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Further improving quantum algorithms for
nonlinear differential equations via
higher-order methods and rescaling
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The solution of large systems of nonlinear differential equations is essential for many applications in
science and engineering. We present three improvements to existing quantum algorithms based on
the Carleman linearisation technique. First, we use a high-precision method for solving the linearised
system that yields logarithmic dependence on the error and near-linear dependence on time. Second,
we introduce a rescaling strategy that significantly reduces the cost, which would otherwise scale
exponentially with the Carleman order, thus limiting quantum speedups for PDEs. Third, we derive
tighter error bounds for Carleman linearisation. We apply our results to a class of discretised reaction-
diffusion equations using higher-order finite differences for spatial resolution. We also show that
enforcing a stability criterion independent of the discretisation can conflict with rescaling due to the
mismatch between the max-norm and the 2-norm. Nonetheless, efficient quantum solutions remain
possible when the number of discretisation points is constrained, as enabled by higher-order
schemes.

Manyprocesses in nature exhibit nonlinear behaviour that is not sufficiently
approximated by linear dynamics. Examples range from biological systems,
chemical reactions, fluid flow, and population dynamics to problems in
climate science. Because the Schrödinger equation is linear, quantum
algorithms are more naturally designed for linear ordinary differential
equations (ODEs), as in refs. 1–9. These algorithms are normally based on
discretising time to encode the ODE in a system of linear equations, then
using quantum linear system solvers10,11. Others are based on a time-
marching strategy, solving the ODE using a linear combination of unitary
dynamics8,9. The advantage of these quantum algorithms is that they
naturally provide an exponential speedup in the dimension (number of
simultaneous equations), similar to the simulation of quantum systems,
with the caveat that the solution is encoded in the amplitudes of a
quantum state.

The most natural way to approximate quantum solutions of partial
differential equations (PDEs) is to first discretise the PDE to construct an
ODE,which can then be solved using a quantumODE algorithm.Although
one might expect an exponential speedup in the number of discretisation
points (which would give the dimension for the ODE), this is not realised.
This approach to solve PDEs typically has a more modest polynomial
speedup over classicalmethods due to the normor condition number of the

matrices resulting from the discretisation. Clader et al.12 suggested using
preconditioners, though later work found that the preconditioners did not
significantly reduce the condition number. Childs et al.13 approached this
problem by using higher-order finite difference stencils as well as a pseudo-
spectral method. Alternatively, one can use a wavelet-based preconditioner
to achieve scaling independent of the condition number in some cases14. Jin
et al.15,16 introduce a new method using a variable transformation which
provides solutions of PDEs in an equivalent frame using quantum simu-
lation techniques.

Quantum algorithms for nonlinear differential equations were
addressed in early work which had very large complexity17. Later
proposals were based on the nonlinear Schrödinger equation18, or an
exact mapping of the nonlinear Hamilton–Jacobi PDE into a linear
PDE19,20. Possibly the most promising approach for the solution of
nonlinear ODEs is based on Carleman linearisation21, which involves
transforming the nonlinear differential equation into a linear differ-
ential equation on multiple copies of the vector. This approach can be
realised particularly easily for differential equations with polynomial
nonlinearities and has been applied to quantum algorithms in the case
of a quadratic function as the nonlinear part of the ODEs22, for a higher
power of the function for a specific PDE23, and for the notorious
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Navier-Stokes equations24. The homotopy perturbation method to
tackle quadratic nonlinear equations in ref. 25 leads to similar equa-
tions as Carleman linearisation.

However, most approaches to quantum Carleman linearisation22,23

applied to PDEs suffer from high error rates due to simple discretisa-
tion schemes for the underlying PDE in time and space. Onework7 does
use an improved discretisation in time via a truncated Taylor series2.
Using a finer discretisation to achieve a given accuracy results in higher
complexity, typically due to the complexity depending on the matrix
condition number. That can result in the complexity being the same or
worse than that for classical solution. Another difficulty in the use of
Carleman linearisation in prior work is that the component with the
solution may have low probability to be measured. In this study, we
provide three improvements over prior work. First, we use higher-
order methods in the time evolution as well as for the spatial dis-
cretisation for PDEs. Second, we use rescaling in order to eliminate the
problem of the low probability of the component with the solution for
an intrinsic system of ODEs. (Krovi7 mentioned a rescaling at one
point, though their explanation is unclear and it is unclear if they are
using it.) Third, we provide a tighter bound on the error in Carleman
linearisation by explicitly bounding repeated integrals. In the case of a
PDE, the appropriate stability condition is in terms of the max-norm.
However, the interaction of the requirement of the rescaling with the
Carleman linearisation and the stability requirement for the ODE
solver means that a stronger stability criterion is needed to enable
efficient solution.

It is important to note that in the case of PDEs the factor that is
exponential in N in prior work23 would give a large power in the
number of grid points. Since a simple classical algorithm would have
complexity linear in the number of grid points, the quantum speedup
would be eliminated. Our work demonstrates that quantum com-
puters can provide a sublinear complexity in the number of grid
points for nonlinear PDEs, as well as establishing the limitations to
this type of approach. We present an overview of the general solution
procedure of nonlinear differential equations on quantum computers
in relation to the present work in Fig. 1.

Results
The main focus of this work is the treatment of nonlinear differential
equations, when we have an arbitrary power M in the nonlinear ODE
problem on quantum computers, that is

du
dt

¼ F1uþ FMu
�M ; ð1Þ

followed by its application to the nonlinear reaction-diffusion PDE,

∂tuðx; tÞ ¼ DΔuðx; tÞ þ cuðx; tÞ þ buMðx; tÞ: ð2Þ

We give a number of improvements to the solution of nonlinear ODEs
and PDEs.

1. Weuse a higher-ordermethod for discretisation of thePDE,whichwill
be required in practice because the stability of the solution will require
that the number of points is not too large.

2. We use rescaling of the components in the Carleman linearisation in
order to ensure that the first component containing the solution can be
obtained with high probability. We show that the amount of rescaling
that can be used is closely related to the stability of the equations.

3. We provide a much tighter analysis of the error due to the Carleman
linearisation for ODEs, and extend this analysis to PDEs. This analysis
is dependent on the stability and the discretisation of the PDE.

All these improvements are dependent on the stability of the equations,
which is required for the quantum algorithm to give an efficient solution.
The equations have a linear dissipative term and the nonlinear growth term.
As the input is made larger, the nonlinear termwill cause growth andmake
the solution unstable. Therefore, for the solution to be dissipative, the input
needs to be sufficiently small that the dissipative term dominates. In the
ODE case the input is a vector uin, and the stability criterion can be given in
terms of the 2-norm of that vector. In the case of the PDE, it is more
appropriate to give the stability criterion in terms of themax-norm, because
the 2-norm will change depending on the number of discretisation points.

Giving the stability criterion in terms of themax-norm thenmakes the
analysis of higher-order discretisations challenging.The reason is that,while
the first-order discretisation of the Laplace operator is stable in terms of the
max-norm, the higher-order discretisations no longer are. In the analysis of
the Carleman linearisation error it is required that the equations are stable.
For the ODE this stability in terms of the 2-norm enables the 2-norm of the
error to be bounded. For the PDE, stability in terms of the max-norm
enables the max-norm to be bounded, but the higher-order discretisation
complicates the analysis and means slightly stronger stability is required.

