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Quantum-data-driven dynamical
transition in quantum learning
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Quantum neural networks, parameterized quantum circuits optimized under a specific cost function,
provide a paradigm for achieving near-term quantum advantage in quantum information processing.
UnderstandingQNN training dynamics is crucial for optimizing their performance. However, the role of
quantumdata in training for supervised learning such as classification and regression remains unclear.
We reveal a quantum-data-driven dynamical transitionwhere the target values and data determine the
convergence of the training. Through analytical classification over the fixed points of the dynamical
equation, we reveal a comprehensive ‘phase diagram’ featuring seven distinct dynamics originating
from a bifurcation with multiple codimension. Perturbative analyses identify both exponential and
polynomial convergence classes. We provide a non-perturbative theory to explain the transition via
generalized restricted Haar ensemble. The analytical results are confirmed with numerical simulations
andexperimentation on IBMquantumdevices.Our findingsprovideguidanceonconstructing the cost
function to accelerate convergence in QNN training.

Classical neural networks are the crucial paradigm ofmachine learning that
drive the surge of artificial intelligence. Generalizing the classical notion to
quantum, quantum neural networks (QNN) or variational quantum
algorithms1–8, have shown promise in solving complex problems involving
different types of data. In variational quantum eigensolver (VQE)1,9 and
quantumoptimization2,10, the goal is to prepare a state thatminimizes a cost
function, without the need for training data. However, supervised quantum
machine learning relies on sufficient training data—labeled quantum states
encoding either quantum or classical information. Such learning tasks have
been widely explored in identifying phases within many-body quantum
systems11, and classification of quantum sensing data12–15 or classical
data16–20.

With the rise of QNN applications in supervised learning, the funda-
mental study of their convergence properties becomes an important task,
especially in the overparametrization region21 where QNNs are empowered
by a large number of layers. Recent progress in the theory of the Quantum
Neural Tangent Kernel (QNTK)22–26 adopted the classical notion of neural
tangent kernel to provide insight into the convergence dynamics. Further-
more, for QNNs with a quadratic loss function, a dynamical transition
originating from the transcritical bifurcation has been revealed in the
training dynamics of optimization tasks27. However, the results do not apply
to supervised quantummachine learning, where complex quantumdata are
involved.

In this work, we develop a quantum-data-driven theory of dyna-
mical transition for supervised learning and reveal the complete multi-
dimensional ‘phase diagram’ in QNN training dynamics (see Fig. 1b).
Under the numerically supported assumption of the frozen relative
quantum meta-kernel (dQNTK), we obtain a group of nonlinear dyna-
mical equations of the training error and kernels that predict seven
different types of dynamics via the corresponding fixed points. Around
each physical fixed point, we can define a fixed-point charge, determined
by the choice of target value. When the target value crosses the boundary,
the minimum/maximum eigenvalue of the observable, the fixed-point
charge changes its sign and induces a stability transition on the fixed
point, which can be identified as a bifurcation with multi-codimension.
Then, we perform a leading-order perturbative analysis and obtain the
convergence speed of each of the seven dynamics, where an exponential
convergence class and a polynomial convergence class are identified. All
the analytical results are confirmed with numerical simulations of QNN
training. Furthermore, we develop a non-perturbative unitary ensemble
theory for the optimized quantum circuits to characterize the constrained
randomness and to support the frozen relative dQNTK assumption. We
also verify our results in examples of training dynamics with IBM
quantum devices. As the QNN training dynamics is determined by the
target value choice, our results provide guidance on constructing the cost
function to maximize the speed of convergence.
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Results
Overview of results
Given aQNN ÛðθÞwithL variational parametersθ= (θ1,…,θL),we consider
a supervised learning task involving N quantum data f∣ψαigNα¼1, each of
which is associated with a real-valued target label yα. As shown in Fig. 1a, the
input data can be quantum states of a many-body systems11, states output
fromquantum sensor networks14 or quantumstates encoding classical data16.

For input quantum data ∣ψα

�
, the QNN applies the unitary ÛðθÞ to

produce the output ÛðθÞ∣ψα

�
and then performs the measurement Ô,

whose result is adopted as the estimated label. Note that the target label yα
can be assigned arbitrarily according to different tasks, although the mea-
surement Ô typically has bounded maximum and minimum values
Omin=max. For example, while Pauli measurements always provide expec-
tation ∈ [− 1, 1], in regression we may set the target values as ±0.5 and in
binary classificationwecanalso set the target values to be±2.As indicatedby
the single data result in ref. 27, the choice of the target values has an
important role in the training dynamics.

The error—the average deviation of the estimated label to the target
label—associated with a data-target pair ð∣ψα

�
; yαÞ is therefore

ϵαðθÞ ¼ ψαjÛ
yðθÞÔÛðθÞjψα

D E
� yα: ð1Þ

To take into account the overall error over N data, we define the mean
squared error (MSE) loss as

LðθÞ ¼ 1
2N

XN
α¼1

ϵαðθÞ2: ð2Þ

The training of QNN relies on gradient-descent update of the parameters θ,
where each data’s gradient of the error ∇ ϵα(θ) (with respect to the
parameters θ) plays an important role. Generalizing the kernel scalar in
quantum optimization27, we introduce the kernel matrix
KαβðθÞ ¼ h∇ϵα;∇ϵβi, an inner product of gradients over parameter space.

Our main result is that the target values fyαgNα¼1 determine the QNN
training dynamics. The overall training can exhibit exponential converge
when none of the target values are chosen as the boundary valuesOmin=max;
on the other hand, any coincidence of the target value and the boundary
values of observable will lead to polynomial convergence. More specifically,
depending on the interplay of the target values, seven different types of
training dynamics can be identified. As shown in Fig. 1b in a two data case,
the target values y1 and y2 divide the parameter space into nine regions, with
the lines y1 ¼ Omin=max and y2 ¼ Omin=max. The four crossing points (red
dots) are the critical point with polynomial convergence; the same poly-
nomial convergence extends to the four lines, where critical-frozen-error
(brown) and where critical-frozen-kernel (purple) dynamics are identified.
The bulk regions enable exponential convergence and therefore are pre-
ferred. Furthermore, they are divided into three different dynamics, frozen-
kernel (yellow),mixed-frozen (green) and frozen-error (blue). Besides the six
dynamics depicted in Fig. 1b, an additional type of training dynamics,
critical-mixed-frozen dynamics, uniquely appears when the number of
data N > 2.

We provide analytical theory to derive and explain behaviors of the
above seven types of dynamics. Our analyses combine the solution of fixed
point, the perturbative analyses around the fixed points to derive the con-
vergence speed. In particular, we interpret the transition among different
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Fig. 1 | Illustration of the QNN for supervised learning and main results. aWe
study the training dynamics of errors and kernels in minimizing the MSE loss
function L ¼ 1

2

P
α ðhÔiα � yαÞ

2
, and develop a set of nonlinear dynamical equa-

tions (Eqs. (17)). bWe identify a dynamical transition among two convergence

classes involving seven different dynamics in total (six types are shown here), and
perturbatively solve its convergence dynamics. cWe also provide a non-perturbative
interpretation via restricted Haar ensemble theory to characterize the optimized
circuits under constraints from data.
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dynamics via the stability transition of fixed points, corresponding to a
bifurcation transition with multiple codimensions.

The dynamical transition is beyond the usual Haar random assump-
tion of QNNs that only holds at initialization, as QNNs are under con-
straints from the convergence at late time. We develop the restricted Haar
ensemble in a block-diagonal form

URH ¼ U U ¼ Q 0

0 V

� �����
� �

; ð3Þ

whereQ is a diagonal matrix with complex phases uniformly distributed to
capture the convergence and V is a Haar random unitary. For any unitary
ensemble, we can quantify its complexity via the frame potential28 (see
detailed definition in Eq. (41)), which is lower bounded by the value of the
Haarmeasure.As sketched inFig. 1c the ensemblehas framepotential above
the Haar value and increasing in a power-law with the number of data till
saturation at close to the Hilbert space dimension. The frame potential is
numerically verified in the QNN training.

At the end of this section, we provide the intuition on the different
choices of target values. Although it seems uncommon to choose a target
value yα >Omax (yα <Omin) to be nonphysical at the first glance, the mini-
mization of loss function in Eq. (2) will force the QNN to output states with
expectations of the bounded observable to beOmax (Omin), which is as close
as possible to the targeted nonphysical value. Thus, indeedwewill obtain an
optimized QNN identical to the one when setting the target values to be
Omax (Omin). Moreover, inspired by our previous work in optimization
tasks27, we find that setting nonphysical target values can also further pro-
vide speedup in the supervised learning task.

