to recover data primarily stems from the high expressivity, char-
acterized in this case by an exponentially large number of non-degenerate
frequencies of the generator Hamiltonian of the encodingmap. Introducing
high-frequency terms in the encodingmapmaynotbe anexclusivequantum
effect, as classical machine learning models could also be enhanced by
initially loading the data with these high-frequency feature maps35.

While previous studies have aimed to highlight the benefits of
employing VQC models in safeguarding input privacy, none have con-
vincingly addressed what sets VQC models apart from classical neural
networks in their potential to provide robust privacy guarantees. A critical
aspect missing in a comprehensive examination of the privacy benefits
offered by VQC models in a privacy framework tailored for them. Such a
framework should avoid dependence on specific privacy-enhancing pro-
cedures or architectures and instead focus on exploring the fundamental
properties of VQC models that result in input privacy.

To address the above concerns, we introduce a framework designed to
assess the possibility of retrieving classical inputs from the gradients
observed in VQC models. We consider VQCs that satisfy the Lie algebra
supported ansatz (LASA) property, which has been key in establishing
connections with the trainability and classical simulatability of VQCs36–38.
Our study systematically differentiates the separate prerequisites for input
reconstruction across both the variational ansatz and encoding map
architectures of these VQC models as summarized in Table 1. Our first
result concerns theproperties of the variational ansatz and themeasurement
operator of the VQC. Specifically, we show that when the VQC satisfies the
LASA condition, i.e., when the measurement operator is within the dyna-
mical Lie algebra (DLA) of the ansatz, and when the DLA scales poly-
nomially with the number of qubits, it is possible to efficiently extract
meaningful snapshots of the input, enabling training and evaluation ofVQC
models for other learning tasks without having direct access to the original
input. We call this the weak privacy breach of the model. Further, we
investigate conditions for strong privacy breach, i.e., recoverability of the
original input by classical or quantum-assisted polynomial time methods.
Fully reconstructing the input data fromthese snapshots toperforma strong

privacy breach presents a further challenge, whichwe show is dependent on
properties of the encoding map, such as the hardness of classically simu-
lating the encoding, the overlap of the DLA basis with encoding circuit
generators, and its Fourier frequency characteristics. The two types of
privacy breach we introduce are summarized in Fig. 1, while more specific
definitions regarding snapshots, recoverability, and invertibility are pro-
vided in the input recoverability definitions section.

This investigation presents a comprehensive picture of strategies to
extract thekeyproperties ofVQCs toprovide robust privacy guaranteeswhile
ensuring that they are still trainable. We structure our paper in the following
manner. Supplementaryfile Sec I provides thenotationused in thiswork.The
results section starts by providing a general framework for studying privacy
with VQC. This includes describing the VQC framework, providing Lie
theoretic definitions required for this work, and the privacy definitions in
terms of input recoverability. The results section then continues with the
snapshot recovery and snapshot invertibility subsections that provide a
detailed analysis of the snapshot recoverability from the gradients, and
snapshot inversion to recover the input, respectively. The method section
establishes the connections between privacy and the well-studied trainability
of VQCs, and then consequently highlights the future directions of enabling
robust privacy with quantum machine learning models.

Results
General Framework
Variational quantum circuits for machine learning. A variational
quantum circuit (VQC) is described in the following manner. We con-
sider the d-dimensional input vector x 2 X � Rd , which is loaded into
the quantum encoding circuit V(x) of n qubits to produce a feature map
with the input state mapping,

ρðxÞ ¼ VðxÞ∣0i�n 0h ∣�nVðxÞy: ð1Þ

This operation loads the input vector of dimension d to a Hilbert space
H ¼ ðC2Þ�n of dimension dim(ρ(x)) = 2n. We will explicitly consider the
scenario where n =Θ(d), which is a common setting in most existing VQC
algorithms, and hence the number of qubits in a given algorithm will be of
the same order as the input vector dimension d. The state ρ(x) is then passed
through a variational circuit ansatz U(θ) defined as

UðθÞ ¼
YD
k¼1

e�iθkHνðkÞ ; ð2Þ

which is parameterized by a vector of variational parameters θ= [θ1,⋯ , θD],
whereD is the total number of variational parameters.Here {H1,⋯ ,HN} are

Table 1 | Summary of results on the privacy guarantees and complexity provided by the studied attack models on various
VQC models

Privacy Breach Description Complexity Requirements

Weak Snapshot recovery Algorithm 2: Oðpolyðdim ðgÞÞÞ Oðpoly ðnÞÞsizedDLA+ LASAcondition (Def 5)+ SlowPauli Expansion
(Def 9)

Strong Snapshot inversion for local Pauli encoding Algorithm 4: Oðpoly ðn; 1=ϵÞ Snapshot recovery requirement + Separable state with ρJ(x)
parameterized by subset xJ � x
• dim ðxJÞ ¼ Oð1Þ
• each xk is encoded at most R ¼ Oðpoly ðnÞÞ times
• Snapshot components with non-zero overlap w.r.t. ρJ(xJ) has
cardinality at least dim(xJ).

Strong Snapshot inversion for generic encoding Grid Search : O L
ϵ

� �d� �
The recovery cost function is L-Lipschitz, leading to efficient privacy
breach not being possible

We consider two privacy breach scenarios involving VQCs :weak privacy breach and strong privacy breach for classical or quantum-assisted polynomial timemethods.Weak privacy breach concerns the
recoveryof themeaningful snapshotsof the input encodedstate, allowing trainingVQCmodels for distinct learning taskswithout requiringaccess to the input. Strongprivacybreachconcernssubsequently
arise when inverting the snapshots to recover the original input. We consider the snapshot invertibility for the local Pauli encoding map, which admits an efficient (polynomial in the number of qubits n)
algorithm if the requirements stated in the table aremet. For the case of generic encodingmapswhere the VQC is considered as a black-box L-Lipschitz function, snapshot invertibility requires performing
the grid search, which scales exponentially in the input dimension d, and thus it rules out efficient privacy breaches.
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the set ofNHermitian generators of the circuitU. The generator assignment
map ν: [D]→ [N] is used to assign one the generator Hν(k) to the corre-
sponding variational parameter θk. Under this notation, multiple distinct
variational parameters can use the same generator. This is the case for
repeated layers of a variational ansatz, where for L repeated layers, one
would haveD =NL and ν(k) = ((k− 1)modN)+ 1.We note that the above
structure is quite general since some common ansatz structures such as the
hardware efficient ansatz, the quantum alternating operator ansatz, and
Hamiltonian variational ansatz, among others, are all encapsulated in this
framework as highlighted in ref. 39.

The parameterized state ρ(x) is passed through a variational circuit
denoted byU(θ), followed by themeasurement of some observableO 2 H.
For a given θ, the output of the variational quantum circuit model is
expressed as the expectation value ofO with the parameterized state,

yθðxÞ ¼ Tr ðUyðθÞOUðθÞρðxÞÞ: ð3Þ

For the task of optimizing the variational quantum circuits, the model
output is fed into the desired cost function Cost(θ, x), which is subse-
quently minimized to obtain,

θ� ¼ argmin
θ

Costðθ; xÞ; ð4Þ

where θ* are the final parameter values after optimization. Typical examples
of cost functions include cross-entropy loss, and mean-squared error loss,
among others40.

The typical optimizationprocedure involves computing the gradient of
the cost function with respect to the parameters θ, which in turn, involves
computing the gradient with respect to the model output yθ(x)

Cj ¼
∂yθðxÞ
∂θj

; j 2 ½D�: ð5Þ

Going forward, we will directly deal with the recoverability of input x given
Cj, instead of working with specific cost functions. Details of how to
reconstruct our results when considering gradients with respect to specific
cost functions are covered in the Supplementary file Sec II.

Lie theoretic framework. We review some introductory as well as recent
results on Lie theoretic framework for variational quantum circuits which
are relevant to our work. For amore detailed review of this topic, we refer
the reader to39,41. We provide the Lie theoretic definitions for a periodic
ansatz of the form Eq. (2).

Definition1. (Dynamical LieAlgebra). The dynamical Lie algebra (DLA) g
for an ansatz U(θ) of the form Eq. (2) is defined as the real span of the Lie

closure of the generators of U

g ¼ spanRhiH1; � � � ; iHNiLie; ð6Þ

where the closure is definedunder taking all possible nested commutators of
S = {iH1,⋯ , iHN}. In otherwords, it is the set of elements obtained by taking
the commutation between elements of S until no further linearly indepen-
dent elements are obtained.

Definition 2. (Dynamical Lie Group). The dynamical Lie group G for an
ansatz U(θ) of the form of Eq. (2) is determined by the DLA g such that,

G ¼ eg; ð7Þ

where eg :¼ feiH; iH 2 gg and is a subgroup of SU(2n). For generators in g,
the set of all U(θ) of the form Eq (2) generates a dense subgroup of G.