The reason why rescaling is needed is that the Carleman method
involves constructing a quantum state with a superposition of one copy of
the initial vector, two copies, and so forth up toN copies. If the initial vector
is not normalised, then this means that there can be an exponentially large
weight on the largest number of copies, whereas the first part of the
superposition with a single copy is needed for the solution. In order to
ensure the probability for obtaining that component is not exponentially
small, the Carleman vector needs to be rescaled by (at least) the 2-norm so
that there is sufficientweight on thatfirst component. Even ifN is small, this
featuremeans that rescaling is essential in order to obtain any speedup over
classical algorithms for PDEs. Without the rescaling, the complexity is
superlinear in the number of grid points.

In order to ensure that the same equations are being solved, the
componentsof thematrix need amatching rescaling,which can increase the
weight of the nonlinear part (causing growth) as compared to the linear
dissipative part. In the case of anODE,we show that if the original nonlinear
equation is dissipative then the linear ODE obtained from Carleman line-
arisation is also stable. That stability is required for the quantumODEsolver
to be efficient. If the ODE is not stable, then the condition number will be
exponentially large (in time), which causes the linear equation solver to have
exponential complexity.

Fig. 1 | Overview of solution pipeline for nonlinear (partial) differential equations in relation to presented contributions and location in paper. The PDE is
approximated by a vectorial ODE via discretisation, u→ u and we use a scaling u!1=γ eu as described in Definition 1.
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Similarly for the discretised PDE, there needs to be rescaling by the
2-norm inorder toensure there is adequateweight on thefirst componentof
the solution. The key difference now is that the stability of the equations is
given in terms of themax-norm, but the rescaling is by the 2-normwhich is
typically larger. That rescaling can give a linearODE that is no longer stable,
which in turnwouldmeanan exponential complexity of the algorithm.That
is perhaps surprising, because the original nonlinear equation is stable.

However, if the PDE is sufficiently dissipative, then the discretised
equation will still satisfy the stability criterion in terms of the 2-norm, and
there will still be an efficient quantum algorithm. Because the 2-norm will
increase without limit with the number of discretisation points, it is then
crucial to minimise the number of discretisation points used. That further
motivates using the higher-order discretisation of the PDE, because that
minimises the number of discretisation points.

We now summarise the problem description and solution strategy
follow by the main results for Eqs. (1) and (2).

The ODE problem
Here, we present the problem of solving the nonlinear ODE, including the
variable definitions and the dissipativity condition needed for an efficient
quantum algorithm.

Problem 1. We consider the solution of a system of nonlinear (vectorial)
dissipative ODEs of the form

du
dt

¼ F1uþ FMu
�M ; ð3Þ

with initial data

uðt ¼ 0Þ ¼ uin; ð4Þ

where u ¼ ðu1 � � � ; unÞT 2 Rn with time-dependent components uj = uj(t)
for t∈ [0, T] and j∈ [n], using the notation [n] = {1, 2,…, n}. The matrices
FM 2 Rn× nM , F1 2 Rn× n are time-independent. We denote the eigenva-
lues of ðF1 þ Fy

1Þ=2 by λj, and the dissipativity condition means that λj < 0.
Denoting the maximum eigenvalue by λ0, we require that R < 1, where

R :¼ kFMk � kuinkM�1

jλ0j
: ð5Þ

The task is to output a state ∣ui encoding the solution to Eq. (3) at time T.
In the “Methods” section,we showthat to solveProblem1,wefirstmap

the finite-dimensional system of nonlinear differential equations in Eq. (3)
to an infinite-dimensional, linear set of ODEs that can be truncated to some
orderN. Thismapping is the Carleman linearisation technique21, which has
previously been applied to quantum algorithms in refs. 7,22,23. Next, we
show that by rescaling the linearisedODEs, we can reduce the complexity of
the quantum algorithm. This is followed by improved error bounds due to
Carleman linearisation for the rescaled variable and an estimate of the
overall complexity for obtaining the solution of the truncated
linearised ODE.

In contrast to refs. 7,22, we do not consider the driving term; on the
other hand, we explore arbitrary nonlinear powers in the ODE problem
rather than constrained to the quadratic case as in refs. 7,22.When we have
an arbitrary powerM in the nonlinearODE it ismore challenging to include
the driving termF0, becauseF0will produce characteristics of amore general
polynomial of orderM as opposed to just a single component. Therefore, to
analyse the driving term we would also need to consider a general poly-
nomial of orderM for the nonlinear part of theODEproblem.We leave that
considerably more complicated analysis to future work.

The solution of a linearised form of Problem 1 relies on oracles for F1,
FM, and the initial vector. We show later in the “Methods” section, that the

complexity of the solution in terms of calls to oracles for F1 and FM scales as

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p k uin k
k uðTÞ k λF1TN log

N
ε

� �
log

NλF1T

ε

� � !
: ð6Þ

In this complexity, ε is the allowable error, and λF1
is the λ-value for block

encoding F1 (with an extra assumption on the efficiency of the block
encoding of FM). An important quantity here is the Carleman order N,
which can be chosen logarithmically in the allowable error provided R < 1.
For the complexity in terms of calls to the preparation of the initial vector,
there is an extra factor of N, but the final log factor can be omitted, so the
overall complexity is similar.Without the rescaling, there would be an extra
factor in the complexityOðkuinkN Þ that is exponential inN. Even thoughN
can be chosen logarithmic in the other parameters, that would still result in
large complexity.

The result as given in ref. 23 has that problem. The complexity from
ref. 23 is (using Eq. (4.2) of that work and replacing a in their notationwith c
in our notation)

O 1

G2ε
sT2D2d2n4=dN3kuink2Npoly log

cDdMn1=dNsT
Gε

� �� �� �
; ð7Þ

whereGdenotes the average ℓ2 solutionnormof thehistory state, and s is the
maximum sparsity of F1, FM. The factor ∥uin∥2N exponential in N is due to
the higher-order components of the Carleman vector without rescaling.
They also have a factor of T2 rather than T, which is due to using a simple
forward Euler scheme in time. We also give a further improvement in the
polynomial factor ofN, with our scaling beingN in comparison to theirN3.

Carleman solver for the reaction-diffusion equation
A large system of ODEs of the form in Eq. (3) may arise from discretisation
of partial differential equations. Specifically, we can derive the nonlinear
differential equation resulting from the discretisation of a nonlinear
reaction-diffusion PDE similar to ref. 23,

∂tuðx; tÞ ¼ DΔuðx; tÞ þ cuðx; tÞ þ buMðx; tÞ: ð8Þ

This equation will be stable according to a criterion that depends on the
max-norm of u(x, t), in contrast to the condition for the ODE that is based
on the 2-norm. Discretising this PDE into an ODE, the stability condition
R < 1would be stronger and depend on the number of discretisation points.
That condition is stronger than necessary for the PDE, but after we use
Carleman linearisation to give a linear ODE it requires R < 1 for stability.
Thismeans that the stability condition needed for the quantum algorithm is
stronger than that for the original PDE.