Fundamental dynamical equations for training a QNN
In this section, we aim to develop the fundamental dynamical equations to
simultaneously characterize the training dynamics of errors and kernels
from the first principle. DuringQNN training, we evaluate the cost function
in Eq. (2) andminimize it using gradient descent to update each parameter,

δθ‘ðtÞ � θ‘ðt þ 1Þ � θ‘ðtÞ ¼ �η ∂LðθÞ
∂θ‘

¼ � η
N

P
α
ϵαðθÞ ∂ϵαðθÞ∂θ‘

;
ð4Þ

where η≪ 1 is the learning rate in gradient descent. Accordingly, quantities
depending on θ also acquire new values in each training step, thus we only
denote the time dependence explicitly for simplicity, e.g., ϵα(t)≡ ϵα(θ(t)).
From the first-order Taylor expansion, the total error ϵα(t) is updated using
Eq. (4)

δϵαðtÞ ¼
X
‘

∂ϵαðθÞ
∂θ‘

δθ‘ þOðη2Þ ð5Þ

¼ � η

N

X
β

KαβðθÞϵβðθÞ þOðη2Þ: ð6Þ

Here, we have defined the QNTK matrix as

KαβðθÞ �
X
‘

∂ϵαðθÞ
∂θ‘

∂ϵβðθÞ
∂θ‘

¼ ∇ϵα;∇ϵβ
D E

; ð7Þ

where ∇ϵα � ∂ϵα
∂θ1

; . . . ; ∂ϵα∂θL

� 	T
is the gradient vector of ϵα, and 〈 ⋅ , ⋅ 〉

represents the inner product overparameter space. Bydefinition, theQNTK
is a positive semidefinite symmetric matrix. The diagonal term Kαα ¼
∇ϵα;∇ϵα

 � �k ∇ϵαk2 is the square of the norm of the gradient
vector, while the off-diagonal term Kαβ provides information about
the angle betweendifferent gradient vectors. Indeed, following thedefinition
of angle between gradient vectors, cosff½∇ϵα;∇ϵβ� ¼ h∇ϵα;∇ϵβi=
k ∇ϵα kk ∇ϵβ k, we can retrieve the geometric angle from the above

defined QNTK as

ffαβðθÞ � cosff ∇ϵα;∇ϵβ
h i

¼ Kαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KααKββ

p ð8Þ

where the matrix ffαβðθÞ is introduced to simplify the notation.
Our study focuses on the training dynamics of both errors and kernels

of theQNNs. To study the convergence, we often separate the error into two
parts: ϵα(t)≡ εα(t)+ ϵα(∞) consists of a constant remaining term ϵα(∞) and
a vanishing residual error εα(t).

With similar techniques in obtaining Eq. (6), in Method we derive the
dynamical equation of QNTK. Combining with Eq. (6), we have a set of
coupled nonlinear dynamical equations for total error and QNTK

δϵαðtÞ ¼ � η
N

P
β KαβðtÞϵβðtÞ;

δKαβðtÞ ¼ � η
N

P
γ ϵγðtÞ μγβα tð Þ þ μγαβ tð Þ

h i
:

8<
: ð9Þ

where the dQNTK μγαβ is defined as

μγαβðθÞ ¼
X
‘0;‘

∂ϵγðθÞ
∂θ‘

∂2ϵαðθÞ
∂θ‘∂θ

0
‘

∂ϵβðθÞ
∂θ‘0

; ð10Þ

which is a bilinear form of total error’s gradient and Hessian. Since
we utilize a quadratic loss function Eq. (2), there exists a gauge
invariance under the orthogonal group O(N) on the data space for
loss function, thus on the gradient descent update in Eq. (4) and
dynamical equations in Eq. (9), as we show in Supplementary Note 3.
However, quantities of inner products over parameter space, e.g.,
QNTK and dQNTK, are not gauge invariant.

Before moving on, we emphasize that the dynamical equations in this
section actually apply to the gradient-descent training of anyquadrature loss
function in Eq. (2), regardless of whether it regards a QNN or classical
systems.

Assumption of fixed relative dQNTK
In this section, we propose the key assumption (supported in ‘Ensemble
average results’ section) in order to analytically study the training dynamics
through reduction on the number of independent variables in Eq. (9). In a
typical training process toward reaching a local minimum, the Hessian
∂2ϵα

∂θ‘∂θ‘0
converges to a constant during late-time training. Therefore,

according to the definition of dQNTK in Eq. (10), we can expect that
μγαβ ~Kγβ has the same scaling. This intuition motivates us to define the
relative dQNTK λγαβ(t) as

λγαβðtÞ ¼
μγαβðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KγγðtÞKββðtÞ
q ; ð11Þ

which reduces to the scalar version in ref. 27 for optimization when N = 1.
Ourmajor assumption in this work is that the relative dQNTK converges to
a constant λγαβ(t) → λγαβ in the late time. We numerically verify the
assumption in various cases, as we detail in SupplementaryNote 6. In Fig. 2,
we plot the sum of the absolute values, k λγαβk1 �

P
γαβ jλγαβj, to show the

convergence. This assumption is not only motivated by previous results of
ref. 27, but also supported by the unitary ensemble theory in ‘Ensemble
average results’ section.

Under the constant relative dQNTK assumption, the dynamical
equations of Eq. (9) then become

∂tϵαðtÞ ¼ � η
N

P
β KαβðtÞϵβðtÞ;

∂tKαβðtÞ ¼ � η
N f βαðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
þ f αβðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q� 	
:

8<
: ð12Þ

https://doi.org/10.1038/s41534-025-01079-w Article

npj Quantum Information |          (2025) 11:132 3

www.nature.com/npjqi


where we have defined the functions

f αβðtÞ ¼
X
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
KγγðtÞ

q
ϵγðtÞλγαβ ð13Þ

for convenience and taken the continuous-time limit.
Our major result is the classification of the training dynamics of QNN

in supervised learning based on Eq. (12). In the next section, we obtain the
fixed points representing each dynamics under similar assumptions as in
ref. 27. In ‘Convergence towards fixed points’, we further provide pertur-
bative analyseson the late-time trainingdynamics toobtain the convergence
speed towards the fixed points. In ‘Ensemble average results’ section, we
develop the unitary ensemble theory to support the assumption proposed
above. In ‘Experiment’ section, we present experimental results on IBM
quantum devices.

We point out that our main conclusions hold generally for gradient-
descent training of bounded observables under quadratic loss function,
assuming the fixed relative dQNTK assumption, regardless of the detailed
dynamics—quantum or classical.

Solving the fixed points
From Eq. (12), we can obtain the fixed points below.

Result 1. (Frozen gradient angle and error-kernel duality) There exists a
family of fixed points of the training dynamics of Eq. (12) satisfying

ϵαKαα ¼ 0; 8α; ð14Þ

ffαβ ¼ const: ð15Þ

In other words, in late-time training, (1) the error ϵα and kernel Kαα

satisfy a duality—either one of the two is zero or both are zero; (2) the
relative orientation among gradient vectors associated with each data is
fixed. We claim the above conclusion as a result instead of a theorem, as
there is a weak assumption behind it: the functions fαβ(t) have the same
scaling versus t despite different α and β.

To show Result 1, we begin with the following lemma

Lemma 1. When the ratio

Aαβ ¼ lim
t!1

f βαðtÞffiffiffiffiffiffiffiffiffi
KββðtÞ

p þ f αβðtÞffiffiffiffiffiffiffiffiffi
KααðtÞ

p
� �

f ββðtÞffiffiffiffiffiffiffiffiffi
KββðtÞ

p þ f ααðtÞffiffiffiffiffiffiffiffiffi
KααðtÞ

p
� � ¼ const; ð16Þ

is a finite constant in the interval [ − 1, 1]. Then ffαβð1Þ ¼ Aαβ is a fixed
point of Eq. (12).

We provide the proof in Supplementary Note 1 We expect the con-
ditions in Lemma 1 to hold, as the functions fαβ(t) defined in Eq. (13) have
the same scalingwith time t for different indicesα,β at late time. Indeed, this
is true unless the constants λγαβ’s are particularly chosen such that certain
terms can exactly cancel out in the summation of Eq. (13). Under the
assumption that the functions fαβ(t) have the same scaling, we find that
Aαβ’s are indeedconstants by symmetryof the expression.Furthermore,our
numerical results (see Supplementary Note 6) indeed support that the
constant is between [ − 1, 1].

