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universal generative models for
continuous multivariate distributions
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Parameterized quantum circuits are a key component of quantum machine learning models for
regression, classification, and generative tasks. Quantum Circuit Born machines produce discrete
distributions over bitstrings whose length is exactly the number of qubits. To allow for distributions on
continuous variables, newmodels have been introducedwhere classical randomness is uploaded into
quantum circuits and expectation values are returned with a dimensionality decoupled from qubit
number. While these models have been explored experimentally, their expressivity remains
underexplored. In this work, we formalize this family and establish its theoretical foundation.We prove
the universality of several variational circuit architectures for generating continuous multivariate
distributions and derive tight resource bounds to reach universality using tools related to the Holevo
bound. Our results reveal a trade-off between the number of qubits and measurements. We further
explore relaxed notions of universality andpresent a practical use case, outliningpotential domains for
quantum advantage.

Parameterized quantum circuits are the centerpiece of numerous approa-
ches to machine learning on quantum computers, motivated by several
near-term hardware limitations1,2. The use of these models for supervised
learning has been widely studied, for example, in solving regression
problems3 where the goal is to assign continuous labels to data points.
Variational algorithms have also been explored in so-called generative
modeling tasks, where the objective is to generate new samples following a
distribution that generated the training data4.

A prominent example is the quantum Boltzmann machine (QBM) as
introduced in ref. 5, modeling distributions with discrete support, in which
data is represented as the thermal state of an Ising model. In6 the training
based on the relative entropy of QBM for more general models is investi-
gated, and it is shown that the training cannot be simulated with classical
computers unless BPP = BQP. TheQBMhas been compared in-extenso in7

with another quantumgenerativemodel for discrete variables, the quantum
circuit born machines (QCBM). In QCBM8 a probability distribution over
n-bit strings is stored in a n-qubit pure state. They may be trained to
minimize the maximum mean discrepancy but also as generators in gen-
erative adversarial networks (GANs) settings9–12, yielding the so-called
Qu-GAN.

Going beyond distributions with discrete support, an approach to
model distributions where the random variable can in principle take any
value within a continuous interval has been introduced in ref. 13. In such

models, the quantum circuit takes classical randomness as input and out-
puts expectation values, consequently, we call this model expectation value
samplers. Thismodel has beenusedas a quantumgenerator in the context of
quantum generative adversarial networks (GAN), with applications
including image generation14,15, high energy physics16, and chemistry17. In all
these applications, the training is performed in the GAN setting.

While for QCBMs, the expressivity and universality have been
clarified8,18, in contrast, expectation value sampling models are not so well
understood. In particular, an interesting feature of expectation value sam-
pling is that the dimension of the output is not inherently tied to the number
of qubits used. In this work, we focus on the expressivity of the generators
based on expectation value sampling depending on the number of qubits
and the observable norm. In light of the numerous works14–17,19–23 that
successfully used expectation value samplers, this work aims to solidify the
theoretical ground that supports them by formally analyzing their expres-
sivity. The formal analysis of the trainability of such models, while being a
matter of critical importance, is not in the scope of this work.

The focus of this work is to show that parameterized quantum circuits
are universal generativemodels andprecisely characterize their expressivity.
Our first main result is the existence of two universal families of expectation
value samplers.We probe tight bounds relating to resource limitations, that
is, necessary conditions on resources for expectation value samplingmodels
to be universal. Specifically, we show that reaching universality for very
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high-dimensional distributions requires either a very large number of qubits
or a very large number of measurements. This may serve as a backbone for
future fine-grained resource cost analyses. As additional tools to analyze
expressivity, we discuss choices of random variables, circuit encoding, and
observables, which we hope will guide future designs. Finally, we motivate
the use of expectation value samplerswith respect to other existing quantum
generative models by providing a natural sampling task for these models.

Results
In this section, we introduce expectation value sampling models and define
precisely the universality property for generative models. We state formally
our first main result, namely the existence of two universal families of
expectation value samplers. We then present our second main result, the
minimum resource requirements for expectation value samplers to be
universal.