We explore techniques of finite-differencemethods with higher-order
approximations for the spatial discretisation of the PDEs. Our improved
nonlinear ODE solver is then applied to the reaction-diffusion equation Eq.
(8), with F1 resulting from the Laplacian discretisation and FM giving the
non-linearity from the PDE. The overall procedure is illustrated in Fig. 1.

We then show in the “Methods” section, Corollary 6, that for this PDE,
the overall cost for the solution in terms of calls to the oracles that block
encode F1 and FM is

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p k uin k
k uðTÞ k ðdDn

2=d þ jcjÞTN log
N
ε

� �
log

NðdDn2=d þ jcjÞT
ε

� � !
;

ð9Þ
where we have used n gridpoints in total for the spatial discretisation of the
d-dimensional PDE given in Eq. (8).

Classically, it is less useful to perform linearisation by the Carleman
procedure, because the system size grows exponentially with the truncation
number N making the simulation prohibitively costly. In general, explicit
time-stepping methods like forward Euler or Runge–Kutta schemes do not
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rely on linearisation of the underlying differential equations. However,
(semi-)implicit schemes which exhibit more favourable numerical stability
rely on inversion of the system. This either requires linearisation (e.g.,
Carleman or Koopman–von-Neumann schemes) or methods to solve
nonlinear systems, such as Newton–Raphson, which rely on a good initial
guess and require inversion of a Jacobian matrix.

Discussion
In this study,weproposed a set of improvements to quantumalgorithms for
nonlinear differential equations via Carleman linearisation, eliminating
someof the exponential scalings seen inpriorwork.Wehave examinedboth
ODEs, and a class of nonlinear PDEs corresponding to reaction-diffusion
equations23. These improvements include
• rescaling the original dynamics,
• a truncated Taylor series for the time evolution,
• higher-order spatial discretisation of the PDEs, and
• tighter bounds on the error of Carleman linearisation.

The rescaling boosts the success probability, needing exponentially
fewer steps for the amplitude amplification to obtain the solution compo-
nent of interest in the linearised ODE system. That is vital to enable the
complexity of the PDE solver to be sublinear in the number of discretisation
points. The solution approximation via the truncated Taylormethod gives a
near-linear dependence on T, the total evolution time. The higher-order
spatial discretisation greatly improves the complexity of the quantum
solution of PDEs, because it reduces the number of discretisation points
needed, which is needed to avoid stability problems.

We show that the stability criterion for PDEs, rescaling, Carleman
linearisation, and stability criterion for ODE solvers all interact in a
way that makes the solution of PDEs more challenging than was
appreciated in prior work. In particular, the stability criterion for PDEs
is in terms of a max-norm, but rescaling by the 2-norm is required to
obtain a reasonable probability for the correct component of the
Carleman vector. But, rescaling by the 2-norm can make the resulting
system of linearised equations unstable, which causes the ODE solver
to have exponential complexity. If the discretised PDE is still stable in
terms of the 2-norm, then the resulting quantum algorithm will still be
efficient. Because the 2-norm increases as

ffiffiffi
n

p
in the number of dis-

cretisation points, the number of those points should be made as small
as possible, which is why it is crucial to use the higher-order
discretisation.

In futurework, one coulddevise a less restrictedquantumalgorithmfor
solving nonlinear PDEs via some other approach. The feature that the
linearised equations can be unstable even though the nonlinear equation is
stable suggests that an alternative linear equation solver may be efficient.
The reason why the condition number is large (causing the inefficiency) is
that the solution can grow exponentially over time, but for an initial vector
that is not of theCarleman form.A solver that is able to take advantage of the
restricted form of states could potentially be efficient.

Furthermore, there are a number of important generalisations that can
be made to the type of differential equations. Instead of just including a
nonlinear term of orderM, one could include all nonlinear orders up toM.
That could also be used to analyse the effect of driving because the method
used for quadratic nonlinearities would produce nonlinearities at a range of
orders. A further generalisation that could be considered is time-dependent
differential equations. These generalisations can bemade in a simple way in
the quantum algorithm, but the analysis to bound the error would be
considerably more complicated.

Methods
We begin by summarising the notation and key variables used throughout
the manuscript. Table 1 defines the principal symbols, their roles, and the
conventions adopted. This summary is intended to assist the reader in
navigating the derivations and algorithmic steps that follow.

Quantum Carleman solver with rescaling and improved error
bounds on Carleman truncation
Background on Carleman linearisation. We start with the Carleman
linearisation for the initial value problem described by the n-dimensional
equation with a nonlinearity of order M as given in Eq. (3). We recall the
dissipativity assumption on F1, i.e., the eigenvalues of ðF1 þ Fy

1Þ=2 are
purely negative. The quantity λ0, the eigenvalue closest to zero, thus gives
the weakest amount of dissipation. This way, R in Eq. (5) can be used to
quantify the strength of the nonlinearity of the problem.As shown in ref. 22,
there exists a quantum algorithm that can solve Eq. (3) efficiently whenever
R< 1. Furthermore, forR≥

ffiffiffi
2

p
, the problemwas shown tobe intractable on

quantum computers.
Next,webrieflyoutline thekey ideaof theCarleman linearisation. First,

notice that

u�M ¼ ðuM1 ; uM�1
1 u2; . . . ; u1u

M�1
n ; u2u

M�1
1 ; . . . ; uM�1

n un�1; u
M
n Þ

T 2 RnM :

ð10Þ
In particular, forM = 2, the Kronecker product gives

u�2 ¼ ðu21; u1u2; . . . ; u1un; u2u1; . . . ; unun�1; u
2
nÞT 2 Rn2 : ð11Þ

Now, define a new variable consisting of Kronecker powers of the solution
vector

y1 ¼ u; y2 ¼ u�2; . . . ; yN ¼ u�N ; . . . ; ð12Þ

Table 1 | Summary of variable names and conventions used
throughout the manuscript

Symbol Description

x, t, T Spatial coordinate, time, and final time

u Solution vector for the nonlinear ODE

y Carleman state vector: y = [u, u⊗2, …, u⊗N]

F1, FM Linear and nonlinear terms of the ODE

N Carleman truncation order

A, AN Full and truncated Carleman system matrix

AðiÞ
j

(j, i)-block component of Carleman matrix

ε Solution error

η Error in Carleman vector (also due to linearisation)