From the definition in Eq. (8), with ffαβðtÞ =ffαβ being a constant,
KαβðtÞ ¼ ffαβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞKββðtÞ

q
is entirely determined by the diagonal ker-

nels. Therefore, in the kernel-error dynamical Eq. (12), the only indepen-
dent variables are fϵαðtÞ;KααðtÞgNα¼1 and the relevant dynamical equations
among Eq. (12) can be simplified to

∂tϵαðtÞ ¼ � η
N

P
β ffαβ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
ϵβðtÞ;

∂t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
¼ � η

N

P
β λααβ

ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
ϵβðtÞ:

8><
>: ð17Þ

From here, we can conclude that {Kααϵα = 0, ∀ α} forms a family of fixed
points, which arrives at Result 1.

Classification of the dynamics
As indicated in Result 1, {Kααϵα = 0, ∀ α} defines a family of fixed points.
Since Kααϵα = 0 can be achieved by either Kαα = 0 or ϵα = 0 or both of them
are zeros,we canhave variousdifferentfixedpoints. Belowwe systematically
classify theQNNdynamics basedon thefixedpoints.DenoteΩ ¼ fβgNβ¼1 to
be the whole set of data indices, we can define two sets of indices SE, SK
conditioned on the convergence of errors and kernels as

SE � fβj lim
t!1

ϵβðtÞ ¼ 0g;
SK � fβj lim

t!1
KββðtÞ ¼ 0g;

8<
: ð18Þ

where SE ∪ SK =Ω always holds. The fixed points can thus be classified in
terms of the relation between the zero-error indices SE and the zero-kernel
indices SK, as we list in the table below.

We also depict the Venn diagram of each type of dynamics to visually
represent the table above in Fig. 3. All the names of the dynamics and the
overall classification of exponential versus polynomial convergence (in the
residual error) will be explained in ‘Convergence towards fixed points’
section. Compared with the case of optimization algorithms considered in
ref. 27, QNNs for supervised learning have four extra types of dynamics,
mixed-frozen, critical-frozen-kernel, critical frozen-error and critical-mixed-
frozen dynamics due to the interaction between data through convergence.

To determine which set a data state belongs to in Eq. (18), we need to
identify for a particular data index β whether the kernel Kββ(t) or the error
ϵβ(t) will decay to zero at late time. While the exact determination will
require training the QNN to late time, we can obtain intuition from the
relation between target value yβ and achievable values for the observable Ô.
When a target value yβ lies within the achievable region ðOmin;OmaxÞ, the
error ϵβ(t) is expected to converge to zero when the circuit is deep, implying
β∈ SE; When a target value is not in the achievable region, then we expect
ϵβ(t) to converge to nonzero constants. Thus, the fixed point condition in
Result 1 requires Kββ(t) vanishing to zero, and thus β∈ SK; when the target

Fig. 2 | Convergence of relative dQNTK. We show the norm k λγαβðtÞk1 �P
γαβ jλγαβðtÞj for (a) exponential convergence class and (b) polynomial con-

vergence class (detailed in ‘Classifying the dynamics’ section). The targets for
orthogonal data states are y1 = 0.3, y2 =− 0.5 (blue), y1 = 5, y2 =− 6 (orange) and
y1 = 0.4,− 5 (green) in (a); y1 = 1, y2 =− 1 (blue), y1 = 0.4, y2 =− 1 (orange), y1 = 1,
y2 =− 5 (green) and y1 = 0.4, y2 = 1, y3 =− 5 (red) in (b). The corresponding
dynamics are identified in Fig. 3 and Table. 1. Here random Pauli ansatz (RPA)
consists of L = 48 variational parameters on n = 4 qubits with Ô ¼ σ̂z1, Pauli-Z
operator on the first qubit.
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value is at the boundary yβ ¼ Omin=max, then we expect the special case of
critical phenomena with both error and kernel vanishing at late time thus
β∈ SE∩ SK. The above intuition about target value and ‘phase diagram’ can
be summarized as the following

β 2 SE; if yβ 2 ½Omin;Omax�;
β 2 SK ; if yβ 2 ð�1;Omin�∪ ½Omax;þ1Þ:

(
ð19Þ

When yβ ¼ Omin or Omax, we have β ∈ SE ∩ SK. The Venn diagrams
summarize the classification of fixed points and connection to target value
configuration for each case, as shown in Fig. 3.

Numerical analysis confirms that this classification holds for the
orthogonal data case, where ψαjψβ

D E
¼ δαβ, as detailed in the following

section. Although the orthogonality property does not hold always in
machine learning tasks, we take the orthogonal data as a typical case to
unveil the fruitful physical phenomena within the training dynamics. In
practice, typical random states in high-dimensional space are expected to be
exponentially close to orthogonal states. Important quantum machine
learning tasks involving state discrimination and classification also benefit
from orthogonal data encoding due to the Helstrom limit29,30.

Since the dynamical equations in Eq. (9) are gauge invariant, the fixed
point identified in Result 1 is also gauge invariant. However, the classifi-
cation of the dynamics will be dependent on the choice of gauge—different
ways of defining the error as combinations of the natural basis in Eq. (1).
This is intuitive, as the dynamical transitions are driven by the data and the
target values are naturally tuned according to each observable.

Stability transition of fixed points: bifurcation
We have identified the family of fixed points for the dynamical equations
(Eq. (17)) in Result 1, and seen the classification of dynamics in ‘Classifying
the dynamics’ section. In this part, we aim to study the stability of every
possible fixed point, which provides theoretical support on the convergence

of each dynamics discussed above, and reveals the nature of the transition
among different dynamics.

Around any fixed point ðϵ�α;K�
ααÞ of the dynamical equations in Eq.

(17), we can define a group of constant fixed-point charges as

Cα ¼ K�
αα � 2λαααϵ

�
α; 8α: ð20Þ

Note that the above fixed-point charges are only well-defined around the
fixed point. We introduce them to analyze the stability of fixed point as we
will detail below. It is different from the conserved quantity identified in the
optimization learning task27 which holds for the entire late-time training
supported by the corresponding dynamical equation. Thanks to the
constants Cα, we can decouple the dynamical equation near the fixed point,
and reduce it to a set of equations dependent only on Kαα(t),

∂t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
¼ � η

2N

X
β

λααβ
λβββ

ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
KββðtÞ � Cβ

� 	
ð21Þ

� η

2N
GαðfKββg; fCβgÞ; ð22Þ

where we introduce the functionGα({Kββ}, {Cβ}) for convenience. Note that
Eq. (22) only holds near the fixed point. Through the linearization at fixed
point fK�

ααg (see details in Method), we have

∂t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
¼ η

2N

P
β
MαβðfK�

ββg; fCβgÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
�

ffiffiffiffiffiffiffiffi
K�

ββ

q� �
;

ð23Þ

where the matrixMαβðfK�
ββg; fCβgÞ is the Jacobian of Gα w.r.t. each kernel

element
ffiffiffiffiffiffiffiffi
Kββ

p
at the fixed point fK�

ββg

MαβðfKββg; fCαgÞ �
∂GαðfKββg; fCβgÞ

∂
ffiffiffiffiffiffiffiffi
Kββ

p
�����
fK�

ββg
: ð24Þ

The stability of the fixed point fK�
ββg can thus be determined from the

spectrum of the matrix MαβðfK�
ββg; fCβgÞ. Once an eigenvalue with a

positive real part appears, the fixed point becomes unstable. Combining the
stable fixed point and {Cα}, we can directly derive the classification in Fig. 3,
and therefore connect the each fixed point to the corresponding class of
training dynamics.

We take the two-data case as an example to reveal the stability tran-
sitionof thefixedpoints under the changeof {Cβ}. In this case, the eigenvalue
of the 2-by-2 matrix M is a function of trðMÞ and detðMÞ only. One can
easily find the trace and determinant as

trðMÞ ¼ C1 þ C2 � 3ðK�
11 þ K�

22Þ;
detðMÞ / C1 � 3K�

11

� 

C2 � 3K�

22

� 

:

(
ð25Þ

Recall that Kαα is defined to be the 2-norm of total error’s gradient w.r.t.
variational parameters, the physically accessible fixed point can only be
ðK�

11;K
�
22Þ ¼ ðC1;C2Þ; ðC1; 0Þ; ð0;C2Þ and (0, 0). Via tuning (C1, C2), the

stability of each fixed point would undergo a transition, illustrated by the
flow diagrams in Fig. 4. When C1, C2 > 0, all the four fixed points are
physically accessible (Fig. 4c). However, only ðK�

11;K
�
22Þ ¼ ðC1;C2Þ (red

dot) is a stable fixed point with trðMÞ < 0; detðMÞ > 0 where every flow
points toward it, while the others (purple triangles) are all unstable to be
either a saddle point or a source. As C1, C2 > 0 are both positive, its
convergence toward (C1, C2) corresponds to the frozen-kernel dynamics.
Whenweholdoneof the charge tobepositivewhile tuning theotherone, for
instance, decreasing C2 from positive to negative with C1 > 0 ((c)-(f)-(i)),
due to the requirement that Kαα > 0, only the fixed points (C1, 0) and (0, 0)