Expectation value sampling
The expectation value sampling procedure goes as follows. A random
variable is classically sampled andusedas input to aparameterizedquantum
circuit, which specifies a random quantum state. The expectation values of
fixed observables are measured and returned as another random variable.
We illustrate this procedure in Fig. 1, and provide a formal definition below.

Definition 1. (Expectation value sampling model). An expectation value
sampling model on n qubits is defined by (Uθ, O, pX), where Uθ : X �
RL ! Uð2nÞ is a parameterized quantum circuit taking data as input and
returning a matrix in the 2n-dimensional unitary group Uð2nÞ, O ¼
ðOmÞ1≤m≤M is a vector of M observables, and pX : X � RL ! R is the
input distribution. We define the associated mapping f as follows:

x 2 X !f 0h ∣UθðxÞyOmUθðxÞ∣0i
� �

1≤m≤M :
ð1Þ

The output of the model is a sample drawn from the distribution pY with
Y = f(X) ~pY when X ~pX.

It is important to note that, in contrast to the quantum circuit Born
machine, the randomness does not come from the measurement process,
but from the classical randomness provided as an input to the quantum
circuit. Another difference is that expectation value samplers have con-
tinuous support (absolutely continuous random variables, see Supple-
mentary Information). The central question of this work is whether such a
model can generate any multivariate distribution, more precisely, whether
expectation value sampling is a universal generativemodel, according to the
definition we will give in the next subsection.

Universal generative model family
In this subsection, we precisely define universal generative model families.
We choose the Wasserstein distance to quantify the closeness of two dis-
tributions. For reasons we detail in the Supplementary Information. While
the Wasserstein distance is impractical for training purposes, it is still a
relevant metric in the analysis of the expressivity. A main reason is that it
naturally arises as themathematical concepts we use in this work are related
to optimal transport. Other common losses are the Kullback–Leibler
divergence, which is not well suited to this work as it is not symmetric and
not a true metric. Another frequently used loss is the maximum mean
discrepancy, which is easier to compute, but relative to a chosen kernel, and
therefore not an absolute property of the closeness between two
distributions.

Definition 2. (Universal generative model family) A generative model is a
family of parameterized sampling procedures that enable sampling from a
corresponding set of M-dimensional probability density functions PðX Þ
on X � RM .

A generative model is called universal if for every probability density
function q onX there exists a sequence fpkjpk 2 PðX Þg1≤ k≤1 such that it

converges to q in the Wasserstein distanceW.

Wðq; pkÞ �!k!1
0 ð2Þ

Importantly, universality is defined on a given support noted as X in
Definition 2. For this work, we choose the support as the hypercube
X ¼ ½�1; 1�M , because the first step of most machine learning pipelines is
to rescale the data to fit on a given interval, usually [−1, 1]. Notably,
choosing universality on a cubic support [−1, 1]M allows the expression of
fully independent variables. Restricting X to smaller subsets would yield
constraints on the dependence relationships expressible. For example,
proving the universality of a family of models for Dirichlet distributions
would correspond to choosingX in the hyperplane where all variables sum
up to one and are positive.

Two families of expectation value samplers as universal
generators
First, building on work by Pérez-Salinas et al.24, we show that n-qubit
expectation value samplers with constant observable norm are universal for
M-dimensional distributions with constant support radius, forM = n.

Theorem 1. For any M, for all M-dimensional probability density func-
tions pZ with support included in [−1, 1]M, and for all accuracy ϵ > 0 there
exists a M-qubit circuit U and set of M observables O with unit spectral
norm ∥Om∥ = 1 such that the expectation value sampling model (U,O, pX)
where pX is the uniform distribution on [0, 1]M yields a probability density
function pY that is ϵ-close to pZ in the Wasserstein distance.

We derive an explicit construction, illustrated in Fig. 2, for this circuit,
which yieldsproduct states; hence,wename it “product encoding”. It uses the
same number of qubits as the dimension of the output distribution. This
construction defeats one advantage of expectation value samplers, that is,
the dimension of the output not being directly linked to the number of
qubits used. This raises the question of the existence of a more qubit-frugal
family of universal circuits, in which the output dimension is (much) larger
than the qubit number.We show the existence of such a family, at the cost of
allowing for observables to have large norms. We formalize this in the
following theorem and illustrate the explicit construction of the circuit in
Fig. 3, and call it “observable-dense encoding” expectation value sampler.