Δ Laplace operator

L, Lk Finite-difference Laplacians of stencil order k

D, c, b PDE coefficients: diffusion, decay, and nonlinearity

n, d Number of gridpoints and dimension of the PDE

I Identity matrix

λj( ⋅ ) jth eigenvalue of matrix argument

λ(⋅) Subnormalization constant for block encoding

γ Rescaling factoreð�Þ Rescaled quantity

R Nonlinearity-to-decay strength ratio

fj,k,M Bound function for Carleman truncation error

Ωk Interval defining Carleman error regime

s( ⋅ ) Sparsity of matrix or operator

[N] Index set {1, 2, …, N}

Scalars are denoted by lowercase letters (e.g., c), vectors by bold lowercase letters (e.g., u), and
matrices or operators by uppercase letters (e.g., A). Norms refer to the 2-norm unless otherwise
specified.
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which we can summarise as a vector y ¼ ½y1; y2; . . . ; yN ; . . .�T . If we con-
sider the time-derivative, we can identify the time-independent matrices
FM 2 Rn× nM and F1 2 Rn× n as follows,

dyj
dt

¼ du�j

dt

¼ du
dt

� u� � � � � uþ � � � þ u� u� � � � � du
dt

¼ ðFMu
�MÞ � u� � � � � uþ � � � þ u� u� � � � � ðFMu

�MÞ
þ ðF1uÞ � u� � � � � uþ � � � þ u� u� � � � � ðF1uÞ:

ð13Þ

We can write this in compact form,

dyj
dt

¼ AðMÞ
jþM�1yjþM�1 þ Að1Þ

j yj; ð14Þ

where AðMÞ
jþM�1 2 Rnj × njþM�1

and Að1Þ
j 2 Rnj × nj with

AðMÞ
jþM�1 ¼ FM � I�ðj�1Þ þ I� FM � I�ðj�2Þ þ � � � þ I�ðj�1Þ � FM

Að1Þ
j ¼ F1 � I�ðj�1Þ þ I� F1 � I�ðj�2Þ þ � � � þ I�ðj�1Þ � F1;

ð15Þ

where the I operation is the identity with the same domain as F1, i.e.,R
n× n.

This results in an infinite-dimensional linear system, as there is no
boundon the rangeof j. Tomake this computationally feasible,we restrict to
j ∈ [N] for some N 3 N >M. Further, we can see that N > M is a
requirement in order to be able to capture any effects coming from a
nonlinearity of orderM. This allows one to write down a matrix form,

dy
dt

¼ ANy; ð16Þ

with

AN ¼

Að1Þ
1 0 � � � 0 AðMÞ

M 0 � � � 0

0 Að1Þ
2 � � � 0 0 AðMÞ

Mþ1 0 ..
.

..

.
0 . .

.
0 . .

.
0

. .
. . .

. . .
.

AðMÞ
N

. .
.

0

. .
. . .

. ..
.

..

.
0 Að1Þ

N�1 0

0 0 � � � � � � 0 Að1Þ
N

266666666666666666664

377777777777777777775

: ð17Þ

The matrixAN 2 RN tot ×N tot is called the Carleman matrix with truncation
order N, where N tot ¼

PN
j¼1 n

j ¼ nðnN�1Þ
n�1 . The non-truncated, infinitely

largematrix we callA. As the dimensionality of the system is exponential in
the order of Carleman truncation (see Fig. 2), this technique tends to be
intractable for practical applications on classical computers.

The simple block structure of the matrix AN enables us to obtain the
upper bound for k AN k in terms of the norms of the submatrix ofAN , that
is

kANk≤ max
1≤ j≤N

kAð1Þ
j k þ max

1≤ j≤NþM�1
kAðMÞ

j k

¼ NkF1k þ ðN �M þ 1ÞkFMk :
ð18Þ

A similar relation holds for the λ-values, which is important for the esti-
mation of the complexity of our quantum algorithm. In what follows, we
present a lemma that allows us to quantify the total error involved in the
Carleman truncation. Our lemma considers the error from the Carleman
linearisation for the rescaled nonlinear ODE problem when we have an
arbitrary powerM for the function, as opposed to the quadratic casewithout
the rescaling given in ref. 22. To that end, we will first present said rescaling.

A rescaled Carleman solver. We will motivate this rescaling by looking
at the measurement probabilities of components in the vector
y ¼ ½u; u�2; . . . ; u�N �T . Recall that the sole entry we are interested in
measuring will be y1≡ u. The standard way to encode the solution u(t) in
a computational basis f ∣j�g is

∣uðtÞ� ¼Xn
j¼1

ujðtÞ ∣j
�
: ð19Þ

Analogously, components ∣ym
�
of y are written as a quantum state as

ymðtÞ
�� � ¼ Pn

j1 ;...;jm¼1
uj1 ðtÞ � � � ujm ðtÞ m; j1 � � � jm; 0� logðnÞðN�mÞ�� �

¼ Pn
j1 ;...;jm¼1

uj1 ðtÞ � � � ujm ðtÞ y
ðj1j2���jmÞ
m

��� E
;

ð20Þ

with

yðj1 j2���jmÞm

�� �
:¼ m; j1 � � � jm; 0� logðnÞðN�mÞ�� �

: ð21Þ

This follows the state encoding outlined in the Supplementary Information
3.C in ref. 22, where in each step up to the largest orderN, extra dimensions
are padded in the form of ∣0i’s to avoid the structure of a superposition over
components of different size. The first register is set to m so we can dis-
tinguish the order by measurement of a subsystem. Then, we can write the

Fig. 2 | Depiction of a snippet ofAN forM= 3 untilN= 4.Given the exponential
increase in size, only a fraction ofN = 4 is shown. The diagonal blocks correspond to
linear terms of the ODE, the upper-diagonal blocks to a nonlinearity on the (M− 1)
st off-diagonal.
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full vector ∣yðtÞ� as follows:
∣yðtÞ� ¼ Pn

j1¼1
uj1 ðtÞ y

ðj1Þ
1

��� E
þ Pn

j1 ;j2¼1
uj1 ðtÞuj2 ðtÞ y

ðj1 j2Þ
2

��� E
þ� � � þ Pn

j1 ;...;jN¼1
uj1 ðtÞ . . . �ujN ðtÞ y

ðj1 j2���jN Þ
N

��� E
:

ð22Þ

For a normalised quantum state, the amplitudes ujl ðtÞ in Eq. (22) need to be
normalised so that 〈y∣y〉 = 1. We then have to consider the normalisation
factor 1=

ffiffiffiffiffiffiffi
VN

p
where

VN ¼ kyk2 ¼
XN
‘¼1

kuðtÞk2‘ ¼ kuðtÞk2 1� kuðtÞk2N
1� kuðtÞk2 : ð23Þ

Note that this formula does not work in the case that ∥u(t)∥ = 1. We
therefore adopt the convention that wherever there appears a ratio of this
form, for ∥u(t)∥ = 1 it takes the value in the limit ∥u(t)∥→ 1, so

VN ! N : ð24Þ
The solution of the nonlinear ODE is given by the first component,

where the probability is given by

Pðy1ðtÞÞ ¼
Xn
j1¼1

yðj1Þ1 jyðtÞ
D E��� ���2 ¼ 1

VN

Xn
j1¼1

uj1 ðtÞ
��� ���2¼ 1� kuðtÞk2

1� kuðtÞk2N :

ð25Þ
From this equation, we see that as we increase the Carleman truncation
orderwe also increaseVN, which suppresses the probability of extracting the
desired component. This brings an exponential cost in N for the algorithm
due to the O 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy1ðtÞÞ

p� �
rounds of amplitude amplification needed at

the end. To avoid this high cost in the algorithm, we propose the following
rescaling,which can significantly reduce the cost of amplitude amplification.