Definition 3. (Adjoint representation). The Lie algebra adjoint repre-
sentation is the following linear action: 8K;H 2 g,

adHK :¼ ½H;K� 2 g; ð8Þ

and the Lie group adjoint representation is the following linear action
8U 2 G; 8H 2 g,

AdUH :¼ UyHU 2 g: ð9Þ

Definition 4. (DLA basis). The basis of the DLA is denoted as fiBαgα,
α 2 f1; � � � ; dim ðgÞg, where Bα are Hermitian operators and form an
orthonormal basis of g with respect to the Frobenius inner product.

AnyobservableO is said tobe entirely supported by theDLAwhenever
iO 2 g, or in other words

O ¼
X
α

μαBα; ð10Þ

where μα is the coefficient of support of O in the basis Bα.

Definition 5. (Lie Algebra Supported Ansatz36). A Lie Algebra Supported
Ansatz (LASA) is a periodic ansatz of the form Eq. (2) of a VQC where the
measurement operatorO is completely supported by the DLA g associated
with the generators of U(θ), that is,

iO 2 g: ð11Þ
In addition to its connections to the trainability of a VQC, this con-

dition also implies that 8θ;UyðθÞiOUðθÞ 2 g, which enables us to express

Fig. 1 | Overview of the general framework and definitions.Weak privacy breach
corresponds to attacks where snapshots of the data are retrieved. These can be used
as inputs to other models, without explicitly needing the exact data, allowing one to

potentially learn characteristics of the data. If these snapshots can then be further
inverted to retrieve the input data x explicitly, we say the attack has succeeded in a
strong privacy breach.
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the evolution of the observable O in terms of elements of g. This is key to
some simulation algorithms that are possible for polynomial-sized
DLAs37,38.

Input recoverability definitions
In this section, we provide meaningful definitions of what it means to
recover the classical input data given access to the gradients fCjgDj¼1 of a
VQC. Notably, our definitions are motivated in a manner that allows us to
consider the encoding and variational portions of a quantum variational
model separately.

A useful concept in machine learning is the creation of data snapshots.
These snapshots are compact and efficient representations of the input
data’s feature map encoding. Essentially, a snapshot retains enough infor-
mation to substitute for the full feature map encoded data, enabling the
training of a machine learning model for a distinct task with the same data
but without the need to explicitly know the input data was passed through
the feature map. For example, in methods such as g-sim38, these snapshots
are used as input vectors for classical simulators. The simulator can then
process these vectors efficiently under certain conditions, recreating the
operation of a variational quantum circuit.

Itwill becomeuseful to classify the process of input data x recovery into
two stages; thefirst concerns recovering snapshots of the quantum state ρ(x)
(Eq (1)) from the gradients, which involves only considering the variational
part of the circuit.

Definition 6. (Snapshot Recovery). Given the gradients Cj, j ∈ [D] as
defined in Eq (5) as well as the parameters θ = [θ1,⋯ , θD], we consider a
VQC to be snapshot recoverable if there exists an efficient Oðpolyðd; 1ϵÞÞ
classical polynomial time algorithm to recover the vector esnap such that,

j½esnap�α � Tr ðBαρðxÞÞj≤ ϵ; 8α 2 ½dimðgÞ�; ð12Þ

for some {Bα} forming a Frobenius-orthonormal basis of the DLA g
corresponding toU(θ) in Eq. (2), and the above holds for any ϵ > 0.We call
esnap the snapshot of x.

In other words, esnap is the orthogonal projection of the input state ρ(x)
onto the DLA of the ansatz, and thus the elements of esnap are the only
components of the input state that contribute to the generation of themodel
output yθ(x) as defined in Eq. (3). Here, we constitute the retrieval of the
snapshot esnap of a quantum state ρ(x) as weak privacy breach, since the
snapshot could be used to train the VQC model for other learning tasks
involving the samedata {x} butwithout the need to use the actual data.As an
example, consider an adversary that has access to the snapshots corre-
sponding to the data of certain customers. Their task is to train the VQC to
learn the distinct behavioral patterns of the customers. It becomes apparent
that the adversary can easily carry out this task without ever needing the
original data input since the entire contribution of the input x in the VQC
output decision-making yθ(x) is captured by esnap.

Next, we consider the stronger notion of privacy breach in which the
input data x must be fully reconstructed. Assuming that the snapshot has
been recovered, the second step we therefore consider is inverting the
recovered snapshot esnap to find the original data x, a process that is pri-
marily dependent on the encoding part of the circuit. Within our snapshot
inversion definition, we consider two cases that enable different solution
strategies: snapshot inversion utilizing purely classical methods and snap-
shot inversion methods that can utilize quantum samples.

Definition 7. (Classically Snapshot Invertible Model). Given the snapshot
esnap as the expectation values of the input state ρ(x), we say that VQC
admits classical snapshot invertibility if there exists an efficient
Oð poly ðd; 1ϵÞÞ polynomial time classical randomized algorithm to recover

x0 : kx0 � xk2 ≤ ϵ; ð13Þ

with probability at least p ¼ 2
3, for any user defined ϵ > 0.

Definition 8. (QuantumAssisted Snapshot inversion). Given the snapshot
esnap as the expectation values of the input state ρ(x), and the ability to query
poly ðd; 1ϵÞ number of samples from the encoding circuit V to generate
snapshots e0snap for any given input x0, we say that VQC admits quantum-
assisted snapshot invertibility, if there exists an efficient Oð poly ðd; 1ϵÞÞ
polynomial time classical randomized algorithm to recover

x0 :k x0 � xk2 ≤ ϵ; ð14Þ

with probability at least p ¼ 2
3, for any user defined ϵ > 0.

In this work, we specifically focus on input recoverability by con-
sidering the conditions under which VQC would admit snapshot recovery
followed by snapshot invertibility. Considering these two steps individually
allows us to delineate the exact mechanisms that contribute to the overall
recovery of the input.

It is important to mention that it may potentially only be possible to
recover the inputs of a VQC up to some periodicity, such that there only
exists a classical polynomial time algorithm to recover ~x ¼ x þ kπ up to ϵ-
closeness, where k 2 Z. As the encodings generated by quantum feature
maps inherently contain trigonometric terms, in the most general case it
may therefore only be possible to recover xup to someperiodicity.However,
this can be relaxed if the quantum feature map is assumed to be injective.

Figure 2 shows a diagram that highlights the Lie algebraic simulation
method38 along with specifications of the input recovery framework as
defined in this work.

Fig. 2 | Visualization of the full privacy attack process. a Visualization of the
difference between the circuit implementation of a variational quantummodel and a
Lie algebraic simulation procedure of the same model38. In the Lie algebraic Simu-
lation framework38, input data x is encoded into a quantum circuit using V(x),
however, the measurements are then performed on this encoded state and used to
form a vector of snapshot expectation values. This vector of snapshot expectation
values can then be passed as inputs to a classical simulator that uses the adjoint form
of U(θ), which can be performed with resources scaling with the dimension of the
DLA formed by the generators ofU(θ). b In this work, we assess the ability to recover
an input x from gradientsCj. This can be broken into two parts: Firstly, the snapshot
esnapmust be recovered from the gradientsCj, which corresponds to reversing the Lie
algebraic simulation step. Secondly, the recovered snapshot esnapmust be inverted to
find the original data x, which requires finding the values of x that when input into
V(x) will give the same snapshot values esnap. If both snapshot recovery and snapshot
inversion can be performed, then it admits efficient input recovery.
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Snapshot recovery
This section addresses the weak privacy notion of recovering the snapshots
of the input as introduced in Def 6. As the name implies, the goal here is to
recover the vector esnap for some Schmidt orthonormal basis fBαgα2dimðgÞ of
the DLA corresponding to the VQC ansatz U(θ), given that the attacker is
provided the following information,
1. D gradient information updates Cj ¼ ∂yθðxÞ

∂θj
; j 2 ½D� as defined in

Eq. (5).
2. Ansatz architecture U(θ) presented as an ordered sequence of

Hermitian generators fθk;HνðkÞgDk¼1, where Hν(k) is expressed as a
polynomial (in the number of qubits) linear combination of Pauli
strings.

3. Measurement operator O, which satisfies the LASA condition
according to Def 5 and is expressed as a polynomial (in the number of
qubits) linear combination of Pauli strings

Recovering these snapshots will enable an attacker to train the VQC
model for other learning tasks that effectively extract the same information
from the input states ρ(x) but without the need to use the actual data. The
main component of the snapshot recoverability algorithmmakes use of the
g-sim37,38 framework, which we briefly review in the following subsection
while also clarifying some previously implicit assumptions, to construct a
system of linear equations that can be solved to recover esnap as detailed in
Algorithm 2.