Theorem 2. For any M, for all M-dimensional probability density func-
tions pZ with support included in [−1, 1]M, and for all accuracy ϵ > 0 there
exists a n ¼ ΘðlogMÞ-qubit circuitU taking L input variables and set ofM
observablesO with spectral norm ∥Om∥ ∈Θ(M) such that the expectation
value samplingmodel (U,O, pX) where pX is the uniformdistribution on [0,
1]L yields a probability density pY that is ϵ-close to pZ in the Wasserstein
distance.

In this subsection, we have provided sufficient conditions for expec-
tation value samplers to be universal. In particular, we have shown the
existence of two extremal families of parameterized quantum circuits that
are universal generators on [−1, 1]M. There is a product encoding design,
illustrated in Fig. 2, withn =M qubits andwith unit normobservables (local
Pauli), and an observable-dense encoding design, illustrated in Fig. 3, with
n ¼ logðMÞ qubits and M norm observables (amplified probabilities of
bitstrings).While one has a large number of qubits for a constant observable
norm, the other has a logarithmic number of qubits but large observable
norms. This hints that there might be a trade-off between the number of
measurements and the number of qubits necessary to achieve universality.
In the next section, we prove this is the case by proving some necessary
universality conditions.

Necessary conditions for universality
In this subsection, we prove two necessary conditions on resources for
expectation value samplers to be universal. As previously mentioned, an
appealing feature of expectation value sampling models is that the dimen-
sion of the output vector is a priori independent of the number of qubits n,
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unlike in the case of quantumBornmachines,where eachqubit corresponds
to exactly one binary random variable. In particular, we can imagine using
just a single qubitwith an arbitrarynumber of observablesOm to generate an
M-dimensional random vector. However, it is obvious that in this case, the
random variables corresponding to each observable cannot all be fully
independent. Indeed, any observable can be expressed as a linear combi-
nation of the three Pauli matrices. Therefore, the distribution output by a

single qubit expectation value sampler will have at most three degrees of
independence, and forM > 3 it is impossible to reach universality because it
is impossible to approximate, e.g., the 4-dimensional uniform distribution.
Extending this reasoning to several qubits, we find the first necessary con-
dition, that the dimension of the target dimension has to be lower than or
equal to the dimension of the space of observables. We formalize this in the
following lemma.

Lemma1. For an n-qubit expectation value samplingmodel (Uθ(x),O, pX)
to be able to approximate any distribution with support in [−1, 1]M to any
accuracy ϵ > 0, it is necessary thatM ≤ 4n− 1.

The second necessary condition for an expectation value sampling
model to be universal on distributions with support in [−1, 1]M can be
derived using a combination of Holevo’s bound found in ref. 25 and
Chernoff bound. We formalize it in the following theorem.

Theorem 3. For an n-qubit expectation value sampling model (Uθ,O, pX)
to be able to approximate any distribution with support in [−1, 1]M to any
accuracy ϵ > 0 with respect to the Wasserstein distance, it is necessary that
for every m ≤M, both equations are satisfied:

λminðOmÞ≤ � 1þ ϵ and λmaxðOmÞ≥ þ 1� ϵ ; ð3Þ

n 2 Ω
Mð1� ϵÞ2
k Omk2

� �
: ð4Þ

with λmin=maxðOÞ returning respectively the minimum and maximum
eigenvalues of observable O.

The combination of both previous necessary conditions is the second
central result of this paper. It formalizes that even if expectation value
sampling models may output arbitrarily large dimensional distributions, in
practice, their expressivity is limited by the number of qubits and obser-
vables. It is a natural question to askwhether the universal familieswe found
previously satisfy the above necessary conditions. We illustrate such con-
siderations in Fig. 4. For target distributions with exponentially large
dimensionality, the two universal families are (almost) asymptotically
optimal.

We may conjecture that there exists a family of (Pareto) optimal cir-
cuits, balancingbetweenobservable norms andqubit numbers,with varying
encoding densities in between the two extremal ones. In practice, the
observable spectral normrelates to thenumberofmeasurements required to
approximate it up to an additive accuracy. This highlights a trade-off
between the number of qubits and the number of measurements, or space
versus time complexity, which we formalize in the next subsection.