Definition 1. (Rescaled Carleman problem). Consider a nonlinear ODE
system of the form du

dt ¼ F1uþ FMu
�M as in Problem 1. Then, using a

variable transformation in the form of a rescaling eu ¼ u=γ with γ > 0, we
obtain another system in the rescaled variable

deu
dt

¼ eF1euþ eFMeu�M ; ð26Þ

with eF1 ¼ F1 and eFM ¼ γM�1FM .
This allows us to improve the measurement probability in the

following sense.

Lemma 2. (Measurement probability of the rescaled Carleman pro-
blem). Using the rescaling in Definition 1, using a scaling factor γ ≥ ∥uin∥
and assuming dissipativity of theODE, the probability tomeasure eu ¼ ey1 is
given by

Pðey1ðtÞÞ ¼ 1� kuðtÞk2
γ2

1� kuðtÞk
γ

	 
2N ≥
1
N
: ð27Þ

Proof.. Using the rescaling γ > 0, we obtain a new normalisation

eVN ¼
XN
l¼1

kuðtÞk
γ

� �2l

¼ keuðtÞk2 1� keuðtÞk2N
1� keuðtÞk2 ; ð28Þ

with keuðtÞk ¼ kuðtÞk=γ. Given dissipativity of the ODE, we have
∥u(t)∥ ≤ ∥uin∥, so keuðtÞk ≤ 1. In turn that implies

1� keuðtÞk2N
1� keuðtÞk2 ≤N: ð29Þ

The measurement probability to obtain ey1ðtÞ is then
Pðey1ðtÞÞ ¼Xn

j1¼1

yðj1Þ1 jeyðtÞD E��� ���2 ¼ keuðtÞk2eVN

¼ 1� keuðtÞk2
1� keuðtÞk2N ≥

1
N

: ð30Þ

Therefore, using the parameter γ, we can adjust the probability to
obtainey1.Herewehave taken γ ≥ ∥uin∥, though thefirst expressiondoesnot
depend on this assumption. The probability is equal to 1/N if γ = ∥uin∥ =
∥u(t)∥, and otherwise for γ > ∥u(t)∥ the probability is even better. Thus the
rescaling avoids the exponential (in N) suppression of the probability of
obtaining the component of interest of the ODE problem, which occurs for
∥u(t)∥ > 1 without rescaling.

Whenwe apply the rescaling above into Eq. (15) we obtain a linearised
system in the rescaled solution vector with eAð1Þ

j ¼ Að1Þ
j andeAðMÞ

jþM�1 ¼ γM�1AðMÞ
jþM�1, and as a result we canwrite the rescaledCarleman

linearisation as

dey
dt

¼ ~ANey; ð31Þ

where

eAN ¼

Að1Þ
1 0 � � � 0 γM�1AðMÞ

M 0 � � � 0

0 Að1Þ
2 � � � 0 0 γM�1AðMÞ

Mþ1 0 ..
.

..

.
0 . .

.
0 . .

.
0

. .
. . .

. . .
.

γM�1AðMÞ
N

. .
.

0

. .
. . .

. ..
.

..

.
0 Að1Þ

N�1 0

0 0 � � � � � � 0 Að1Þ
N

266666666666666666664

377777777777777777775

:

ð32Þ

We discuss the cost of implementing the rescaled dynamics when intro-
ducing the ODE solver.

Error bounds on rescaled solution. Next, we present error bounds on
the global and component-wise errors due to Carleman linearisation in
Lemma 3 and Lemma 4, where we make use of the rescaling technique
outlined in the previous section. The first lemma provides a bound on the
overall error in the Carleman vector. The error bounds we present here
are based on the 2-norm.

Lemma3. (Global rescaledCarleman error). Consider theODE fromEq.
(3)with its Carleman linearisation in Eq. (13) truncated at orderN. LetF1 be
dissipative, so that for λ0 < 0 with ∣λ0∣ > ∥uin∥M−1∥FM∥ and therefore
keuink≥ keuðtÞk for t> 0. Then, the error in the rescaled solution as defined in
Lemma 2 is given by ηj ¼ eu�j � eyj at order j ∈ [N] due to Carleman
truncation N > M ≥ 2 and a scaling factor γ = ∥uin∥; eu denotes the exact
solution to the underlying ODE whereas ey is the approximation due to
Carleman truncation. Then, this error for any j ∈ [N] is upper bounded by
the overall error vector,

kηjðtÞk≤ kηðtÞk≤ ðM � 1ÞkFMkkuinkM�1 1� eNðλ0þγM�1kFMkÞt

jλ0 þ γM�1kFMkj
: ð33Þ
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The detailed proof is presented in Supplementary Section II of
the Supplementary Information. Related results were given in ref. 22
and ref. 7. Neither included a general power for the nonlinearity, and
were restricted to M = 2. Furthermore, we provide an exponential
reduction in the Carleman order dependence due to the rescaling, i.e.,
∥η∥ ∝ ∥uin∥M in opposed to ∥uin∥N. Although ref. 7 mentioned
rescaling, it appears not to have been used in the error analysis. If the
rescaled form was being used in that work, then it would imply that
∥uin∥ would be equal to 1, so logð1=kuinkÞ ¼ 0 which results in N
being infinite in Eq. (7.23) of ref. 7.

A problem with using this form is that it does not go down with the
Carleman order. We aim to show that the error may be made arbitrarily
small with higher-order Carleman approximations.We can provide tighter
bounds when we consider the individual components of the Carleman
vector, as in the following lemma.

Lemma4. (Component-wise Carleman error). Under the same setting as
in Lemma3, and j∈ [N], theCarleman error for each individual component
of ηj satisfies

kηjðtÞk≤
kuink
γ

� �j

Rkf j;k;M jλ0jt
� �

; j 2 Ωk ð34Þ

where

f j;k;MðτÞ ¼ 1� ðM�1Þ Γðkþj=ðM�1ÞÞ
ðk�1Þ! Γðj=ðM�1ÞÞ

Pk�1

‘¼0
ð�1Þ‘ k� 1

‘

� �
e�ð‘M�‘þjÞτ
‘M�‘þj ; ð35Þ

for k 2 f1; 2; � � � ; d N
M�1eg and k is determined so that for any j, we have k

whenever j falls into the index set j ∈ Ωk with

Ωk :¼ fN � kðM � 1Þ þ 1; . . . ;N þ ðk� 1Þð1�MÞg: ð36Þ

In particular, for k = ⌈N/(M − 1)⌉ we have

kη1ðtÞk≤
kuink
γ

Rd N
M�1ef 1;dN=ðM�1Þe;M jλ0jt

� �
: ð37Þ

The proof of Lemma 4 can be found in Supplementary Section II
B of the Supplementary Information. The function fj,k,M(τ) is mono-
tonically decreasing with k, and in particular fj,k,M(τ) ≤ fj,1,M(τ) =
1 − e−jτ (see Supplementary Section II B of the Supplementary
Information). This result does not depend on the choice of rescaling γ.
There is a factor of 1/γj in the definition of ηj, so the result is effectively
independent of the choice of rescaling. Moreover, ∥η1(t)∥ gives the
error in the desired component at the end, and shows that the error in
u is proportional to ∥uin∥.