Reviewof Lie-algebraic simulation framework.We start by reviewing
the g-sim framework37,38 for classically computing the cost function
and gradients of VQCs, when the observable lies in the DLA of the
chosen ansatz. Specifically, this framework evolves the expectation
values of observables via the adjoint representation. However, a
necessary condition for this procedure to be efficient is that the
dimension of the DLA ( dim ðgÞ) is only polynomially growing in the
number of qubits.

The first step of g-sim consists of building an orthonormal basis for
the DLA g given ðfθk;HνðkÞgÞDk¼1. Algorithm 1 presents a well-known
procedure to do this. The procedure simply computes pairwise commu-
tators until no new linearly independent elements are found. Given that all
operators are expressed in the Pauli basis, the required orthogonal pro-
jectors and norm computations performed by Algorithm 1 can be per-
formed efficiently. If the dimension of DLA is Oð poly ðnÞÞ, then the
iteration complexity, i.e., the number of sets of commutators that we
compute, of this procedure is polynomial in n. However, an important
caveat is that potentially the elements forming our estimation for the DLA
basis could have exponential support on the Pauli basis, which is a result of
computing new pairwise commutators at each iteration. Thus, for this
overall procedure to be efficient, we effectively require that the nested
commutators of the generatorsHk do not have exponential support on the
Pauli basis.

Definition 9. (Slow Pauli Expansion). A set of Hermitian generators {H1,
…,HN} on n-qubits expressed as linear combinations ofOð poly ðdimðgÞÞÞ
Pauli strings satisfies the slow Pauli expansion condition if ∀ r ∈ [N], [Hr, [
⋯ , [H2,H1]]] canbe expressedas a linear combinationofOð poly ðdimðgÞÞÞ
Pauli strings.

In general, it is unclear how strong of an assumption this is, which
means that the attacks that we present may not be practical for all
VQCs that satisfy the polynomial DLA condition, and thus privacy
preservation may still be possible. Also, it does not seem to be possible
to apply the g-sim framework without the slow Pauli expansion con-
dition. Lastly, a trivial example of a set of Hermitian generators that
satisfies the slow Pauli expansion is those for the quantum compound
ansatz discussed in ref. 36.

Algorithm 1. Finding DLA basis
Require: Hermitian circuit generators {H1,…, HN}, all elements are linear
combinations of polynomially-many Pauli strings

Ensure:A000 ¼ fB1; . . . ;BdimðgÞg as the basis for the DLA g
1. Let A ¼ fH1; . . . ;HNg, with all elements represented in the

Pauli basis.
2. Repeat until breaks

(a) Compute pairwise commutators of elements ofA intoA0
(b) Orthogonally projectA0 onto the orthogonal complement ofA

in g
(c) Set new A00 to be A plus new orthogonal elements. If no new

elements, break.
3. Perform Gram–Schmidt onA formingA000.
4. ReturnA000.

Given the orthonormal basis Bα for g, under the LASA condition, we
can express O ¼Pα2½dimðgÞ�μαBα, and hence we can write the output as

yθðxÞ ¼ Tr ðUyðθÞOUðθÞρðxÞÞ ¼P
α

Tr ðμαUyBαUρðxÞÞ

¼P
α

TrðμαAdUðBαÞρðxÞÞ:
ð15Þ

In addition, given the form of U, we can express AdU as,

AdU ¼
YD
k¼1

e
�θkadiHνðkÞ : ð16Þ

We can also compute the structure constants for our basis Bα, which is the
collection of dimðgÞ× dimðgÞmatrices for the operators adiBα

. As a result of
linearity, we also have the matrix for each adiH for H 2 g in the basis Bα.
Then, by performing matrix exponentiation and multiplying
dimðgÞ× dimðgÞ we can compute the matrix for AdU.

Using the above, the model output may be written,

yθ ¼
X
α;β

μα½AdU�αβ Tr ðBβρðxÞÞ ¼ μTAdUesnap; ð17Þ

where esnap is a vector of expectation values of the initial state,
i.e., ½esnap�β ¼ Tr ½BβρðxÞ�:

Similar to the cost function, the circuit gradient can also be computed via
g-sim. Let,

Cj ¼
∂yθ
∂θj
¼ μT

∂AdU
∂θj

esnap ¼: χðjÞ � esnap; ð18Þ

where the adjoint term differentiated with respect to θj can be written as,

∂AdU
∂θj
¼

YD
k¼j

e
θkadiHνðkÞ

2
4

3
5adiHνðjÞ

Yj
k¼1

e
θkadiHνðkÞ

" #
: ð19Þ

The components of χ(j) can be expressed as,

χðjÞβ ¼
X
α

μα
∂AdU
∂θj

" #
α;β

; ð20Þ

allowing Cj terms to be represented in a simplified manner as

Cj ¼
XdimðgÞ
β¼1

χðjÞβ ½esnap�β: ð21Þ
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The key feature of this setup is that the matrices and vectors involved
have dimension dim ðgÞ, therefore for a polynomial-sized DLA, the simu-
lation time will scale polynomially and model outputs can be calculated in
polynomial time38. Specifically, the matrices for each adiHk

in the basis {Bl}
and AdU are polynomial in this case.

This Lie-algebraic simulation technique was introduced in order to
show efficientmethods of simulating LASA circuits with polynomially sized
DLA. In this work, we utilize the framework in order to investigate the
snapshot recovery of variational quantum algorithms. Based on the above
discussion, the proof of the following theorem is self-evident.

Theorem1. (Complexity of g-sim). If ansatz familyU(θ) with an observable
O satisfies both the LASA condition and Slow Pauli Expansion, then the cost
functionand its gradients canbesimulatedwithcomplexityOð poly ðdimðgÞÞÞ
usingaprocedure that atmostqueries aquantumdevice apolynomialnumber
of times to compute the dimðgÞ-dimensional snapshot vector esnap.

Snapshot recovery algorithm

Algorithm 2. Snapshot Recovery
Require: Observable O such that iO 2 g, generators fHνðkÞgDk¼1, ordered
sequence ðfθk;HνðkÞgÞDk¼1, and gradients Cj ¼ ∂yθðxÞ

∂θj
; j 2 ½D� for some

unknown classical input x.
Ensure: Snapshot esnap for x

1. Run Algorithm 1 to obtain an orthonormal basis for the
DLA fBβgβ2½dimðgÞ�
2. For β 2 ½ dim ðgÞ�, compute the dim ðgÞ× dim ðgÞmatrix adiBβ

3. For k ∈ [D], compute the coefficients of Hν(k) in the basis
fBβgβ2½dimðgÞ�, which gives us adiHνðkÞ

4. For k ∈ [D], compute the dim ðgÞ× dim ðgÞ matrix
exponential eθkadiHνðkÞ

5. For j ∈ [D] compute the dim ðgÞ× dim ðgÞ matrix

∂AdU
∂θj
¼

YD
k¼j

e
θkadiHνðkÞ

2
4

3
5adiHνðjÞ

Yj
k¼1

e
θkadiHνðkÞ

" #
: ð22Þ

6. For β 2 ½ dim ðgÞ�, compute the coefficients μβ of O in the
basis fBβgβ2½dimðgÞ�

7. For j 2 ½D�; β 2 ½ dim ðgÞ�, compute

χðjÞβ ¼
X
α

μα
∂AdU
∂θj

" #
α;β

; ð23Þ

and construct D× dim ðgÞ matrix A with Ars ¼ χðrÞs .
8. Solve the following linear system,

½C1; . . . ;CD�T ¼ Ay; ð24Þ

and return y as the snapshot esnap ..
With the framework for the g-sim38 established, we focus on how snapshots
esnap of the input data can be recovered using the VQCmodel gradients Cj,
with the process detailed in Algorithm 2. In particular, the form of Eq (21)
allows a set-up leading to the recovery the snapshot vector esnap from the
gradients fCjgDj¼1, but requires the ability to solve the system of D linear
equations given by {Cj} with dim ðgÞ unknowns ½esnap�β2dimðgÞ. The fol-
lowing theorem formalizes the complexity of recovering the snapshots from
the gradients.

Theorem 2. (Snapshot Recovery). Given the requirements specified in
Algorithm 2, along with the assumption that the number of variational
parametersD≥ dim ðgÞ, where dim ðgÞ is the dimension of the DLA g, the
VQC model admits snapshot esnap recovery with complexity scaling
asOð poly ðdimðgÞÞÞ.

Proof. Firstly, we note that given the gradientsCj and parameters θj∈[D], the
only unknowns are the components of the vector esnap of length dim ðgÞ.
Therefore, it is necessary to have dim ðgÞ equations in total; otherwise, the
system of equations would be underdetermined, and it would be impossible
to find a unique solution. The number of equations depends on the number
of gradients and, therefore, the number of variational parameters in the
model; hence, the requirement that D≥ dim ðgÞ.