Trade-off: qubits vs measurements
To estimate an expectation value up to a desired constant additive error, the
number of measurements required is proportional to the norm of the
observables. Therefore, large observable norms require a large number of
measurements.

Lemma 2. (informal) To guarantee that the M-dimensional distribution
coming from an expectation value sampler performing Tmeasurements is
ϵ-close in theWasserstein distance to the ideal shot-noise-free distribution,
it is sufficient that

T 2 Θ
MkOk
ϵ2

� �
: ð5Þ

Therefore, the necessary conditions we derived previously ultimately
highlight a trade-off between the number of qubits and the number of
measurements. We show that to be universal for very high-dimensional
distributionsX , expectation value samplers need either a very large number
of qubits or a very large number of measurements. This is in contrast with

Fig. 1 | Expectation value samplingmodel: a randomvector is classically sampled.
It is used to generate a random quantum state using a parameterized quantum
circuit. The expectation values of fixed observables are returned as the output
random vector.

Fig. 2 | Product Encoding Circuit as a universal generator yielding the random
variable Y = g(X) when X ~U([0, 1]M), by stacking circuits from24Uf approximating f,
and defining fm:= (gm+ 1)/2.

Fig. 3 | Observable Dense Encoding Circuit as a universal generator, based on a
universal state preparation circuit V, with each parameterized gate replaced by a
circuit from24. n ¼ logðM þ 1Þ and Pm ¼ 2M∣mi mh ∣� I.

Fig. 4 | Visual summary of results. We show the asymptotic use of resources for
expectation value samplers to reach universality for an M-dimensional target dis-
tribution: the necessary conditions, as well as the existence of families as in
Figs. 2 and 3.
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the initial intuition that expectation value samplers may generate high-
dimensional distributions independently of the number of qubits.

Discussions
The arguments we present to derive resource lower bounds necessary for
achieving universality in expectation value samplers (EVS) are drivenby the
number of independent variables of the target distribution. Because our
definition of universality allows for full independence relationships across
all dimensions, the number of independent variables is equal to the
dimension of the target distribution. A more refined perspective emerges
when considering families of distributions with inherent dependencies and
allows for more economical sampling strategies than the ones requiring full
independence, as presented in Fig. 4. Two concrete examples serve to
emphasize this point. First, consider the family of distributions that areM-
dimensional but have their support confined within a 2-dimensional linear
subspace. In this case, using the expectation value sampler described in
ref. 24with the observables

ffiffiffi
2

p
X;

ffiffiffi
2

p
Z, we achieve a universal generator on

a single qubit for this 2-linear family, independent of the target distribution
dimensionM. This economy of representation underscores the capacity of
EVS to exploit structural sparsity effectively. Next, considerM-dimensional
Dirichlet distributions, characterized by non-negative coordinates sum-
ming to unity. Here, the observable dense encoding circuit, configured with
n ¼ logM qubits, enables universality with the raw probabilities as obser-
vables (Fig. 3). This model achieves universal representation with expo-
nentially fewer qubits compared to the general setting that allows for full
independence, leveraging that the Born rule naturally gives rise to Dirichlet
distributions. These findings suggest that EVSmodels are particularly well-
suited for generating highly correlated distributions. The Dirichlet case is
illustrative, as its normalization condition aligns seamlessly with that of
quantum states, lending itself naturally to the expectation value sampling
paradigm.

Building on this, we discuss the impact of design choices in EVS,
specifically the selection of observables, the encoding U(x), and the input
distribution pX, all of which are detailed further in the Supplementary
Information. The choice of observables directly influences the subspace of
the distribution spanned by the EVS. Furthermore, regarding the
encoding structure U(x), we realize that, analogously to the way para-
meterized quantum circuits may have an exact finite Fourier decom-
position, expectation value samplers may have an exact finite Generalized
Polynomial Chaos Expansion. In this context, the choice of the uniform
distribution as an input distribution arises naturally, while in contrast to
classical GANs, a Gaussian distribution yields undesirable inductive bias.
Thanks to this proximity between the supervised and the generative
context, results on the expressivity of quantum reuploading models26

transfer naturally to the encoding circuits of expectation value samplers.
In addition, as the Expectation Value samplers effectively learn a function
in full analogy to how it is done in supervised learning, it is clear thatmuch
of the current discussion on the trainability of parametrized circuits for
supervised learning, andofmore general variational algorithms, will apply
to the Expectation Value samplers. It will have the same bottlenecks of
overly expressive architectures27, but also the various classes of new
techniques that mitigate these by designs that balance trainability and

dequantizability28–30, and other more practical methods which mitigate
trainability problems31.