A similar result was provided in ref. 23 without using the rescaling,
though that does not affect the result for the error. We give a significant
improvement over the result in ref. 23 by evaluating the nested integrals to
give the function fj,k,M(τ), whereas the result in ref. 23 just corresponds to
replacing fj,k,M(τ) with its upper bound of 1.

We can use Lemma 4 to solve for a lower bound on N for a given
allowable error. In practice, we are interested in the error in the solution
relative to ∥uin∥ rather than γ, so we aim to bound ∥η1(t)∥γ/∥uin∥. Given a
maximum allowable error ε, we then require

ε≤Rd N
M�1ef 1;dN=ðM�1Þe;M jλ0jt

� �
≤Rd N

M�1e : ð38Þ

It is therefore sufficient to choose N as

N
M � 1

� �
≤

log 1=ε
� �

log 1=R
� � ; ð39Þ

or

N ¼ ðM � 1Þ log 1=ε
� �

log 1=R
� �& ’

� ðM � 2Þ : ð40Þ

We can also numerically solve for N, by using the exact expression for
fj,k,M(τ) given inEq. (35). Thatwill give a tighter lower boundonN, but there
is not a closed-form expression.

Solution of the linearised system of ordinary differential equa-
tions using a truncated Taylor series
Next, we describe how to solve the system of ODEs that results from the
Carleman mapping applied onto the nonlinear system. The most simple
way to solve the system of ODEs is to apply the first-order method for time
discretisation known as the explicit Euler method. Upon application of the
Euler method, there is a linear system of equations that can be solved. Here,
this is a quantum linear system problem (QLSP), as the solution is encoded
in a quantum state. In what follows, we aim to solve the linear system by a
more sophisticated method than explicit Euler. The main drawback of the
forward Euler method is low accuracy since it is a first-order method,
meaningfiner time discretisation is required to achieve a required precision.
As a result, the dependence of the complexity for solving the QLSP is
quadratic in the solution time, and there is a near-linear factor in the inverse
error22,23.

Here, we follow the procedure outlined in ref. 3, which allows us to
obtain an algorithm that has complexity near-linear in time and logarithmic
in the inverse error. The solution of a time-independent ODE system

duðtÞ
dt

¼ AuðtÞ; ð41Þ

may be approximated by uK(t) =WK(t, t0)u(t0), with

WK ðt; t0Þ :¼
XK
‘¼0

ðAΔtÞ‘
‘!

: ð42Þ

This is a Taylor series truncated at orderK. The error in the solution due to
time propagation can be bounded as

kuK ðtÞ � uðtÞk 2 O ðkAkΔtÞKþ1

ðK þ 1Þ! kuðt0Þk
� �

: ð43Þ

Weaim to solve Eq. (16)where the vectoru(t) ismapped to a rescaled vectoreyðtÞ and A is the rescaled Carleman matrix U~AN
truncated at order N.

Following Theorem 2 in ref. 3, there exists a quantum algorithm that
can provide an approximation ∣ŷ

�
of the solution ∣eyðTÞ� satisfying

∣ŷ
�� ∣eyðTÞ�

 

≤ εymax. To do so, we require that AN has non-positive

logarithmic norm andwe have the oraclesUy to prepare the initial state and

block encoding of AN via UeAN

with 0h ∣UeAN

∣0i ¼ eAN=λeAN

. Then, to

achieve the desired accuracy, the average number of calls to Uy and UeAN

needed are

Uy : O eRλeAN

T log
1
ε

� �� �
ð44Þ

UeAN

: O eRλeAN

T log
1
ε

� �
log

λeAN

T

ε

 ! !
: ð45Þ
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Furthermore, the number of additional elementary gates scales as

O eRλeAN

T log
1
ε

� �
log2

λeAN

T

ε

 ! !
: ð46Þ

In these expressions

eR≥
ymaxeyðTÞ

 

 ð47Þ

ymax ≥ max
t2½0;T�

eyðtÞ

 

: ð48Þ

The stability requirement on theODE touse the solver as in ref. 3 is that
the logarithmic norm of the matrix is non-positive (similar to ref. 7). That
norm is given by the eigenvalues of ðeAN þ eAy

N Þ=2. The eigenvalues of that
matrix can be bounded via the block form of the Gershgorin circle theorem.
That is equivalent to the usual Gershgorin circle theorem, except using the
spectral norms of the off-diagonal blocks. For example, see Theorem 2 of
ref. 26, or ref. 27.

For ðeAN þ eAy
N Þ=2 we obtain rows with Að1Þ

j and γM�1AðMÞ
j =2 (for

j ≥M) and γM�1AðMÞ
jþM�1=2 (for j + M − 1 ≤N). Now

k AðMÞ
jþM�1 k ≤ j k FM k, so the sum of the norms of the off-diagonal blocks

is at most, for j ≥M and j +M − 1 ≤N,

kAðMÞ
jþM�1k þ kAðMÞ

j kl ≤ jkFMk þ ðj�M þ 1ÞkFMk ¼ ð2j�M þ 1ÞkFMk :
ð49Þ

In the case j <M but j+M− 1 ≤N thenwe get j∥FM∥. If j+M− 1 >N but
j ≥M then we get (j − M + 1)∥FM∥. Now the maximum eigenvalue of

½Að1Þ
j þ ðAð1Þ

j Þy�=2 is jλ0. In that case the eigenvaluesof ðeAN þ eAy
N Þ=2 canbe

at most

jλ0 þ jγM�1kFMk=2 ; 0 < j <M

jλ0 þ ð2j�M þ 1ÞγM�1kFMk=2 ; j≥M and j≤N �M þ 1

jλ0 þ ðj�M þ 1ÞγM�1kFMk=2 ; N ≥ j >N �M þ 1

8><>: ð50Þ

We can then see that the eigenvalues will be non-positive given all three
inequalities

γM�1 ≤
2jλ0j
k FM k ; ð51Þ

γM�1 ≤
jλ0j

½1� ðM � 1Þ=ð2ðN �M þ 1ÞÞ�kFMk
; ð52Þ

γM�1 ≤
jλ0j

½1� ðM � 1Þ=N�kFMk
: ð53Þ

Provided N ≥ 2(M − 1) (as would normally be the case) the middle
inequality would imply the other two. In all cases we can satisfy these
inequalities using

γM�1 ≤
jλ0j
kFMk

¼ kuinkM�1

R
; ð54Þ

or

γ≤
k uin k
R1=ðM�1Þ ; ð55Þ

where we used the definition of R from Eq. (5) in the equality above. Berry
and Costa3 argue that for cases where the solution does not decay

significantly, R 2 Oð1Þ. Here, we consider dissipative dynamics without
driving, soRmaybe large.That is lessof aproblemfordriven equations.We
expect that our methods can be applied to driven equations as well, but the
error analysis is considerably more complicated so we leave it as a problem
for future work.