Assuming now that we deal with the case where there areD≥ dim ðgÞ
variational parameters of the VQC model, we can therefore arrive at a
determined system of equations. The resulting system of simultaneous
equations can be written in a matrix form as,

C1

C2

..

.

CD

0
BBBB@

1
CCCCA ¼

χð1Þ1 χð1Þ2 � � � χð1ÞdimðgÞ

χð2Þ1 χð2Þ2 � � � χð2ÞdimðgÞ

..

. ..
. . .

. ..
.

χðDÞdimðgÞ χðDÞdimðgÞ � � � χðDÞdimðgÞ

0
BBBBBB@

1
CCCCCCA

½esnap�1
½esnap�2

..

.

½esnap�dimðgÞ

0
BBBBB@

1
CCCCCA ð25Þ

In order to solve the system of equations highlighted in Eq. (25) to

obtain esnap, we first need to compute the coefficients fχðjÞβ gj2½D�;β2½dimðgÞ�.
This can be done by the g-simprocedure highlighted in the previous section
and in steps 1-7 in Algorithm 2 with complexity Oð polyðdim ðgÞÞÞ. The
next step is to solve the systemof equations, i.e., step 8 ofAlgorithm2,which
can solved using Gaussian elimination procedure incurring a complexity
Oð dim ðgÞ3Þ42. Thus, the overall complexity of recovering the snapshots
from the gradients isOð polyðdim ðgÞÞÞ. This completes the proof.

In the case that the dimension of DLA is exponentially large
dim ðgÞ ¼ OðexpðnÞÞ, then performing snapshot recovery by solving the
system of equations would require an exponential number of gradients and
thus an exponential number of total trainable parameters D ¼ OðexpðnÞÞ.
However, thiswould require storinganexponential amountof classical data,
as even the variational parameter array θ would contain OðexpðnÞÞ many
elements, and hence thismodelwould already breach the privacy definition,
which only allows for a polynomial (in n =Θ(d)) time attacker. In addition,
the complexity of obtaining the coefficients χðjÞβ and subsequently solving the
system of linear equations would also incur an exponential cost in n. Hence,
for the systemof simultaneous equations tobedetermined, it is required that
dim ðgÞ ¼ Oð poly ðnÞÞ. Under the above requirement, it will also be pos-
sible to solve the system of equations in Eq. (25) in polynomial time and
retrieve the snapshot vector esnap. Hence, a model is snapshot recoverable if
the dimension of the DLA scales polynomially in d.

Snapshot invertibility
We have shown that in the case that the DLA dimension of the VQC is
polynomial in the number of qubits n and the slow Pauli expansion con-
dition (Def 9) is satisfied, then it is possible to reverse engineer the snapshot
vector esnap from the gradients. As a result, this breaks the weak-privacy
criterion. The next step in terms of privacy analysis is to see if a strong
privacy breach can also occur. This is true when it is possible to recover the
original data x that was used in the encoding step to generate the state ρ(x);
the expectation values of this state with respect to the DLA basis elements
form the snapshot esnap. Hence, even if theDLA is polynomial and snapshot
recovery allows the discovery of esnap, there is still the possibility of achieving
some input privacy if esnap cannot be efficiently inverted to find x. The
overall privacy of the VQC model, therefore, depends on both the data
encoding and the variational ansatz.
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One common condition that is necessary for our approaches to
snapshot inversion is the ability to compute the expectation values
Tr ðρðx0ÞBkÞ; 8k 2 ½ dim ðgÞ� for some guess input x0. This is the main
condition that distinguishes between completely classical snapshot inver-
sion and quantum-assisted snapshot inversion. It is well-known that
computing expectation values of specific observables is a weaker condition
than ρ(x) being classically simulatable43. Hence, it may be possible to clas-
sically perform snapshot inversion even if the state ρ(x) overall is hard to
classically simulate. In the quantum-assisted case, it is always possible to
calculate Tr ðρðx0BkÞ values by taking appropriate measurements of the
encoding circuit Vðx0Þ.

In the first subsection, we present inversion attacks that apply to
commonly used feature maps and explicitly make use of knowledge about
the locality of the encoding circuit. The common theme among these feature
maps is that by restricting to only a subset of the inputs, it is possible to
express the ρ(x) or expectations thereof in a simpler way. The second
subsection focuses onarbitrary encoding schemesbyviewing theproblemas
black-box optimization. In general, snapshot inversion can be challenging
or intractable even if the snapshots can be efficiently recovered and/or the
feature map can be classically simulated. Our focus will be on presenting
sufficient conditions for performing snapshot inversion, which leads to
suggestions for increasing privacy.

Snapshot inversion for local encodings. For efficiency reasons, it is
common to encode components of the input vector x in local quantum
gates, typically just single-qubit rotations. The majority of the circuit
complexity is usually either put into the variational part or via non-
parameterized entangling gates in the feature map. In this section, we
demonstrate attacks to recover components of x, up to periodicity, given
snapshot vectors when the feature map encodes each xj locally. More
specifically, we put bounds on the allowed amount of interaction between
qubits that are used to encode each xj. In addition, we also require that the
number of times the feature map can encode a single xj be sufficiently
small. While the conditions will appear strict, we note that they are
satisfied for some commonly used encodings, e.g., the Pauli product
feature map or Fourier tower map30, which was previously used in a VQC
model that demonstrated resilience to input recovery.

For the Pauli product encoding, we show that a completely classical
snapshot inversion attack is possible. An example of a Pauli product
encoding is the following:

On
j1

ρjðxjÞ ¼
On
j1

RXðxjÞ∣0i 0h ∣RXð�xjÞ: ð26Þ

whereRX is the parameterized PauliX rotation gate. The Fourier towermap
is similar to Eq. (26) but utilizes a parallel data reuploading scheme, i.e.,

Od
j¼1

Om
l¼1

RXð5l�1xjÞ
 !

: ð27Þ

where n = dm, with m being the number of qubits used to encode a single
dimension of the input.

1. Pauli Product Encoding: The first attack that we present will spe-
cifically target Eq. (26). However, the attack does apply to the Fourier tower
map as well. More generally, the procedure applies to any parallel data
reuploading schemes of the form:

Od
j¼1

Om
l¼1

RXðαlxjÞ
 !

: ð28Þ

We explicitly utilize Pauli X rotations, but a similar result holds for Y or Z.
For a Pauli operator P, let Pj :¼ iI�ðj�1Þ � P� I�ðn�jÞ.

Algorithm 3. Classical Snapshot Inversion for Pauli Product Encoding
Require: Snapshot vector esnap(x) of dimension dimðgÞ ¼ Oð poly ðnÞÞ
corresponding to a basis ðBkÞdimðgÞk¼1 of DLA g. Each Bk is expressed as a
linear combination of Oð poly ðnÞÞ Pauli strings. Snapshot inversion is
being performed for aVQCmodel that utilizes a trainable portion ofU(θ)
with DLA g and Pauli product encoding Eq. (26). Index j∈ [d], ϵ < 1

Ensure: An ϵ estimate of the jth component xj of the data input x 2 Rd up
to periodicity, or output FAILURE.
If iZj 2 g then
α← 1, β← 0
W Yj

else if iYj 2 g then
α← 1, β← 0
W Yj

else
1.Determine set ofPauli strings required to spanelements ðiBkÞdimðgÞk¼1
and denote the set Pg.

2.Pg  Pg ∪ fZj;Yjg, jPgj ¼ Oð poly ðnÞÞ by assumption.
Reduce Pg to a basis.

3. LetC be a jPgj× dimðgÞmatrix whose k-th column corresponds
to the components of iBk in the basis Pg.

4. Let A be a jPgj× 2 whose first column contains a 1 in the row
corresponding toZj andwhose second column contains a 1 in the
row corresponding to Yj.

5. Perform a singular value decomposition onATC, and there are at
most two nonzero singular values r1, r2.

if r1 ≠ 1 and r2 ≠ 1 then
return FAILURE

else
1.W ← singular vector with singular value 1.
2. Expand iW in basis ðiZj; iYjÞ record components as α and β,

respectively.
end if

end if
1. Expand iW in basis ðBkÞdimðgÞk¼1 , and record components as γk.
2. Compute

~xj ¼ cos�1
2

sign ðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q XdimðgÞ
k¼1

γk½esnap�k

2
64

3
75� tan�1ðβ=αÞ: ð29Þ

3. return ~xj.

Theorem 3. Suppose that the polynomial DLA and slow Pauli expansion
(Def 9) conditions are satisfied. Also, suppose that we are given a snapshot
vector esnap(x) for aVQCwith trainable portionU(θ) withDLA g and Pauli
product feature encoding (Eq. (26)) and the corresponding DLA basis ele-
ments ðBkÞdimðgÞk¼1 . The classical Algorithm 3 outputs an ϵ estimate of xj, up to
periodicity, or outputs FAILURE, with timeOð poly ðnÞ logð1=ϵÞÞ.