While we characterized important properties of expectation value
samplers, we did not address the question of whether it is a good idea to use
them. Expectation value samplers cannot be proven to be a path for certain
types of quantum advantage as directly as is the case in Quantum Circuit
Born Machines. QCBM is suited for quantum use cases by design as they
rely on the Born rule for generation of samples, and so correspond to
distributions obtained by a measurement of a genuinely quantum state. In
contrast, expectation value samplers rely on classical randomness and,
rather than requiring sampling from the full distribution of quantum
measurements, are defined around expectation values only. Thus, the
hardness of simulating distributions from expectation value samplers does
not connect straightforwardly to any hardness-of-sampling results estab-
lished in the domain of quantum supremacy results18. Nonetheless, expec-
tation value samplers still consist of genuinely quantum computations, and
arguments for non-simulatability can be made. Assuming BQP is not in
BPP, there exists no polynomial time algorithm that takes a classical
description of an arbitrary expectation value samplerA as input and outputs
a sample from a distribution that is epsilon close to that of the output of A.
Take, as an example, the case where a hard-to-simulate circuit does not
depend on input data. This yields a Dirac delta distribution for which there
exist classical samplers to efficiently sample from it, however, such classical
samplers cannot be easily found based on the classical description of the
expectation value sampler. It may be possible to construct stronger
advantage arguments where we find the existence of an expectation value
sampler such that its output distribution cannot be sampled by any
polynomial-time randomized Turing machine (subject to standard
assumptions). This raises the question: Do expectation value samplers also
correspond to any natural quantum task?

A natural domain of application for EVS emerges in many-body
physics, particularly in the study of disordered systems. We propose the
example of spin glasses, which with interaction strengths Ji,j taken at ran-
dom, are governed by the Hamiltonian:

HðJÞ ¼
X
hi;ji

Ji;jSiSj �M
X
i

Si : ð6Þ

In thismodel, the interaction strengths Ji,j are takenat random.Consider
the quench dynamics of such a system, initialized as the ground state of the
Hamiltonian without any interaction H(0), that is the zero state. The inter-
actions are instantly turned on for a fixed time, and a set of interactions is
taken at random. Then one may compute the expectation value of a set of
observables of interest, such as local spin or local correlators, measured using
several copies of the same realization of interaction strengths. This data is
inherently quantum, and the Trotterization of this time evolution constitutes
a solution in the form of an expectation value sampler where the output can
be made arbitrarily close to the target distribution. We exemplify such a
circuit for a chain geometry on four qubits in Fig. 5. Using two registers with
different evolution times, one could even extract a two-time correlation
functionCðt; t0Þ ¼ P

ihSiðtÞSiðt0Þi, which in turn gives precious information
about theEdwards–Andersonparameter, anorderparameter for spinglasses.

Methods
Theproofsofall theoremsareavailable in theSupplementary Information,but
we provide high-level ideas in this section. First, we highlight a core concept in
this work, variable transformation, and how we use it to prove universality.
Subsequently, we explain the main steps of the proof and construction of the
two universal families as a high-level summary of Section II of the SI.

Random variable transformation
A core concept in this work is that of random variable transformation. In
this subsection, we introduce it and provide some of the associated funda-
mental properties.

Fig. 5 |Expectation value sampler as the Trotterization of the spin glassHamiltonian
in (6).
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The first step in the analysis of expectation value samplers is the
observation that they are processes that map an input random vector
(parameterizing the quantum circuit) to an output random vector (the
expectation values of a set of observables). The literature on optimal
transport and measure theory32 states that for every pair of absolutely
continuous randomvariables of the samedimension, there exists amapping
to transform one into the other.