Exponential 
convergence class

(a) frozen kernel dynamics

(b) frozen error dynamics

(c) mixed-frozen dynamics

Polynomial convergence class

(d) critical point 

(e) critical-frozen-kernel 
dynamics

(f) critical-frozen-error 
dynamics

(g) critical-mixed-
frozen dynamics

Fig. 3 | Venn diagram of classes of dynamics. In all cases, we have SE ∪ SK =Ω.
Exponential convergence class consists of three types of dynamics in (a), (b), and (c).
Polynomial convergence class consists of four types of dynamics depicted in (d), (e),
(f), and (g). The corresponding dynamics are explained in ‘Convergence towards
fixed points’ section. The bottom legend shows the connection of the set SE and Sk to
the target value configuration.
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are physically accessible, then we find that (C1, 0) becomes a stable fixed
point (red dots in (f), (i)), while (0, 0) (purple triangles in (f), (i)) is still
unstable, corresponding to the critical-frozen-kernel dynamics and mixed-
frozen dynamics separately. Similar analysis holds for tuning C1 while
holding C2> 0 ((c)-(b)-(a)), resulting in the same dynamical transition.
When we have C2 < 0 while decreasing C1 from positive to negative, we see
the only physically accessible and stable fixed point is (0, 0) (red dots in (g)
(h)), leading to the critical-frozen-error dynamics and frozen-error dynamics
separately. Specifically, when we have both C1 =C2 = 0, all fixed points
collide and leads to critical point. Therefore, we can identify the stability
transition of the fixed point as a bifurcation transition with multiple
codimensions. Although the linearized dynamics in Eq. (23) only hold close
to the fixed point, the bifurcation transition in supervised learning
we uncover holds generally. While the fixed point location changes under
gauge transform O(N), its stability property persists since the spectrum of
Mαβ is gauge invariant.

Convergence towards fixed points: exponential
convergence class
Now we assume the dynamical quantities—the errors and QNTKs—
converge towards the fixed point given in Result 1 and study the

convergence speed for different dynamics identified above in Table 1.
To unveil the scaling of convergence for each dynamics, we
solve the dynamical equations in Eqs. (17) close to the known
stable fixed point identified above in ‘Stability transition of fixed
points: bifurcation’ section, and present the corresponding solution in
leading order, verify our theoretical predictions with numerical
simulations.

In the numerical simulations to verify our solutions, without loss of
generality, we consider the random Pauli ansatz (RPA)23,27 constructed
as ÛðθÞ ¼ QD

‘¼1 Ŵ‘V̂‘ðθ‘Þ; where θ = (θ1, …, θL) are the variational
parameters. Here fŴ‘g

L
‘¼1 2 UHaarðdÞ is a set of unitaries with dimen-

sion d = 2n sampled from Haar ensemble, and V̂‘ is a global n-qubit
rotation gate defined to be V̂ ‘ðθ‘Þ ¼ e�iθ‘X̂‘=2; where X̂‘ 2 fσ̂x; σ̂y; σ̂zg�n

is a randomly-sampled n-qubit Pauli operator nontrivially supported on
every qubit. Note that fX̂‘; Ŵ‘g

L
‘¼1 remain unchanged through the

training. The observable is chosen as Pauli-Z, which has the minimum
and maximum achievable values Omin=max ¼ ± 1. Without losing gen-
erality, the N orthogonal data states in the simulation are generated by
applying a unitary sampled from Haar ensemble onto N different
computational bases. The loss function of RPA in numerical simulations
is minimized with learning rate η = 10−3, and all numerical simulations
are implemented with TensorCircuit31.

We begin with the exponential convergence class of dynamics, which
corresponds to the cases where each data can only have either zero error or
zero kernel, SE \ SK ¼ ;, as we indicate in Fig. 3 and Table 1.

Frozen-kernel dynamics.— For frozen-kernel dynamics (Fig. 3a), we
have an empty set of zero-kernel indices, SK ¼ ;, and a full set of zero-error
indices, SE =Ω, leading to the fixed point as fðϵβð1Þ ¼
0;Kββð1Þ > 0Þgβ2Ω. Around the fixed point, we can perform the leading-
order perturbative analysis from Eq. (17) and obtain

∂tϵαðtÞ ¼ � η

N

X
β2Ω

Kαβð1ÞϵβðtÞ; ð26Þ

for all indicesα, whereKαβð1Þ � ffαβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kααð1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kββð1Þ

q
is the late-time

QNTKmatrix. As the QNTKmatrix is symmetric and positive definite, the
linearized equation leads to the exponential convergence of all errors {ϵα(t)}
at the same rate and subsequently the exponential convergence of the

Fig. 4 | Flowdiagram for convergence towardfixed
points. The flow diagram is described by Eq. (22).
Red dots in each subplot represent the only physi-
cally accessible stable fixed point, while purple tri-
angles represent unstable fixed points. Here we
choose C1, C2 to be ±2, 0.

(a) mixed-frozen (b) critical-
frozen-kernel

(c) frozen-kernel

(d) critical-
frozen-error

(e) critical 
point

(f) critical-
frozen- kernel

(g) frozen- error (h) critical-
frozen- error

(i) mixed-frozen

Table 1 | Summary of the relation between zero error and
kernel index setsSE,SK and the corresponding different types
of QNN training dynamics

SE \ SK ¼ ; Exponential convergence class

SK ¼ ; frozen-kernel dynamics

SE ¼ ; frozen-error dynamics

SE ;SK ≠ ; mixed-frozen dynamics

SE \ SK ≠; Polynomial convergence class

SE = SK = Ω critical point

SK ⊊ SE = Ω critical-frozen-kernel dynamics

SE ⊊ SK = Ω critical-frozen-error dynamics

SE ⊄ SK, SK ⊄ SE critical-mixed-frozen dynamics

All types of dynamics are explained in ‘Convergence towards fixed points’ section.
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kernels {Kαα(t)} towards the constant non-zero values as

ϵαðtÞ;KααðtÞ � Kααð1Þ / e�ηw�t ; 8α 2 Ω; ð27Þ

where w* is the minimum eigenvalue of QNTK matrix Kαβ(∞). Since all
errors vanish exponentially and SK ¼ ;, this is a generalization of the
frozen-kernel dynamics in QNN-based optimization algorithms found in
ref. 27.

Now we compare the above theory results with the numerical simu-
lations of QNN training. In Fig. 5 left panels (a1), (b1), and (c1), we provide
the numerical results (solid curves) of N = 2 data states with y1 = 0.3,
y2 =−0.5, and see alignment with our theoretical predictions (dashed
curves), where the error exponentially vanishes (b1) while the kernels
converge to anonzero constant (c1).Note that in frozen-kernel dynamics the
residual error equals the total error, ϵα(t) = εα(t), as the errors all converge to
ϵα(∞) = 0 at late time.

Frozen-error dynamics.— Similar to the frozen-kernel dynamics, in the
frozen-error dynamics (Fig. 3b), we have SE ¼ ; with the fixed point
fðϵβð1Þ≠ 0;Kββð1Þ ¼ 0Þg

β2Ω. Around the fixed point, leading-order
perturbative analyses of Eq. (17) leads to

∂t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
¼ � η

N

X
β2Ω

Fαβ

ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
; ð28Þ

where Fαβ≡ λααβϵβ(∞) is a constant matrix with positive eigenvalues at late
time. Therefore, the convergence towards the fixed point is again expo-
nential and all quantities have the same convergence rate as

ϵαðtÞ � ϵαð1Þ;KααðtÞ / e�ηw�t; 8α 2 Ω; ð29Þ

where w* is the minimum eigenvalue of Fαβ. As all kernels vanish expo-
nentially while all errors converge to constant, this is a generalization of the
frozen-error dynamics in QNN-based optimization algorithms in ref. 27.

The numerical results are compared with the above theory in Fig. 5
middle panels (a2), (b2) and (c2). The total error ϵα(t) converges to a
nonzero constant (a2) since the target y1 = 5, y2 =− 6 is out of reach from

measurement; meanwhile, the residual error εα(t) and QNTK Kαβ(t) van-
ishes exponentially (b2-c2), as predicted by the theory.

Mixed-frozen dynamics.— When both the zero-error indices SE and
zero-kernel indices SK are not empty (and have no overlap), the fixed point
has only the error going to zero or only the kernel going to zero
—fðϵβð1Þ ¼ 0;Kββð1Þ > 0Þg

β2SE
∪ fðϵβð1Þ≠ 0;Kββð1Þ ¼ 0Þg

β2SK
.