Proof. We provide the proof in the methods section.
For illustrative purposes, we show in Fig. 3 the snapshot inversion

process for the special case where iZj 2 g, i.e.,

xj ¼ cos�1 2γðjÞ � esnap
� �

; ð30Þ

for iZj ¼
PdimðgÞ

k¼1 γðjÞk Bk. The general parallel data reuploading case can be
handled by applying the procedure to only one of the rotations that encodes
at xj at a time, checking to find one that does not cause the algorithm to
return FAILURE.

2.General Pauli Encoding:Wenowpresent amore general procedure
that applies to featuremaps that use serial data reuploading andmulti-qubit
Paulis. However, we introduce a condition that ensures that each xj is locally
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encoded. More generally, we focus our discussion on encoding states that
may be written as a tensor product ofΩ subsystems, i.e., multipartite states.

ρðxÞ ¼
O
J2P

ρJ ðxÞ; ð31Þ

where dimðxJ Þ is constant. The procedure is highlighted inAlgorithm4 and
requires solving a system of polynomial equations.

In addition, the proceduremay not be completely classical as quantum
assistance may be required to compute certain expectation values of ρJ(x),
specifically with respect to the DLA basis elements. For simplicity, the
algorithm and the theorem characterizing the runtime ignore potential
errors in estimating these expectations. If classical estimation is possible,
thenwe canpotentially achieve aOð poly ðlogð1=ϵÞÞÞ scaling.However, ifwe
must use quantum, then we will incur a Oð1=ϵÞ (due to amplitude esti-
mation) dependence, which can be significant. Theorem 4 presents the
attack complexity, ignoring these errors.

Algorithm 4. Snapshot Inversion for General Pauli Encodings
Require: Snapshot vector esnap(x) of dimension dimðgÞ ¼ Oð poly ðnÞÞ
corresponding to a basis ðBkÞdimðgÞÞk¼1 of DLA g. Each Bk is expressed as a
linear combination of Oð poly ðnÞÞ Pauli strings. Snapshot inversion is
being performed for a VQC model that utilizes a trainable portion of

U(θ)
with DLA g and separable encoding Eq. (31) with qubit partition P.

Index
j∈ [d], ϵ < 1

Ensure: An ϵ estimate of the jth component xj of the data input x 2 Rd up
to periodicity

1. Find a ρJ for J 2 P that depends on xj. LetR denote the number of
Pauli rotations in the circuit for preparing ρJ that involve xj.

2. For each k 2 ½dimðgÞ�, compute Tr(BkρJ(x)) and Tr ðBkρJc ðxÞÞ.
3. Determine the set SJ ¼ fk : Tr ðBkρJðxÞÞ≠ 0&
Tr ðBkρJc ðxÞÞ ¼ 0g, Jc≔ [n]− J.

if SJ< dimðxJ Þ then
return FAILURE

else
1. For each k 2 SJ evaluate Tr(BkρJ(x)) at M ¼ 2RdimðxJ Þ þ 1

points, xr 2 f 2πr2Rþ1 : r ¼ �R; . . .Rg
dimðxJ Þ

2. For each k, solve a linear system

Tr ðBkρJ ðxrÞÞ ¼ α0 þ
X

r2½R�dimðxJ Þ
αre

ir�xr

for α’s.
3. Consider the polynomial system:

½esnap�k ¼ Re α0 þ
X

r2½R�dimðxJ Þ
αr
YdimðxJ Þ
j¼1
ðTrj
ðujÞ þ ivjUrj�1ðujÞÞ

2
4

3
5; ð32Þ

with k 2 SJ ,

u2j þ v2j ¼ 1; j 2 J; ð33Þ

where uj ¼ cosðxjÞ; vk ¼ sinðxjÞ and Tr, Ur relate to Chebyshev
polynomials.

4. Apply Buchberger’s algorithm to obtain a Gröbner basis for the
system.

5. Back substitution and univariable root-finding algorithm44 (e.g.,
Jenkins-Traub45) to obtain ~xJ .

6. return ~xj
end if

Theorem 4. Suppose that the feature encoding state ρ(x) is a multipartite
state, specifically, there exists a partition P of qubits [n] such that

ρðxÞ ¼
O
J2P

ρJ ðxÞ;

where we define xJ � x to be components of x on which ρJ depends. In
addition, we have as input an Oð poly ðnÞÞ-dimensional snapshot vector
esnap with respect to a known basis Bk for the DLA of the VQC.

Suppose that for ρJ(x) the following conditions are satisfied:
• dim ðxJÞ ¼ Oð1Þ,
• eachxk is encodedatmostR ¼ Oð poly ðnÞÞ times in, potentiallymulti-

qubit, Pauli rotations.
• and the set SJ ¼ fk : Tr ðBkρJðxÞÞ≠0& Tr ðBkρJc ðxÞÞ ¼ 0g has car-

dinality at least dim ðxJÞ, where Jc≔ [n] − J.

Then the model admits quantum-assisted snapshot inversion for
recovering xJ . Furthermore, a classical snapshot inversion can be performed
if∀k, Tr(BkρJ(x)) canbe evaluatedclassically for allx.Overall, ignoring error
in estimating Tr(BkρJ(x)), with the chosen parameters, this leads to a
Oð poly ðn; logð1=ϵÞÞÞ algorithm.

Proof. We provide the proof in the methods section.
In the case a circuit has an encoding structure that leads to a separable

state, wehave indicated conditions that guarantee snapshot inversion canbe
performed. If the model is also snapshot recoverable, by having a poly-
nomially sized DLA, then this means the initial data input can be fully
recovered from the gradients, and hence the attack constitutes a strong
privacy breach.

Snapshot Inversion for Generic Encodings. In the general case, but
still dimðgÞ ¼ Oð poly ðnÞÞ, where it is unclear how to make efficient use
of our knowledge of the circuit, we attempt to find an x via black-box
optimization methods that produces the desired snapshot signature.
More specifically, suppose, for simplicity we restrict our search to [−1,
1]d. We start with an initial guess for the input parameters, denoted as x0,
and use these to calculate expected snapshot values Tr ½Bkρðx0Þ�. A cost
function can then be calculated that compares this to the true snapshot,
denoted esnap. As an example, one can use the mean squared error as the
cost function,

f ðx0Þ ¼ k esnap � ðTr ½Bkρðx0Þ�ÞdimðgÞk¼1 k22
¼ P

k2½ dim ðgÞ�
½esnap�k � Tr½Bkρðx0Þ�
� �2

:
ð34Þ

The goal will be to solve the optimization problem minx02½�1;1�d f ðx0Þ.
For general encoding maps, it appears that we need to treat this as a black-
box optimization problem,wherewe evaluate the complexity in terms of the
evaluations of f or, potentially, its gradient. However, in our setting, it is
unclear what is the significance of finding approximate localminimum, and

Fig. 3 | Product map encoding and inversion. A product map encoding, whereby
each input variable xj is encoded into an individual qubit, and the snapshot used by
the model corresponds to single-qubit measurements of the DLA basis elements. In
this setting, the snapshot is trivial to invert and find the original data using the
relation xj ¼ cos�1 2γðjÞ � esnap

� �
.
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thus it seems for privacy breakage, we must resort to an exhaustive grid
search. For completeness, we still state results on first-order methods that
can produce approximate local minima.

We start by reviewing some of the well-known results for black-box
optimization. We recall Lipschitz continuity by,

Definition 10. (L-Lipschitz Continuous Function). A function f : Rd !
R is said be L-Lipschitz continuous if there exists a real positive constant
L > 0 for which,

jf ðxÞ � f ðyÞj≤ L k x � yk2:
If we consider the quantum circuit as a black-box L-Lipschitz function

and x0 in some convex, compact set with diameter P (e.g., [−1, 1]d with
diameter 2

ffiffiffi
d
p

). One can roughly upper bound L by the highest frequency
component of the multidimensional trig series for f, which can be an
exponential in n quantity. In this case, the amount of function evaluations
that would be required to find x0 such that kx � x0k2 ≤ ϵ would scale as

O P
L
ϵ

� �d
 !

; ð35Þ

which is the complexity of grid search46. Thus if for constant L this is a
computationally daunting task, i.e., exponential in d =Θ(n).