We can construct the block encoding of the Carleman matrix eAN in
terms of the block encoding of F1 and FM, as discussed in Supplementary
Section VII of the Supplementary Information. Denoting the values of λ for
F1 and FM by λF1 and λFM respectively, the value of λ for eAN is

λeAN

≤NλF1
þ ðN �M þ 1ÞγM�1λFM : ð56Þ

This expression easily follows fromexpressing eAN as a sum, and the value of
λ being the sum of the values of λ in the sum. Since eAN includesAð1Þ

j up to
Að1Þ
N , and Að1Þ

N is a sum of N operators with identity tensored with F1, we
obtain the termNλF1 above. Similarly, we have γM�1AðMÞ

j up to γM�1AðMÞ
N ,

and AðMÞ
N is a sum of N − M + 1 operators with with FM, giving

the ðN �M þ 1ÞγM�1λFM term.
If we choose γM−1 = ∣λ0∣/∥FM∥ as above, then

NkF1k > ðN �M þ 1ÞγM�1kFMk : ð57Þ

In typical cases we would expect that λF1 / kF1k and λFM
/ kFMk. That

would imply

λeAN

≲2NλF1 : ð58Þ

Note that the scalinghasnot increased thevalueofλbymore thanaconstant
factor. Note that this is assuming that the λ-values and norms in the block
encoding are comparable, so it is possible it could be violated if the block
encoding of FM is inefficient, so λFM

is much larger than ∥FM∥.
Now forRwe have ymax which considers themaximumnorm that the

vector can assume along the entire time evolution. Since we are working
with a dissipative problem the maximum occurs at t = 0. First we consider
the case without the scaling for comparison. To compute the norm ∥y(0)∥,
note that it is the vector resulting from the Carleman mapping, i.e.,
yð0Þ ¼ ½uin; u�2

in ; . . . ; u�N
in �T , so

kyð0Þk2 ¼ kuink2
1� kuink2N
1� kuink2

; ð59Þ

as in Eq. (23). Similarly for the value of the norm at time T,

kyðTÞk2 ¼ kuðTÞk2 1� kuðTÞk2N
1� kuðTÞk2 : ð60Þ

Therefore

R ≥ ymax
kyðTÞk

¼ 1�kuink2Nð Þ 1�kuðTÞk2ð Þ
1�kuink2ð Þ 1�kuðTÞk2Nð Þ

� �1=2
kuink
kuðTÞk :

ð61Þ

Moreover, the above complexity is in order to obtain the full Carleman
vector. The quantityR corresponds to an inverse amplitude for obtaining
the state at the final time, so tells us how many steps of amplitude ampli-
fication are needed in the algorithm. In practice, we want only u(T) rather
than the full vector. That implies a further factor in the complexity of
∥y(T)∥/∥u(T)∥, corresponding to the inverse amplitude for obtaining the
component of the Carleman vector containing the solution. That gives a
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factor in the complexity of

kyðTÞk
kuðTÞkR≥

1� kuink2N
� �
1� kuink2
� �" #1=2 kuink

kuðTÞk : ð62Þ

From the equation above we can see how R grows exponentially in N for
∥uin∥ > 1.

Now with the rescaling, we simply divide each uin or u(T) by γ. That
gives us

keyðTÞk
keuðTÞk eR≥

1� kuink2N=γ2N
� �
1� kuink2=γ2
� �" #1=2 kuink

kuðTÞk : ð63Þ

With the choice γM−1 = ∣λ0∣/∥FM∥, we obtain

keyðTÞk
keuðTÞk eR≥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞk : ð64Þ

We then can see that the amplitude amplification cost can be exponentially
reduced when ∥uin∥ > 1. We could also use γ = ∥uin∥ to give

keyðTÞk
keuðTÞk eR≥

ffiffiffiffi
N

p kuink
kuðTÞk ; ð65Þ

but that bound is looser for realistic parameters.
A further consideration is the relation between the relative error in the

solution for eyðTÞ and that for u(T). The complexity of the solution for the
ODE solver is in terms of the former, whereas we need to bound the relative
error in u(T). We have the error upper bounded by (with hats used to
indicate results given by the linear equation solver)

kûðTÞ � uðTÞk≤ γkŷðTÞ � yðTÞk
≤ γεymax

≤ γ
1� kuink2N=γ2N
� �
1� kuink2=γ2
� �" #1=2 kuink

γ

≤ εkuink
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2=ðM�1Þ
p :

ð66Þ

In the second line we have assumed that the ODE solver has given the
solution for y(T) to within error εymax. This shows that the relative error in
u(T) is the same as that for eyðTÞ, up to a factor of 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2=ðM�1Þ
p

which
should be close to 1. We can also use the simpler but looser upper bound

kûðTÞ � uðTÞk≤ εkuink
ffiffiffiffi
N

p
; ð67Þ

which is obtained by noting that the expression in the square brackets in the
third line of Eq. (66) is upper bounded by N.

We cannowuse theODE solver given in ref. 3 in combinationwith our
rescaling technique to provide our quantum algorithm for Problem 1.

Lemma5. (Complexity of solvingODE) There is a algorithm to solve the
nonlinear ODE from Eq. (3) i.e., to produce a quantum state ∣ûðTÞ�
encoding the solution such that kûðTÞ � uðTÞk≤ εkuink, using an average
number

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞk λF1TN log

N
ε

� �
log

NλF1T

ε

� � !
; ð68Þ

of calls to oracles for F1 and FM,

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞk λF1

TN2 log
N
ε

� � !
; ð69Þ

calls to oracles for preparation of uin, and

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞk λF1TN

2M log
N
ε

� �
log

NλF1T

ε

� �2

log n

 !
;

ð70Þ

additional gates for dimension n, with

N ¼ O ðM � 1Þ log 1=ε
� �

log 1=R
� � !

: ð71Þ

We require that R < 1 and assume that λFM=kFMk ¼ OðλF1
=kF1kÞ for the

block encodings of F1 and FM.

Proof.. Themain step to derive our quantum algorithm is first to apply the
Carleman linearisation in the rescaled nonlinear ODE problem, which is
given in Eq. (26). We then have a linear ODE problem with the Carleman
matrix of orderN, denoted eAN . We can then apply the ODE solver given in
ref. 3 to this equation.

There are then a number of considerations needed to give the overall
complexity.
• We need to multiply by a further factor of k eyðTÞ k = k euðTÞ k to

obtain the correct component of the solution containing the approx-
imation of u(T). The product of that with eR is given above in Eq. (64).

• The value of λeAN

is given above in Eq. (58) under the assumption

λFM
=kFMk ¼ OðλF1=kF1kÞ, which gives λeAN

¼ OðNλF1 Þ.
• Thematrix eAN can be block encoded withOð1Þ calls to the oracles for

F1, FM. There is an extraOðNÞ factor for the number of calls touin. The
implementation of the oracles is explained in the Supplementary
Section VII of the Supplementary Information.

• The choice of the Carleman order N in order to obtain a sufficiently
accurate solution is given in Eq. (40). The error from the Carleman
truncation can be chosen to be a fraction of the total allowable relative
error ε here, which is accounted for using the order notation for N.

• The solution for the ODE can be given to relative error ε=
ffiffiffiffi
N

p
.