This is a combination of fixed points of the frozen-kernel dynamics and
frozen-error dynamics, leading to amixed-frozen dynamics (Fig. 3c). Similar
to the previous two types of dynamics, we canperformperturbative analyses
from Eq. (17), and obtain the leading-order solution

ϵαðtÞ;KααðtÞ � Kααð1Þ / e�ηw�t=N ; 8α 2 SE ð30Þ

and

ϵβðtÞ � ϵβð1Þ;KββðtÞ / e�2ηw�t=N ; 8β 2 SK ð31Þ

where w* is a positive constant determined by a matrix in terms of frozen
error and kernels, and the corresponding relative dQNTK and geometric
angles.

From Fig. 5 right panels (a3), (b3) and (c3), since our measurement is
Ô ¼ σ̂z1, forα∈ SEwith yα ¼ 0:4 2 ðOmin;OmaxÞ, we see the error decreases
exponentially toward zero (blue in (a3)-(b3)) and its corresponding QNTK
Kαα(t) converges to a positive constant (blue in (c3)). For β ∈ SK with
yβ ¼ �5 <Omin, the total error ends at apositive constant,while the residual
error εβ(t) andQNTKKββ(t) decay exponentially (red in (b3)-(c3)). For off-
diagonal kernels Kαβ with α ≠ β that can be inferred from Eq. (8), it con-
verges to a positive constant∀α,β∈ SE, or vanishes exponentially otherwise.
An interestingphenomena inducedby the interactionbetweendata targeted
within different types of dynamics is that the decay exponent of εβ(t),Kββ(t),
∀β∈ SK is about two times as large as the one from εα(t),∀α∈ SE andKαβ(t),
∀α ∈ SE, β ∈ SK.

Fig. 5 | Exponential convergence class dynamics in
QNN with orthogonal data. From left to right we
show the error and QNTK dynamics of frozen-
kernel dynamics, frozen-error dynamics and mixed-
frozen dynamics. From top to bottom we plot total
error ϵα(t), residual error εα(t) = ϵα(t) − ϵα(∞), and
QNTK Kαβ(t). Subplots in each row share the same
legend. Light solid and dark dashed curves with
same color represent numerical simulations and
corresponding theoretical predictions for each data
(see Supplementary Note 4). Subplots in each row
share the same legend. Here random Pauli ansatz
(RPA) consists of L = 48 variational parameters on n
= 4 qubits with Ô ¼ σ̂z1, Pauli-Z operator on the first
qubit. There are N = 2 orthogonal data states tar-
geted at y1 = 0.3, y2 =−0.5 (left), y1 = 5, y2 =− 6
(middle) and y1 = 0.4, y2 =− 5 (right).
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Convergence towardfixedpoints:polynomialconvergenceclass
In this part, we address the cases of overlapping zero-error indices and zero-
kernel indices, SE \ SK≠;, leading to the polynomial convergence class of
dynamics, as we indicate in Fig. 3.

Critical point.— The simplest case is the critical point with both sets
of indices full, SE = SK =Ω, as shown in Fig. 3d. In this case, the fixed
point has all errors and kernels vanishing, fðϵαð1Þ ¼ 0;
Kααð1Þ ¼ 0Þgα2Ω. From Eqs. (17), we can obtain the leading-order
decay of all quantities as

ϵαðtÞ;KααðtÞ / 1=t; 8α 2 Ω: ð32Þ

In Fig. 6 left panels (a1), (b1) and (c1), indeed we see that both error and
QNTK decay polynomially as ϵα(t),Kαβ(t) ~ 1/t, which can be regarded as a
generalization of the critical point identified in QNN-based optimization
algorithms from ref. 27.

Critical-frozen-kernel dynamics.— When the zero-kernel
indices form a strict subset of zero-error indices, SK ⊊ SE = Ω,
we have the critical-frozen-kernel dynamics (Fig. 3e), where
the fixed point is a mixture of both quantities vanishing and only the error
vanishing—fðϵβð1Þ ¼ 0;Kββð1Þ ¼ 0Þg

β2SK
∪ fðϵβð1Þ ¼ 0;Kββð1Þ >

0Þgβ2SEnSK . This is a combinationof correspondingfixedpoints from critical
point and frozen-kernel dynamics. Initially without noticeable interactions
between data from SK and SE⧹SK, we expect that error and QNTK from
each set should vary with time nearly independently following the
dynamics from critical point and frozen-kernel dynamics studied

above, leading to the fact that
ffiffiffiffiffiffiffiffiffiffiffiffi
KββðtÞ

q
ϵβðtÞ; 8β 2 SK decays much

slower than that with indices ∀β ∈ SE⧹SK. Therefore, in late time, we
approximate the dynamics of ϵα(t), Kαα(t), ∀ α ∈ SK to be self-governed
as a “free-field”, and maintains 1/t decay as in the critical point.

With the solution∀β∈SK inhand,we can thenperturbatively solve the
rest and obtain the overall solution,

ϵαðtÞ;KααðtÞ / 1=t; 8α 2 SK ; ð33Þ

and

ϵβðtÞ / 1=t3=2;KββðtÞ � Kββð1Þ / 1=t; 8β 2 SE n SK : ð34Þ

Here SE⧹SK = {β∣β∈ SE, β∉ SK} is the set difference between sets SE, SK and
Kββ(∞)’s are the corresponding converged kernel values. The off-diagonal
kernels Kαβ for α ≠ β can be determined from Eq. (8), and have the same
scaling as corresponding diagonal counterparts if both indices α, β belongs
to the same set, SE⧹SK or SK, while � 1=

ffiffi
t

p
for α ∈ SE⧹SK, β ∈ SK.

We verify our above theoretical predictions with numerical simulations
in Fig. 6 middle panels (a2), (b2) and (c2). The “free-field theory” approach
utilized above is valid as the corresponding error andQNTK decays ~1/t (see
red curves (a2)-(c2)), just as the critical point. The interaction between data
dynamics induces the higher-order polynomial decay of error ~t−3/2 (blue in
(b2)) on data α ∈ SE⧹SK at late time. Compared with the frozen-kernel
dynamics dynamics, here the corresponding kernel Kββ(t) for indices β ∈
SE⧹SK also converges to a positive constant though at a much slower speed
� 1=

ffiffi
t

p
affected by the slowest decay from data targeted at the boundary.

Critical-frozen-error dynamics.— Similarly, when the zero-error indi-
ces form a strict subset of the zero-kernel indices, SE ⊊ SK =Ω, we have the
critical-frozen-error dynamics (Fig. 3f) with the fixed point described by
fðϵβð1Þ ¼ 0;Kββð1Þ ¼ 0g

β2SE
∪ fðϵβð1Þ≠ 0;Kββð1Þ ¼ 0Þg

β2SKnSE
, just

a combination of critical point and frozen-error dynamics. Due to the same
reason as in critical-frozen-kernel dynamics discussed above, the late-time
dynamics of ϵα(t), Kαα(t), ∀ α ∈ SE are also self-governed as the “free field”
and can be satisfied by the polynomial solution ∝ 1/t.

Then the rest of the variables can then be solved asymptotically and
lead to the critical-frozen-error dynamics dynamics:

ϵαðtÞ;KααðtÞ / 1=t; 8α 2 SE; ð35Þ

and

ϵβðtÞ � ϵβð1Þ / 1=t2;KββðtÞ / 1=t3; 8β 2 SK n SE: ð36Þ

Fig. 6 | Polynomial convergence class dynamics in
QNN with orthogonal data. From left to right we
show the error andQNTKdynamics of critical point,
critical-frozen-kernel dynamics and critical-frozen-
error dynamics. From top to bottom we plot total
error ϵα(t), residual error εα(t) = ϵα(t) − ϵα(∞), and
QNTK Kαβ(t). Light solid and dark dashed curves
with same color represent numerical simulations
and corresponding theoretical predictions for each
data (see Supplementary Note 4). Subplots in each
row share the same legend. Here random Pauli
ansatz (RPA) consists of L = 48 variational para-
meters on n = 4 qubits with Ô ¼ σ̂z1, the Pauli-Z
operator on first qubit. There are N = 2 orthogonal
data states targeted at y1 = 1, y2 =−1 (left), y1 = 0.4, y2
= −1 (middle) and y1 = 1, y2 = −5 (right).

https://doi.org/10.1038/s41534-025-01079-w Article

npj Quantum Information |          (2025) 11:132 8

www.nature.com/npjqi


The nontrivial off-diagonal terms of Kαβ for α∈ SE, β∈ SK⧹SE are given by
Eq. (8) and can have scaling of 1/t2 at late time.