Lemma 3. For every pair of absolutely continuous probability density
functions pX 2 PðX � RMÞ and pY 2 PðY � RMÞ, there exists a map-
ping f : X ! Y, that maps Y ~ pY to X ~ pX as Y = f(X).

We give intuition on how to construct this mapping to be bounded
piece-wise continuous in the Supplementary information. Many generative
modeling systems, including Generative Adversarial Networks, Variational
Auto-Encoders, and normalizing flows, rely on this idea to generate arbi-
trary distributions. In particular, the initial distribution is chosen to be
simple, and then by altering the mapping applied to this random input, we
obtain a rich spectrum of possible output distributions.

Then, sufficient conditions for a family ofmappings to yield a universal
generativemodel, in the sense ofDefinition2, arewell-knownand expressed
in terms of the universality of mappings themselves. From ref. 33, it is
sufficient for a family ofmappings to be dense in the set of allmonotonically
increasing functions in the pointwise convergence topology to yield a uni-
versal generative model. We explain the difference between pointwise
topology and uniform topology in the Supplementary Information. Since
these are sufficient conditions and monotonic functions are included in all
functions, the following holds.

Lemma 433. If a family of mappings G ¼ fg : X � RM ! Y � RMg is
dense in the set of all functions in the pointwise convergence topology, then
this family of mappings G together with a probability density function pX
withnon-zero support onX yields a universal generativemodel family onY
(cf Definition 2).

In classicalmachine learning, such a notion of universality is common.
It has been proven for several families of mappings in the context of nor-
malizing flows, which are mappings with the additional property of being
invertible: generic triangular mappings32, neural network mappings34, and
polynomial mappings35.

In the next section, to prove the universality of expectation value
samplers, we make explicit the connection between universal mapping
families and the known results on the universality of parameterized quan-
tum circuits as supervised learning models.

Universality proofs
In recent literature, several universality properties of parameterized quan-
tum circuits have been proven. In24, a family of single-qubit quantum cir-
cuits with an increasing number of layers is proven to be universal in the
uniform sense for continuousmultidimensional input functions as complex
coordinates of the quantum state in the computational basis.

We extend this existing result to fit our needs, as follows. First, we
modify universality results from functions as coordinates in the computa-
tional basis to functions as the expectation value of an observable. Then we
broaden the universality of quantum reuploading models to some dis-
continuous functions by relaxing the required strength of convergence.
More precisely, we go from the uniform density in bounded continuous
functions to the pointwise density in bounded piecewise continuous func-
tions. Finally, by stacking M universal circuits, we extend universality to
multivariate output functions. All these extensions of ref. 24 together yield
the theorem below.

Theorem 4. For every natural number M, for every mapping
f 2 Bð½0; 1�M ! ½�1; 1�MÞ, there exists a sequenceof sets ofM single-qubit

quantum circuits and unit norm observables (indexed by k).

ðUk;m : ½0; 1�M ! Uð2Þ;Ok;mÞ1≤m≤M

n o
1≤ k ≤1

ð7Þ

such that the sequence of functions fgkg1≤ k≤1 defined as

gk;mðxÞ ¼ 0h ∣Uk;mðxÞyOk;mUk;mðxÞ∣0i ð8Þ
converges pointwise to f, where B is the set of piecewise continuous

functions, and the norm of the observable is the spectral norm.

The theorem above shows that there exists a family ofM-qubit circuits
with unit norm observables that yield a family of functions that is pointwise
dense in the set of bounded piece-wise continuous functions. This matches
the sufficient conditions of Lemma 4 for mappings to yield a universal
generative model. This yields that there exists a family of expectation value
sampling models as defined in Definition 1 and illustrated in Fig. 2 that is
universal in the sense of Definition 2.

For the observable dense encoding we follow a similar strategy, but
instead, each output variable is encoded as the overlap between the output
state and each computational basis state. With the normalization of the
quantum states, the observables are projectors on computational basis
states, amplified by a factor proportional to the dimension of the target
distribution. More details are provided in the Supplementary Information.

Data availability
No datasets were generated or analysed during the current study.
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