As mentioned earlier, it is possible to resort to first-order methods to
obtain an effectively dimension-independent algorithm for finding an
approximate local minimum. We recall the definition of β-smoothness as,

Definition 11. (β-Smooth Function). A differentiable function f : Rd !
R is said be be β-smooth if there exists a real positive constant β > 0 for
which

k∇f ðxÞ � ∇f ðyÞk2 ≤ βkx � yk2:
If we have access to gradients of the cost function with respect to each

parameter, then using perturbed gradient descent47 would roughly require

~O PLβ
ϵ2

� �
; ð36Þ

function and gradient evaluations for an L-Lipschitz function that is β-
smooth to find an approximate local min. With regards to first-order
optimization, computing the gradient of f can be expressed in terms of
computing certain expectation values of ρ, either via finite-difference
approximation or the parameter-shift rule for certain gate sets48.

Regardless ofwhether recovering an approximate localmin reveals any
useful information about x, up to periodicity, it is still possible tomake such
a task challenging for an adversary. In general, the encoding circuit will
generate expectation values with trigonometric terms. To demonstrate, we
can consider a univariate case of a single trigonomial f ðxÞ ¼ sinðωxÞ, with
frequencyω. This function will be ω-Lipschitz continuous with ω2-Lipchitz
continuous gradient.Hence,whenconsidering the scaling of gradient-based
approach inEq (36)we see that the frequencyof the trigonometric termswill
directly impact the ability to find a solution. Hence, if selecting a frequency
that scales exponentially ω ¼ OðexpðnÞÞ, then snapshot inversion appears
to be exponentially difficult with this technique.

Importantly, if the feature map includes high frequency terms, for
example the Fourier Tower map of 30, then β and L can be OðexpðnÞÞ.
However, as noted in the snapshot inversion for local encoding part of the
results section it is possible to make use of the circuit structure to obtain
more efficient attacks. In addition, a poor local minimummay not leak any
information about x.

Direct input recovery. Note that it also may be possible to completely
skip the snapshot recovery procedure and instead variationally adjust x0

so that the measured gradients of the quantum circuit C0j, match the
known gradients Cj with respect to the actual input data. This approach
requires consideration of the same scaling characteristics explained in Eq.
(36), particularly focusing on identifying the highest frequency compo-
nent in the gradient spectrum. If the highest frequency term in the gra-
dient Cj scales exponentially, ω ¼ OðexpðnÞÞ, then even gradient descent
based methods are not expected to find an approximate local min in
polynomial time.

Further privacy insights can be gained from Eq. (21), where a direct
relationship between the gradients and the expectation value snapshot is
shown, which in general can be written as

CjðxÞ ¼ χðjÞt � esnapðxÞ: ð37Þ

This indicates that the highest frequency terms of any esnap component will
also correspond to the highest frequency terms in Cj(x), as long as its
respective coefficient is non-zero χðjÞt ≠0.

This underscores scenarios where direct input recovery may prove
more challenging compared to snapshot inversion, particularly in a VQC
model. Consider a subset ~esnap � esnap where each component has the
highest frequency that scales polynomially with n. If there are sufficiently
many values in ~esnap then recovering the approximate local min to Eq. (34)
may be feasible for these components. However, for gradient terms Cj(x)
that dependonall values of esnap, including termsoutsideof~esnap that exhibit
exponential frequency scaling, then gradient descent methods may take
exponentially long when attempting direct input inversion, even if reco-
vering approximate local minima to the snapshot inversion task can be
performed in polynomial time.

Investigations into direct input recovery have been covered in previous
work30 where the findings concluded that the gradients generated by Cj(x)
would form a loss landscape dependent on the highest frequency ω gen-
erated by the encoding circuit, indicating that exponentially scaling fre-
quencies led tomodels that take exponential time to recover the input using
quantum-assisted direct input recovery. The Fourier tower map encoding
circuit used in ref. 30 was designed such that ω scales exponentially to
provide privacy; this was done by usingm qubits in a sub-register per data
input xj, with the single qubit rotation gates parameterized by an expo-
nentially scaling amount. The encoding can be defined as

Od
j¼1

Om
l¼1

RXð5l�1xjÞ
 !

: ð38Þ

Hence, the gradient contained exponentially scaling highest frequency
terms, leading to a model where gradient descent techniques took expo-
nential time. However, if considering the expectation value of the first qubit
in a sub-register of thismodel,wenote this corresponds to a frequencyω = 1,
and hence the respective expectation value for the first qubit would be
snapshot invertible. However, in the case of ref. 30, the DLA was
exponentially large, meaning the model was not snapshot recoverable,
hence these snapshots could not be found to then be invertible. Hence, from
our new insights, we can conclude that the privacy demonstrated in ref. 30
was dependent on having an exponential DLA dimension. However, an
exponentially large DLA also led to an untrainable model, limiting the real-
world applicability of this previous work. Lastly, recall that Algorithm 3 in
the case of poly DLA and slow Pauli expansion is a completely classical
snapshot inversion attack for the Fourier tower map. Further, highlighting
how snapshot inversion can be easier than direct inversion.

We show that both direct input recovery and snapshot inversion are
dependent on frequenciesω generated by the encoding circuit, highlighting
that this is a key consideration when constructing VQC models. The
introduction of high-frequency components can be used to slow down
methods that obtain approximate local minimum to Eq. (34). However, for
true privacy breakage, it appears that, in general, we still need to resort to
grid search,whichbecomes exponentially hardwithdimension regardless of
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high-frequency terms.However, for problemswith a small amount of input,
introducing high-frequency terms can be used to also make grid search
harder. The idea of introducing large frequencies is a proxy for the more
general condition that our results hint at for privacy, which is that the feature
map ρðx0Þ should be untrainable in terms of varying x0.

Notably, cases exist where the same model can have an exponential
frequency gradient, but can still contain a certain number of expectation
snapshot values with polynomial scaling frequencies. Hence, it is also
important to note that merely showing that a model is not directly input
recoverable does not guarantee privacy, as one needs to also consider that if
the model is snapshot recoverable, and that these snapshots may be inver-
tible if sufficient polynomial scaling frequency terms can be recovered. This
duality highlights the complexity of ensuring privacy in quantum com-
puting models and stresses the need for a comprehensive analysis of the
frequency spectrum in both model construction and evaluation of privacy
safeguards.

Expectation value landscape numerical results. In this section, we
provide a numerical investigation of the impact of high-frequency
components in the encoding circuit on the landscape of Eq. (34) for
snapshot inversion. The idea is to present examples thatmove beyond the
Fourier tower map. We present two cases of encodings that would gen-
erally be difficult to simulate classically. By plotting a given expectation
value against a univariate x, we can numerically investigate the fre-
quencies produced by both models.

In Fig. 4 we demonstrate a circuit in which x parameterizes a single RX

rotation gate, but on either side of this is an unknown arbitrary unitary
matrix acting on n qubits. This would be classically hard to simulate due to
the arbitrary unitarymatrices; however, the result effectively corresponds to
takingmeasurements on an unknownbasis, andusing only a few samples of
x it is possible to recreate the graph as a single frequency sinusoidal rela-
tionship. This results in the distance between the stationary points being
r = π for any value of n. This corresponds to a frequency ω ¼ r

π ¼ 1,
regardless of the value of n. This circuit, therefore, exhibits constant fre-
quency scaling independent ofn and hence could be easy for gradient-based
methods to recover an approximate local min.

We briefly give an example of a type of circuit that can generate high-
frequency expectation values. Figure 5 demonstrates a circuit where x
parameterizes an SU(2n) gate. The result when measuring the same

expectation value corresponds to the highest frequency term that is expo-
nentially increasing. This is shown in the plot in Fig. 6 in which the distance
between stationary points r shrinks exponentially as the number of qubits
increases for the SU(2n) parameterized model, which roughly corresponds
to an exponentially increasing highest frequency term. A comparison
between the expectation value landscape of the two different encoding
architectures, is shown in Fig. 7, demonstrating that the single rotation gate
parameterization, as shown in Fig. 4, produces a sinusoidal single-frequency
distribution, even as the number of qubits is increased; while the SU(2n) gate
parameterization, shown in Fig. 5, contains exponentially increasing fre-
quency terms. A visual representation for the multivariate case is also
demonstrated in Fig. 8 which shows the expectation value landscape when
two input parameters are adjusted, for a model comprised of two different
SU(2n) parameterized gates parameterized by the variables x1 and x2
respectively, demonstrating that as more qubits are used, the frequencies of
the model increase and hence so does the difficulty of finding a solution
using gradient descent techniques.

The two example circuits demonstrate encoding circuits that are hard
to simulate, and hence, no analytical expression for the expectation values
can be easily found. Thesemodels donot admit classical snapshot inversion;
however, by sampling expectation values, it may be possible to variationally
perform quantum-assisted snapshot inversion. Whether numerical snap-
shot inversion can be performed efficiently will likely be affected by the
highest frequencyω inherent in the encoding,whichwill itself dependon the
architecture of the encoding circuit. This suggests that designing encoding
circuits such that they contain high-frequency components is beneficial in
high-privacy designs. We have shown that SU(2n) parameterized gates can
produce high-frequency terms, whereas single-qubit encoding gates will be
severely limited in the frequencies they produce.