As shown in Fig. 6 right panels (a3), (b3) and (c3), the error and kernel
of data targeted at boundary decays polynomially as ~ 1/t (blue in (a3)-(c3)),
on the other hand, the total error of data targeted beyond accessible values
still converges to a nonzero constants (red in (a3)), but the residual error
εβ(t),∀ β∈ SK⧹SE vanishes only at a higher-order polynomial speed of ~ 1/t2

(red in (b3)), which is induced by the interaction with data targeted at the
boundary, thus much slower compared to the mixed-frozen dynamics.

Critical-mixed-frozen dynamics.— Finally, we consider the most
complex casewhere none of the sets contains the other, SE⊄ SK and SK⊄ SE,
and two sets have nonempty overlap SE \ SK ≠ ;, which corresponds to
the critical-mixed-frozen dynamics (Fig. 3g). This dynamics only takes place
for supervised learning with at least N ≥ 3 input quantum data. The fixed
point is described by fðϵβð1Þ ¼ 0;Kββð1Þ ¼ 0Þg

β2SE\SK
∪ fðϵβð1Þ ¼

0;Kββð1Þ > 0Þgβ2SEnðSE\SK Þ ∪ fðϵβð1Þ≠ 0;Kββð1Þ ¼ 0Þg
β2SKnðSE\SK Þ

.

Due to the existence of data targeted at the boundary for β∈ SE∩ SK, we can
still solve its corresponding dynamics via the “free-field” approach which
brings us the 1/tdecay. Then,we can reduce the dynamical equations for the
rest of quantities and obtain the leading-order result:

ϵαðtÞ;KααðtÞ / 1=t; ð37Þ

for all data ∀ α ∈ SE ∩ SK,

ϵαðtÞ / 1=t3=2;KααðtÞ � Kααð1Þ / 1=t; ð38Þ

for all data ∀ α ∈ SE⧹(SE ∩ SK), and

ϵαðtÞ � ϵαð1Þ / 1=t2;KααðtÞ / 1=t3; ð39Þ

for the rest data ∀ α∈ SK⧹(SE∩ SK). The off-diagonal terms ofKαβ for α ≠ β
can still be determined from Eq. (8) and for these with index crossing
dynamics, it can have scaling of�1= ffiffi

t
p

for all indices α∈ SE⧹(SE∩ SK), β∈
SE∩ SK, ~1/t

3/2 for all indicesα∈ SE⧹(SE∩ SK),β∈ SK⧹(SE∩ SK) and~1/t
2 for

all indices α ∈ SE ∩ SK, β ∈ SK⧹(SE ∩ SK).

In Fig. 7, we verify our above theory predictions with numerical
simulations. The error and kernel of data targeted at the boundary yα = ±1
decays polynomially as ~1/t (orange in (a1), (a2), (b1)), well captured by the
“free-field” approach. Meanwhile, for data targeted within the accessible
region, the error decays polynomially with a faster speed at ~1/t3/2 (green in
(a1), (a2)) with kernel approaching a constant (green in (b1)). On the other
hand, for data targeted outside the accessible region, the total error can only
converge to a nonzero constant (blue in (a1)), however, the residual error
εα(t) vanishes quadratically ~1/t2 (blue in (a2)), and the kernel decays
cubically ~1/t3 (blue in (b1)). In addition, the cross-dynamics off-diagonal
terms ofKαβ also agree with the theory predictions—polynomial decaywith
1=

ffiffi
t

p
; 1=t3=2 and 1/t2 scalings, as shown in (b2).
From the convergence of polynomial convergence class discussed

above, we see that as long as there exists a data state targeted at the
boundary, eitherOmin orOmax, the convergence dynamics for all data will
be suppressed to polynomial decay though with potential different
orders, in contrast to the exponential convergence class. Therefore, our
results imply that in quantum machine learning, a proper design of loss
function is important to enable fast convergence towards the same QNN
configuration.

Ensemble average results
In this section, we provide physical insight and analytical results to resolve
the only assumption for deriving the dynamical equations Eq. (17) that the
relative dQNTK λααβ approaches a constant at late time. Our results rely on
large depth D≫ 1 (equivalently L≫ 1), where the converged circuit uni-
taries optimized from random initialization can be modeled as a specific
unitary ensemble, the restricted Haar ensemble.

Under random initialization, the circuit unitary can be represented as a
typical sample fromHaar random ensemble, as long as the circuit ansatz is
universal4,23,32. However, as the training starts, the circuit unitary quickly
deviates from the Haar random unitary to map each of the input data state
∣ψα

�
to the corresponding target state ∣Φα

�
due to the constraint imposedby

the target value yα; therefore, wemodel the converged circuit unitaries as the
restricted Haar ensemble in a block-diagonal form

URH ¼ U U ¼ Q 0

0 V

� �����
� �

; ð40Þ

where Q ¼ 	N
α¼1e

iϕα is a diagonal matrix with complex phases uniformly
distributed ϕα � U 0; 2πÞ½ (also known as randomdiagonal-unitarymatrix
in ref. 33) andV is aHaar randomunitaryof dimensiond−N. The rows and
columns are represented in basis of input and target states. Specifically, for
N ≥ d− 1, the unitary in the restricted Haar ensemble becomes a diagonal
matrix with complex phases only; while for N = 1, the ensemble reduces to
the restricted Haar unitary considered in QNN-based optimization
algorithms27.

We consider themulti-state preparation task as there are less degreesof
freedom in the targets to provide insights into the ensemble-average results.
As we discussed above, the input data states are orthogonal, hψαjψβi ¼ δαβ,
which can be generated from a random unitary applied on the computa-
tional basis. The observable for each data state is a state projector to its
corresponding target state Ôα ¼ ∣Φα

�
Φα



∣ with orthogonality

hΦαjΦβi ¼ δαβ. To quantify the evolution of the QNN unitary ensemble,
we study the frame potential, a widely utilized tool in quantum information
science and quantum chaos28. Here, we choose the second-order frame
potential

F ð2Þ
U ¼

Z
U
dU dU 0jtrðUyU 0Þj4; ð41Þ

as a typical nontrivial measure on the unitary ensemble U , and results for
higher-order frame potential are presented in Supplementary Note 5. A
smaller value of the frame potential indicates a higher level of randomness
for an unitary ensemble—the minimum value of the k-th-order frame

Fig. 7 | Convergence of critical-mixed-frozen dynamics in QNN with
orthogonal data.Weplot total error ϵα(t) in (a1), residual error εα(t) = ϵα(t)− ϵα(∞)
in (a2), and diagonal Kαα(t) and off-diagonal QNTK Kαβ(t) in (b1) and (b2). Light
solid and dark dashed curves with same color represent numerical simulations and
corresponding theoretical predictions for each data. Here random Pauli ansatz
(RPA) consists of L = 48 variational parameters (D = L for RPA) on n = 4 qubits with
Ô ¼ σ̂z1, the Pauli-Z operator on first qubit. There are N = 3 orthogonal data states
targeted at y1 = 0.4, y2 = 1, y3 = − 5.

https://doi.org/10.1038/s41534-025-01079-w Article

npj Quantum Information |          (2025) 11:132 9

www.nature.com/npjqi


potential, min
U

F ðkÞ
U ¼ k!, is achieved by the Haar random ensemble (more

generally the k-design28).
For restrictedHaar ensemble, we analytically obtain its frame potential

as

F ð2Þ
RH ¼ 2N2 þ 3N þ 2; N ≤ d � 2;

2d2 � d; N ≥ d � 1:

�
ð42Þ

We seeF ð2Þ
RH grows quadratically with number of data until saturates at the

squaredHilbert spacedimensionwhenN ≥ d− 1, which is in sharp contrast
to theHaar randomensemble resultF ð2Þ

Haar ¼ 2 independent of both system
dimension and number of data (additional calculations can be found in
SupplementaryNote 5).As a sanity check, theN = 0nodata case agreeswith
the Haar random case. At large N, the frame potential saturates to 2d2 − d,
limited by the Hilbert space dimension due to orthogonal condition on
input data. Such a phenomena can be understood from the reduction in the
degree of freedom driven by the increasing number of data. The analytical
formula is plot in Fig. 8a as the red dashed curve.

We expect when the converged state is unique, for example in the
frozen-error dynamics, the frame potential will converge to the restricted
Haar ensemble’s prediction. To provide a quantitative understanding, we
show the frame potential fromnumerical simulation at late-time (blue dots)
with various data states and see a good agreement with theory from
restricted Haar ensemble (red dashed line) in Fig. 8a. Overall, similar con-
vergence of frame potential can also be found in frozen-error, critical-point
and critical-frozen-error, as we show in Fig. 8b. Their deviations from the
exact theoretical result (black dashed) are due to finite samples in the
ensemble, and slow convergence of unitary in dynamics belonging to
polynomial convergence class. For non-unique converged states of
dynamics with at least one target value chosen within accessible region
yα 2 ðOmin;OmaxÞ, the frame potential of unitary ensemble U can lie
between the values of Haar and restricted Haar ensembles,
F ð2Þ

Haar <F ð2Þ
U <F ð2Þ

RH, due to extra randomness allowed in the unitary, as
shown by the green, purple and blue lines in Fig. 8b.

Given the sub-block unitaryV forms a 4-design, we have the following
results.

Theorem 1. For multi-state preparation task with observable Ôα ¼
∣Φα

�
Φα



∣ satisfying hΦαjΦβi ¼ δαβ with N < d − 1, when the circuit

satisfies restricted Haar ensemble and the input data states are orthogonal,
the ensemble average of QNTK and relative dQNTK for each data (unified

indices) are

Kααð1Þ ¼ L
2d

oαð1� oαÞ; ð43Þ

λαααð1Þ ¼ � 1
4d

2ðdoα � 2Þ þ Lð2oα � 1Þ� �
; ð44Þ

at the L≫ 1, d≫ 1 limit, where oα = ϵα(∞) + yα.
Note that the average relative dQNTK are taken to be the ratio of

corresponding average quantities, and we expect the change of order of
average does not affect the result significantly due to self-averaging. In
Fig. 9a, we see a clear dependence of the converged QNTK K11ð1Þ on
different target values y1 while K22ð1Þ remains the same as y2 is fixed,
and both are captured by the restricted Haar ensemble average result in
Eq. (43). In Fig. 9b, the converged relative dQNTK λαααð1Þ scales lin-
early with the number of variational parameters in the ansatz, as pre-
dicted from Eq. (44). The accurate prediction on other components of
interest Kαβð1Þ; λααβð1Þ requires more information such as the infi-
delity between output state and other target states, which we defer to
future works.

Experiment
In this section, we validate some of the unique training dynamics in the
multi-data scenario on IBM quantum devices. Our experiments are
implemented on the hardware IBM Kyiv, an IBM Eagle r3 hardware
with 127 qubits, via Pennylane34 and IBM Qiskit35. The device has
median T1 ~ 251.87 us, median T2 ~ 114.09us, median ECR error
~1.117 × 10−2, median SX error ~3.097 × 10−4, and median readout error
~9.000 × 10−3. We adopt the QNN with the experimentally friendly
hardware-efficient ansatz (HEA), where each layer consists of single-
qubit rotations along Y and Z directions, followed by CNOT gates on
nearest neighbors in a brickwall pattern9. As an example, we choose two
different computational bases as the input data states,
∣ψ1

� ¼ ∣01i; ∣ψ2

� ¼ ∣10i. Through complete state tomography (see
Methods), the initial states are prepared with high fidelity at
01jρ1j01

 � ¼ 0:996 ± 0:0018 and 10jρ2j10


 � ¼ 0:994 ± 0:0020 for pre-
pared states ρ1, ρ2 (mixed state in general due to hardware noise) aver-
aged over 12 rounds. The high fidelity guarantees the condition of
orthogonal data underlying our analyses. We randomly assign initial
angles uniformly sampled from [0, 2π) to the parameterized gates in
HEA, and maintain consistency across all experiments. For the obser-
vable, we consider the Pauli-Z operator of the first qubit, as a simple but
sufficient demonstration of our theory.

In Fig. 10, we choose the target values to be (a) y1 =− 0.3, y2 =− 3 and
(b) y1 =− 1, y2 =− 3, corresponding to the mixed-frozen dynamics and

Fig. 9 | Average results under restrictedHaar ensemble.Weplot (a)Kαα(∞) versus
y1 with y2 = 0.5 and L = 256 fixed, (b) λααα(∞) versus L with y1 = 5, y2 = 6 fixed. Blue
and red dashed lines in (a) represent Eq. (43). Blue and red dashed lines (overlapped)
in (b) represent Eq. (44). Here random Pauli ansatz (RPA) consists of L variational
parameters on n = 4 qubits. There are N = 2 orthogonal data states and the corre-
sponding target states are computational basis ∣0000i; ∣0001i.

Fig. 8 | Second-order frame potential of circuit unitaries of QNNs for multi-state
preparation. In (a) we plot the frame potential of circuit unitaries of QNNs versus
number of data states. Red dashed curve and gray solid line show the frame potential
of restrictedHaar ensemble Eq. (42) andHaar unitary ensembleF ð2Þ

Haar ¼ 2. In (b) we
plot the dynamics ofF ð2ÞðtÞ in training with targets set in various types of dynamics
represented by different colors. The black dashed line representsF ð2Þ

RH ¼ 16. Here in
(a) random Pauli ansatz (RPA) consists of L = 128 parameters on n = 3 qubits, and
the targets forN orthogonal data states are set within frozen-error dynamics y1, y2 > 1.
In (b) the RPA consists of L = 64 parameters on n = 2 qubits with N = 2 input
orthogonal data states. In both cases, the target states are chosen to be
computational basis.
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critical-frozen-error dynamics, both of which are unique for supervised
learning compared to optimization algorithms studied in ref. 27. In both
cases, the experimental data (solid) agree well with the ideal simulation
results (dashed), indicating the constant errorwithinbothdynamics for data
targeted at yα <Omin (pink), the exponential convergence for data with
target Omin < yα <Omax (blue in (a)) and polynomial convergence for data
with target at yα ¼ Omin (blue in (b)) up to some fluctuations due to shot
and hardware noise. To suppress error, we repeat experiments two times for
each case.

Discussion
Our results go beyond the data-induced barren plateau phenomenon
from random initializations in the paradigm of quantum machine
learning36,37, and identify two distinct convergence classes including seven
different dynamics in total via analytically solving the convergence of
error and kernel of each data. The dynamical transition originating from
bifurcation with multi codimensions is driven by the data in supervised
learning, suggesting fruitful physics and a new source for dynamical
transition in the framework of quantum machine learning. The effect of
data is also revealed in the restricted Haar ensemble via its constrained
randomness controlled by the number of data. In practical applications,
our findings guide the design of the loss function to speedup the training
of QNNs.

Ourfindings also connect to the observation in ref. 38.When the target
value is chosen to be ±1 in Pauli measurements, only a polynomial con-
vergence is observed; while a rescaling of the observable, equivalent to
shifting the target values within (−1, 1) leads to an exponential convergence
though reaching to different solutions, which are fully explained by the
critical point and frozen-kernel dynamics in our work. Reference 22 con-
sidered supervised learning only in the frozen-kernel dynamics, while the
dynamical transition is not uncovered there.

The two convergence classes with seven different dynamics we
identified are focused on the orthogonal input data states. For a more
general case where input data are allowed to be non-orthogonal, one can
expect that the accessible region of the measurement observable and thus
the dynamical “phase” diagram will be changed induced by the overlaps
among input data states, therefore we leave it as an open question for
future study to understand the training dynamics with data correlations.
In addition, it is an open problem whether a time-dependent tuning of
target values can enhance the overall training of QNNs, given the dif-
ferent convergence dynamics in the time-independent cases considered
in this work.

While comparisons between linear loss functions and quadratic loss
functions are considered in previous work for optimization tasks27, a

linear loss function does not work for classification of more than two
classes of data, since linear loss functions push the observable only to
boundaries.

Methods
Experimental details
In this section, we provide additional details on our experiment on the IBM
Quantum devices. In the experiment, we take 500 shots to estimate the
expectation value of themeasurement operator, and the learning rate in the
experiment is chosen to be η = 0.01. Compared with the theory simulation
choice of η = 0.001, we choose a relatively larger learning rate in the
experiment to speed up the convergence and to mitigate the effect of noise
from experimental imperfections.

Fig. 10 | Training dynamics of total error ϵα(t) on IBMquantum devices, Kyiv. In
(a, b), the target values are chosen to be y1 =− 0.3, y2 =− 3 and y1 =− 1, y2 =−
3 separately, corresponding to the mixed-frozen dynamics and critical-frozen-error
dynamics. Solid light blue and purple curves represent experimental results for ϵ1(t)
and ϵ2(t), dashed dark blue and pink curves represent corresponding ideal simula-
tion results. An n = 2 qubit D = 6-layer hardware efficient ansatz (with L = 24
parameters) is utilized to minimize loss function with input states ∣ψ1

� ¼ ∣01i,
∣ψ2

� ¼ ∣10i, and the observable is Ô ¼ σ̂z1, Pauli-Z operator on the first qubit.