Discussion
In this research, we conduct a detailed exploration of the privacy safeguards
inherent in VQCmodels regarding the recovery of original input data from
observed gradient information. Our primary objective was to develop a
systematic framework capable of assessing the vulnerability of these quan-
tum models to a general class of inversion attacks, specifically through
introducing the snapshot recovery and snapshot inversion attack techni-
ques,whichprimarily dependon the variational and encoding architectures,
respectively.

Fig. 4 | Single qubit rotation encoding circuit. Encoding circuit diagram showing a
single qubit RX rotation gate parameterized by the univariate parameter x, but with
arbitrary 2n dimensional unitaries applied before and after the x parameterized gate.
Despite being hard to simulate analytically, the expectation value ein varies as a
simple sinusoidal function in x, regardless of the total number of qubits n.

Fig. 5 | Generic unitary encoding circuit. Encoding circuit diagram showing a
SU(2n) gate parameterized by a univariate parameter x.

Fig. 6 | Scaling of average minimum distance between stationary points. Plot
showing the relationship between the average minimum distance r between sta-
tionary points of the expectation valueZ�I�n�1 as a function of a univariate x input.
The encoding circuit considered is a parameterized SU(2n) gate which is para-
meterized by a univariate input x as U = eiHx, where H is a randomly generated
Hermitian matrix. The average was taken over ten repeated experiments where H
was regenerated each time.
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Our analysis began by establishing the feasibility of recovering snap-
shot expectation values from the model gradients under the LASA
assumption. We demonstrated that such recovery is viable when the Lie
algebra dimension of the variational circuit exhibits polynomial scaling in
the number of qubits. This result underscores the importance of algebraic
structure in determining the potential for privacy breaches in quantum
computational models. Furthermore, due to the fact that a polynomial
scaling DLA dimension is commonly required for models to be trainable,
our results suggest that a trade-off may exist between privacy and the
trainability of VQC models. Assuming one insists on a polynomial-sized
DLA, our framework suggests that a weak privacy breach will always be
possible for the type of VQC model studied. To ensure the privacy of the
model overall, one cannot rely on the variational circuit andneeds to instead
focus more on the encoding architecture and ensuring snapshot inversion
cannot be performed. If snapshot inversion is not possible, then at least
strong privacy breaches can be prevented.

We then explored snapshot inversion, where the task is to find the
original input from the snapshot expectation values, effectively inverting the
encodingprocedure. Studyingwidelyused encoding ansatz, such as the local
multiqubit Pauli encoding, we found that under the conditions that a fixed
subset of the data paramaterizes a constituent state which has sufficient
overlap with the DLA, and the number of gates used to encode each
dimension of the input x was polynomial, that snapshot inversion was
possible in Oð poly ðn; logð1=ϵÞÞ time. This shows that a potentially wide
range of encoding circuits are vulnerable to strong privacy breaches and
brings their usage in privacy-focused models into question. For the most
general encoding, which we approached as a black-box optimization pro-
blem, we demonstrated that using perturbed gradient descent to find a
solution is constrained by the frequency terms within the expectation value

Fourier spectrum. In general for exactly finding x it appears that a grid
search would be required. Although we cannot provide strictly sufficient
conditions due to thepossibility of unfavorable localminimawithperturbed
gradients,wenote that gradient descent for snapshot inversionmay, in some
cases, be easier to perform than for direct input data recovery from the
gradients.This simplificationarises because gradientscan inherit thehighest
frequency term from the snapshots, potentially leading to scenarios where
the gradient term contains exponentially large frequencies. However, there
may still be sufficient polynomial frequency snapshots to permit snapshot
inversion. This shifts the focus in attack models away from direct input
recovery from gradients, a common approach in classical privacy analysis,
towards performing snapshot inversion as detailed in this study, as a
potentially more efficient attack method.

The dual investigation allowed us to construct a robust evaluative
framework that not only facilitates the assessment of existing VQCmodels
for privacy vulnerabilities but also aids in the conceptualization and
development of new models where privacy is a critical concern. Our ree-
valuation of previous studies, such as those cited in ref. 30, through the lens
of our new framework, reveals that the privacy mechanisms employed,
namely the utilization of high-frequency components and exponentially
large DLA, effectively prevent input data recovery via a lack of snapshot
recoverability, but at the same time contribute to an untrainable model of
limited practical use.

In conclusion, we offer a methodological approach for classifying and
analyzing the privacy features of VQC models, presenting conditions for
weak and strong privacy breaches for a broad spectrum of possible VQC
architectures.Ourfindings not only enhance the understandingof quantum
privacy mechanisms but also offer strategic guidelines for the design of
quantum circuits that prioritize security while at the same timemaintaining

Fig. 7 | Snapshot landscape visualization with one dimensional input. Com-
parison of how the expectation value of themeasurement ofZ1 varies with x for both
the model parameterized using a single RX rotation gate as detailed in Fig. 4 and the
model parameterized using an SU(2n) gate as detailed in Fig. 5, for varying amounts

of qubits. a Landscape with two qubits in the encoding. b Landscape with three
qubits in the encoding. c Landscape with four qubits in the encoding. d Landscape
with five qubits in the encoding.
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trainability. Looking ahead, this research paves the way for more robust
quantummachine learningmodel designs, where privacy and functionality
are balanced. This knowledge offers the potential to deliver effective
machine learning models that simultaneously demonstrate a privacy
advantage over conventional classical methods.

Methods
We utilize this section to draw the connections between the two key
properties of VQC: trainability, i.e., the lack of barren plateaus36,49, and the
ability to retain privacy of input. Building upon this connection, we discuss
the prospects and future of achieving robust privacy guarantees with VQC
models.

Connections between trainability and privacy in VQC
Solely requiring a machine learning model to be private is not sufficient to
deploy it for a practical use case of distributed learning, such as federated
learning. A key requirement in this collaborative learning scenario is also to
ensure that themodel remains trainable. A plethora ofworks have gone into
exactly characterizing the trainability of VQC models by analyzing the
presence of barren plateaus in the VQC model, starting from the work of

McClean et al.33 and culminating in the works of Fontana and Ragone36,49.
Especially, the work of Fontana36 provides an exact expression of the var-
iance of the gradient of themodel when the VQC is constrained to be in the
LASA case, the details of whichwe also provide in Supplementaryfile Sec IV
for completeness.Akey insight into theseworks suggests that LASAmodels,
with exponentially-sized DLA, may lead to the presence of barren plateaus,
drastically deteriorating the trainability of such models36,49.

Within our privacy framework centered around snapshot recover-
ability, we also show via Theorem 2 that LASAmodels with an exponential
size DLA are not classically snapshot recoverable, although this may lead to
untrainablemodels.We can therefore conclude that a possible condition for
protection against classical input recovery using gradients in a VQCmodel
is to choose an ansatz that exhibits an exponentially large dynamical Lie
algebra dimension, as this would render snapshot recovery difficult.
Through our framework, we can see that previous works30 effectively relied
on this property to ensure privacy. Combining the concept of trainability
leads to the following corollary on the privacy of VQC models:

Corollary 5. Any trainable VQC on n qubits that satisfies the LASA
condition inDef 5, fulfills the slow Pauli expansion condition as highlighted
in Def 9, and has a DLA g whose dimension scales as Oð poly ðnÞÞ, would
admit snapshot recoverability with complexityOð poly ðnÞÞ.

Hence, we can conclude that, at least in the LASA case of VQC, the
privacy of themodel is linked to theDLA dimension, and furthermore, that
there is a direct tradeoff between privacy and trainability of the model. As
exponentially sizedDLAmodels are expected to be untrainable in the LASA
case, thismeans that for realistic applications, it doesnot seemfeasible to rely
on quantum privacy derived from an exponential DLA, precluding snap-
shot recoverability in the model. This suggests that any privacy enhance-
ment from quantum VQCs should not derive from the variational part of
the circuit for LASA-type models that are intended to be trainable. In other
words, we expect the majority of trainable VQCmodels to be vulnerable to
weak privacy breaches. The privacy of variationalmodels beyond the LASA
case becomes linked to a larger question within the field, notably, whether
there exist quantum variational models that are not classically simulatable
and do not have barren plateaus50.

It is also worth noting that if one attempted to create a model that is
not snapshot recoverable by ensuring that D < dim ðgÞ, and hence an
underparameterized system of equations, it would effectively lead to an
underparameterized model. A model is underparmeterized when there
are not enough variational parameters to fully explore the space generated
by theDLA of the ansatz, which is a property thatmay not be desirable for
machine learning models51.