Fig. 11 | Deviation of prepared states ρ from corresponding ideal state ∣ψ
�
in state

tomography. The deviation is defined as jΔtrðρPÞj ¼ jtrðρPÞ � ψjPjψ
 �j. Panels (a)
and (b) show deviation for ∣01i and ∣10i separately. Blue bars show the average
deviation over 12 rounds and error bars represent the standard deviation.
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Fig. 12 | Stability of each fixed point. The fixed point can be classified as a sink
(green), a saddle point (blue) or a source (red) depending on the values ofC1,C2. The
brown and pink colored axis represent the fixed point to be a line of unstable/stable
fixed point. The gray-shaded regions indicate that the fixed point cannot be phy-
sically accessed under the current choice of C1 and C2.
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We provide the detailed tomography results on the actual states pre-
pared on the quantum devices, and compare it to ideal results. In Fig. 11, we
show the deviations of tomography results jΔtrðρPÞj ¼ jtrðρPÞ � ψjPjψ
 �j
over all nontrivialPauli operatorsP, withρbeing the actual statepreparedon
the device and ∣ψ

�
the ideal state. Each of the Pauli expectation values is

measured repeatedly for 12 times. For all Pauli operators, the averaged
deviation are less than 0.05 (blue bars) with fluctuations due to hardware
drift noise.Overall, the input data states are preparedwith high fidelity, thus
the overlap between prepared states violating the orthogonal condition can
be neglected.

Dynamics of QNTK
In this section, we derive the dynamical equation for QNTK matrix. The
dynamics of Kαβ(t) can be further evaluated as

δKαβðtÞ ¼
X
‘

δ
∂ϵαðtÞ
∂θ‘

∂ϵβðtÞ
∂θ‘

� �
ð45Þ

¼ P
‘

∂ϵαðtÞ
∂θ‘

δ
∂ϵβðtÞ
∂θ‘

� 	
þ δ ∂ϵαðtÞ

∂θ‘

� 	
∂ϵβðtÞ
∂θ‘

�
þδ ∂ϵαðtÞ

∂θ‘

� 	
δ

∂ϵβðtÞ
∂θ‘

� 		
:

ð46Þ

The last term is higher order in η≪ 1, and we neglect it.
We can evaluate time difference of total error’s gradient via the first-

order Taylor expansion

δ
∂ϵαðtÞ
∂θ‘

� �
¼
X
‘0

∂2ϵαðtÞ
∂θ‘0∂θ‘

δθ‘0 ðtÞ ð47Þ

¼ � η

N

X
β

ϵβðtÞ
X
‘0

∂ϵβðtÞ
∂θ‘0

∂2ϵαðtÞ
∂θ‘0∂θ‘

ð48Þ

¼ � η

N

X
β

X
‘0

Hα‘‘0 ðtÞJβ‘0 ðtÞϵβðtÞ; ð49Þ

where we apply gradient descent rule Eq. (4) in the second line, and we
introduce the Hessian of total error Hα‘‘0 ðtÞ ¼ ∂2ϵαðtÞ

∂θ‘∂θ
0
‘
. Jαℓ(t) = ∂ϵα/∂θℓ is the

gradient of total error as we introduced in the main text. Thus the time

difference of Kαβ(t) in Eq. (46) becomes

δKαβðtÞ ¼
X
‘

∂ϵα
∂θ‘

δ
∂ϵβ
∂θ‘

� �
þ δ

∂ϵα
∂θ‘

� �
∂ϵβ
∂θ‘

� �
þOðη2Þ ð50Þ

¼ � η

N

X
γ

X
‘0 ;‘

Jα‘Hβ‘‘0 Jγ‘0ϵγ þ ϵγJγ‘0Hα‘0‘Jβ‘
h i

ð51Þ

¼ � η

N

X
γ

ϵγðtÞ μγβαðtÞ þ μγαβðtÞ
� 	

; ð52Þ

where μγαβ �
P

‘;‘0 Jγ‘0Hα‘0‘Jβ‘ is the dQNTK we defined in Eq. (10).
Therefore, the above equation is the exact dynamical equation presented in
Eq. (9).

Stability transition of fixed points
In this section, we present additional details on the stability transi-
tion of fixed points by tuning the fixed-point charges fCβgβ defined in
Eq. (20). Starting from the linearized equation Eq. (23) in the main
text, the matrix Eq. (24) can be explicitly written out for the two data
case as

Mðg;CÞ ¼ C1 � 3g21 z12 C2 � 3g22
� 


z21 C1 � 3g21
� 


C2 � 3g22

 !
; ð53Þ

where for simplicity we define

gαðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KααðtÞ

p
; ð54Þ

zαβ �
λααβ
λβββ

; ð55Þ

Its eigenvalue can be solved as

ν± ¼ trðMÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðMÞ2 � 4 detðMÞ

p
2

: ð56Þ

Fig. 13 | Poincaré diagramoffixed points forQNN
dynamicswith twodata.The top andbottompanels
show exponential and polynomial convergence
classes with frozen-kernel, frozen-error, mixed-
frozen (a–c) and critical point, critical-frozen-kernel,
critical-frozen-error (d–f). Colored dots represent
different physically accessible fixed points with dif-
ferent initialization of training parameters. Black
horizontal and vertical dashed lines indicate
detðMÞ ¼ 0 and trðMÞ ¼ 0 for reference. Gray
dashed curve shows trðMÞ2 ¼ 4 detðMÞ, a criteria to
determine whether there exists a spiral surrounding
the fixed point. All settings are the same as in Fig. 2.
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Therefore, the stability of any fixed point can be fully characterized by the
trace and determinant ofM as ðtrðMÞ; detðMÞÞ. Both terms are functions of
the fixed-point charges C1, C2 as

trðMÞ ¼ C1 þ C2 � 3ðg21 þ g22Þ;
detðMÞ ¼ C1 � 3g21

� 

C2 � 3g22
� 


1� z12z21
� 


;

(
ð57Þ

which is exactly what we see in Eq. (25) in the main text with typical
z12z21 < 1. One can thus determine whether a fixed point is a stable one
(‘sink’), unstable one (‘source’) or a saddle point from the signs of the trðMÞ
and detðMÞ:
• When detðMÞ < 0, we always have ν− < 0 and ν+ > 0, indicating the

fixed point to be a saddle point;
• If detðMÞ ¼ 0 and trðMÞ < 0, the eigenvalues become ν� ¼ trðMÞ < 0

and ν+ = 0, we have a line of stable fixed point as one of the degree of
freedoms vanishes;

• WhendetðMÞ > 0 and trðMÞ < 0, the real part of ν± is negative and leads
to the stable fixed point, identified as ‘sink’. Precisely speaking, for
trðMÞ2‘0 inducing either two different real eigenvalues, a single
identical real eigenvalue, or two complex conjugate eigenvalues, the
sink can be classified to be a regular sink, degenerate sink and
spiral sink;

• For detðMÞ≥ 0 and trðMÞ > 0, the fixed point can be classified
in a similar way, leading to the ‘source’ and line of unstable
fixed point.

Therefore, for any fixed point g*, we can identify its stability given
arbitrary values of fixed-point charges C1, C2, as shown in Fig. 12. On the
other hand, the shift of charges would induce a stability transition for every
fixed point.

At the end of this section, we connect the above stability analyses
on the fixed point to QNN training. For a data with index α ∈ SE⧹(SE ∩
SK), we can directly see that Cα > 0, on the other hand for α ∈ SK⧹(SE ∩
SK), the quantity becomes Cα < 0. Specifically when α ∈ SE ∩ SK, Cα =
0. In Fig. 13, we plot the Poincaré diagram for different
physically accessible fixed points within different dynamics. The
only stable fixed points are those with trðMÞ ≤ 0 and detðMÞ≥ 0 living in
the second quadrant. The dashed curve in each figure represents the
equation trðMÞ2 � 4 detðMÞ ¼ 0 which determines the imaginary part
of eigenvalues from Eq. (56) leading to the property of degeneracy and
spiral. Here we see that from different initializations, the fine dynamical
property of fixed points within each dynamics could be different, which
leaves us an interesting open question beyond the scope of our work.
Overall, the only stable fixed point within each dynamics aligns with our
classification via SE, SK in the main text.

Data availability
The data supporting the findings of this study are available in GitHub
(https://github.com/bzGit06/QNN_SL_dynamics). The theoretical results
of the manuscript are reproducible from the analytical formulas and deri-
vations presented therein.

Code availability
The theoretical results of the manuscript are reproducible from the analy-
tical formulas andderivationspresented therein.Additional code is available
in GitHub https://github.com/bzGit06/QNN_SL_dynamics.
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