Future direction of VQC quantum privacy
Due to the above argument suggesting that achieving privacy via an expo-
nentially largeDLAmay cause trainability issues in the underlyingmodel, it
appears that future improvements in privacy using VQC may primarily
focus on preventing the snapshot inversion step, as we highlight in the input
recoverability definitions part of the results section. This promotes a focus
on the encoding circuit architectures of the VQC in order to prevent the
model from admitting snapshot inversion to facilitate input recovery.

We have explicitly shown the necessary condition required to achieve
privacy from purely classical attacks. If it is not possible to classically
simulate the expectationvalues of the quantumencoded statewith respect to
the DLA basis elements of the variational circuit, then it will not be possible
to attempt classical analytical or numerical inversion attacks. Any VQC
designedwhere these expectation values cannot be simulatedwill, therefore,
be protected against any purely classical snapshot inversion attempts. This
condition can therefore prevent strong privacy breaches, as long as the
attacking agent only has access to a classical device.

In the case where the attacker can simulate expectation values of the
DLA basis or has access to a quantum device to obtain the expectation
values, then numerical classical snapshot inversion or numerical quantum-
assisted snapshot inversion can be attempted, respectively. We have shown

Fig. 8 | Snapshot landscape visualization with two dimensional input. Compar-
ison of how the expectation value of themeasurement ofZ1 varies with x for both the
model parameterized using a single RX rotation gate as detailed in Fig. 4 and the
model parameterized using an SU(2n) gate as detailed in Fig. 5, for varying amounts
of qubits. a Landscape with two qubits in the encoding. b Landscape with three
qubits in the encoding.
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that in this case, an important factor in preventing these techniques is that
the expectation values have exponentially scaling frequency terms, resulting
in the attacks requiring solving a system of high-degree polynomial equa-
tions. The implication of this is that to achieve a useful privacy benefit in
VQC, it may require that the encoding circuit is constructed in such a way
that the expectation values of the DLA basis elements of the variational
circuit contain frequency terms that scale exponentially. Notably, we find
that having high frequency terms in the gradients, as suggested in the
encoding circuit of ref. 30, does not necessarily protect against numerical
snapshot inversion attacks. This is because the gradients inherit the highest
frequency term from all expectation values, but there may be a sufficient
number of polynomial frequency expectation values to perform snapshot
inversion, even if direct input inversion is not possible.

Unlike the variational case, where a connection between DLA
dimension and trainability has been established, the effect that privacy-
enhancing quantum encodings would have on the trainability of a model is
less clear. If the majority of expectation values used in the model contain
exponentially large frequencies, then this potentially restricts the model to
certain datasets. In classical machine learning, there have been positive
results using trigonometric feature maps to classify high-frequency data in
low dimensions35. It remains a question for future research, the types of data
that may be trained appropriately using the privacy-preserving high-fre-
quency feature maps proposed. If models of this form are indeed limited in
number, then the prospects for achieving input privacy from VQCmodels
appear to be limited.More generally, the prospect for quantumprivacy rests
on feature maps that are untrainable with regard to adjusting x0 to recover
expectation values esnap, while at the same time remaining useful feature
maps with respect to the underlying dataset and overall model.

Proof of Theorem 3

Proof. Steps 1–5 in Algorithm 3 can be performed inOð poly ðnÞÞ classical
time due to the polynomial DLA and slow Pauli expansion conditions. The
purpose of step 5 is to compute the angles between the linear subspaces g
and spanRfiZj; iYjg. This is to identify if there is any intersection, i.e., if ∃ α,
β such thatαiZj þ βiYj 2 g, which is identifiedby singular values equal to 1.
The algorithm cannot proceed if the intersection is trivially empty, as the
snapshot vector does not provide the required measurement to obtain xj
efficiently with this scheme. Fromnowon, we suppose that such an element
has been found.

We can, without loss of generality, just focus on the one-qubit reduced
density matrix for xj. In this case, using Bloch sphere representation:

ρjðxjÞ ¼ RXðxjÞ∣0i 0h ∣RXð�xjÞ ¼
I� sinðxjÞYþ cosðxjÞZ

2
; ð39Þ

such that

Tr ð½αZj þ βYj�ρjðxjÞÞ ¼ α
2 cosðxjÞ � β

2 sinðxjÞ

¼ sign ðαÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
cosðxj þ tan�1ðβ=αÞÞ:

ð40Þ

However, by assumption, γk 2 R such that

αiZj þ βiYj ¼
PdimðgÞ
k¼1

γiBk

) Tr ð½αZj þ βYj�ρjðxjÞÞ ¼
PdimðgÞ
k¼1

γk½esnap�k:
ð41Þ

So to recover xj, we only need to solve:

XdimðgÞ
k¼1

γk½esnap�k ¼
sign ðαÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
cosðxj þ tan�1ðβ=αÞÞ; ð42Þ

which, after rearranging, allows the recovery of

xj ¼ cos�1 2

sign ðαÞ
ffiffiffiffiffiffiffiffiffi
α2þβ2
p PdimðgÞ

k¼1
γk½esnap�k

	 

�tan�1ðβ=αÞ;

ð43Þ

up to periodicity. By the polynomial DLA and slow Pauli expansion con-
ditions (i.e., all DLA basis elements are expressed as linear combinations of
Paulis), we can compute γk inOð poly ðnÞ logð1=ϵÞÞ time.

Proof of Theorem 4

Proof. Given that each xk is encoded with multiqubit Pauli rotations, i.-
e., possible eigenvalues are 1 and −1, it is well known48 that the following
holds:

f kðxJ Þ ¼ Tr ðBkρJðxÞÞ ¼ α0 þ
X

r2½R�dimðxJ Þ
αre

ir�xr ; 8k 2 S; ð44Þ

andTr(BkρJ(x)) is real. The setSJ is to ensure thatwe can isolate a subsystem
where dimðxJ Þ is constant.

To ensure that the number of terms isOð poly ðnÞÞ it suffices to restrict
to dim ðxJÞ ¼ OðlogðnÞÞ;R ¼ OðlogðnÞÞ. The α coefficients can be com-
puted by evaluating Tr(BkρJ(x)) at 2RdimðxJ Þ þ 1 ¼ Oð poly ðnÞÞ different
points x0. Depending on whether Tr(BkρJ(x)) can be evaluated classically or
quantumly implies whether this falls under classical or quantum-assisted
snapshot inversion. This leads to a system of dim ðxJÞ equations in xJ :

½esnap�k ¼ f kðxJ Þ; k ¼ 1; . . . ; dimðgÞ: ð45Þ

Using the Chebyshev polynomials Tn, Un of the first and second kind,
respectively, we can express the system as a system of polynomial equations
with additional constraints:

½esnap�k ¼ Re α0 þ
X

r2½R�dimðxJ Þ
αr
YdimðxJ Þ
j¼1
ðTrj
ðujÞ þ ivjUrj�1ðujÞÞ

2
4

3
5; ð46Þ

with k 2 SJ ;

u2j þ v2j ¼ 1; j 2 J; ð47Þ

where uj ¼ cosðxjÞ; vk ¼ sinðxjÞ. In addition, we use the Chebyshev poly-
nomials defined as cosðnθÞ ¼ TnðcosðθÞÞ and sinðθÞUn�1ðcosðθÞÞ ¼
sinðnθÞ. By our assumption that the DLA is polynomial, we have
Oð poly ðnÞÞ equations in 2 dimðxJ Þ ¼ Oðlog logðnÞÞ unknowns.

If all conditions until noware satisfied,wewill have successfullywritten
down a systemof determined simultaneous equations. Considering bounds
from computational geometry, we note that in the worst-case of Buchber-
ger’s algorithm52 the degrees of a reduced Gröbner basis are bounded by

M ¼ 2
Δ2

2
þ Δ

� �2Q�2

; ð48Þ

where Δ is the maximum degree of any polynomial andQ is the number of
unknown variables53. For a system of linear equations, it was shown that a
worst-case degree bound grows double exponentially in the number of
variables54. Themaximumdegree of any equation in Eq (46) isΔ ¼ RdimðxJ Þ,
and Q ¼ 2 dimðxJ Þ so that

M ¼ OðR2 dimðxJ Þ2dimðxJ Þ Þ; ð49Þ

so for our chosen conditions the maximum degree is bounded
byM ¼ Oð poly ðnÞÞ.
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Buchberger’s algorithm provides a Gröbner basis in which back-
substitution could be used to solve equations in one variable. Numerical
methods for solving polynomials in one variable generally scale poly-
nomially in the degree. For solving each univariate polynomial at each step
of the back substitution, we can apply a polynomial root-finding method,
such that Jenkins–Traub45, which can achieve at least quadratic global
convergence (converge from any initial point and at a rate that is at least
log logð1=ϵÞ). This leads to an overall Oð poly ðn; logð1=ϵÞÞ algorithm,
ignoring the error in estimating TrðBjρJ Þ.
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