According to Eq. (67) that will ensure that the relative error in u(T)
obtained is ε as required. It is for this reason that we have replaced the 1/
ε in the complexity for the ODE solver with N/ε.For the additional
elementary gates, the block encoding is as in Supplementary Section VII
of the Supplementary Information requires a factor ofOðNM log nÞ for
swapping target registers into the appropriate location. That is a factor
on the number of block encodings of eAN . Moreover, ref. 3 gives a log
factor to account for the complexity of correctly giving the weighting in
the Taylor series. For simplicity we give the product of these factors, but
these factors are for different contributions to the complexity and we
could instead give amore complicated expression with themaximumof
NM log n and the logarithm.

We can compare our quantum algorithm performance with what is
given in Theorem 8 of ref. 7 for the caseM= 2. The complexity given in that
theorem can be simplified to the situation we consider by removing the
driving termand replacing ∥A∥withλAN

. Then the complexity from ref. 7 is

O kuin k
kuðTÞk λF1

TN poly N; log
1
ε

� �
; logðTNλF1

Þ
� �� �

: ð72Þ
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The speedup is unclear because the complexity in thatwork is given in terms
of poly factors. That work appears to be assuming a rescaling in order to
avoid complexity exponential inN, but by assuming∥uin∥=1. The problem
is that they give a formula for N as

N ¼ 2 log TkF2k=δkuðTÞk
� �
log 1=kuink
� �& ’

: ð73Þ

Using ∥uin∥ = 1 in that formula gives infinite N. In contrast, here we have
given the rescaling explicitly and given a working formula for N.

Application to the quantum nonlinear PDE problem
Complexity of the quantum algorithm. We now demonstrate our
techniques applied to the nonlinear PDE23

∂tuðx; tÞ ¼ DΔuðx; tÞ þ cuðx; tÞ þ buMðx; tÞ; ð74Þ

for some diffusion coefficient D ≥ 0 and constants c; b 2 R. As a simple
means of discretisation we consider finite differences with periodic
boundary conditions, which leads to a vector-valued ODE that approx-
imates the dynamics in Eq. (74). We go beyond the two-point stencil
demonstrated in ref. 23 and apply higher-order finite differences similar to
ref. 13 for the linear case.

We discretise a d-dimensional space in each direction with uniformly
equidistant grid points. As a result, we obtain a nonlinear systemofODEs as
in Eq. (3) with n grid points in total, or n1/d in each direction. Moreover, we
consider the width of the simulation region to be 1 in each direction, so xj∈
[0, 1], for simplicity.

The linear operator F1 resulting from the spatial discretisation of our
PDE is given by

F1 ¼ DLk;d þ cI�d; ð75Þ

where I is the n1/d × n1/d identity matrix, and

Lk;d ¼
Xd
μ¼1

I�ðμ�1Þ � Lk � I�ðd�μÞ: ð76Þ

The operator Lk,d above for the discretised Laplacian in dimension d is
constructed fromthe sumof thediscretisedLaplacians inonedimension,Lk.
Here, k is the order, so the truncation error scales as the inverse grid spacing
to the power of 2k − 1, and 2k + 1 stencil points are used.

A Laplacian in one dimension with a kth order approximation and
periodic boundary conditions can be expressed in terms ofweights aj as (see
ref. 13)

Lk ¼ n2=d a0I þ
Xk
j¼1

ajðSj þ S�jÞ
 !

; ð77Þ

where S is a n1/d × n1/d matrix, where the entries are Si;j ¼ δi;jþ1mod n1=d ;
S is also known as a circulant matrix. Note that for a total of n1/d grid
points and a region size of 1 in each direction, the grid spacing is 1/
n1/d. The method to obtain the coefficients aj for the Laplacian
operator is given in Supplementary Section V of the Supplementary
Information guarantees that

a0 þ 2
Xk
j¼1

aj ¼ 0 ; ð78Þ

and we provide the coefficients for 1 ≤ k ≤ 5 in Table 2 (these are from
ref. 28). Moreover, this procedure leads to a truncation error in the

representation of the Laplacian operatorwhich scales as (for the 2-norm)13,29

O Cðu; kÞ ffiffiffi
n

p e
2

	 
2k
nð�2kþ1Þ=d

� �
; ð79Þ

whereC(u, k) is a constant depending on the (2k+ 1)st spatial derivative in
each direction

Cðu; kÞ ¼
Xd
j¼1

d2kþ1u

dx2kþ1
j

�����
����� : ð80Þ

This expression is obtained from that in refs. 13,29 by adding the errors for
derivatives in each direction.

We also have the matrix FM resulting from the spatial discretisation of
the nonlinear part buM(x, t) that is a rectangular matrix FM,

FM : RnM ! Rn; ð81Þ

operating on the vectoru⊗M, as given inEq. (10). Sincewe are only interested
in the components uMi from u⊗M, where i = 1, 2, ⋯ n, FM is a one sparse
matrix with the non-zero components given by b. Hence
kFMk ¼ kFMkmax ¼ jbj. In the caseM = 2, where

u�2 ¼ ðu21; u1u2; . . . ; u1un; u2u1; u22; . . . ; unun�1; un2 Þ
T 2 Rn2 ; ð82Þ

we can express F2 as

½F2�pq ¼
b; q ¼ pþ ðp� 1Þn

0; otherwise:

�
ð83Þ

Returning to the Laplacian operator with periodic boundary condi-
tions,we see that Eq. (77) is a circulantmatrix, so its eigenvalues are givenby

λ‘ðLkÞ ¼ n2=d a0 þ
Pk
j¼1

aj ω
‘j þ ω�‘j

� �" #

¼ n2=d a0 þ 2
Pk
j¼1

aj cos
2π‘j
n1=d

	 
" #
; ‘ 2 ½n1=d � 1�

ð84Þ

where ω ¼ ei2π=n
1=d
. Since the aj, with j = 0, 1,⋯ , k, satisfy the condition in

Eq. (78),we see that for ℓ=0,λ0=0 gives themaximumeigenvalue andλℓ<0
for ℓ ≠ 0. Moreover, using the triangle inequality in Eq. (77) we see that

k Lk k ≤ n2=d ja0j þ 2
Xk
j¼1

jajj
 !

: ð85Þ

By a simple application of Gershgorin’s circle theorem, one may obtain the
asymptotic bound (Lemma 2 in ref. 13, Lemma 6 in ref. 29),

k Lk k ≤ n2=d
4π2

3
: ð86Þ

From the eigenvalues of Lkwe can thendetermine the eigenvalues ofF1
(which is symmetric so equal to ðF1 þ Fy

1Þ=2) as defined in Eq. (75) as

λ
‘
!ðF1Þ ¼ cþ Dn2=d

Xd
p¼1

a0 þ 2
Xk
j¼1

aj cos
2π‘pj

n1=d

� �" #
: ð87Þ

As discussed above the maximum eigenvalue of Lk is 0 with periodic
boundary conditions (it can be negative for non-periodic boundary
conditions). For Carleman linearisation to be successful, we require R < 1
and, in particular, λ0 < 0. Since themaximumeigenvalue ofF1 is c, we choose
negative c such that the overall dynamics becomes dissipative and satisfies
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the stability condition R < 1. Moreover, we obtain the following bounds

kF1k≤ jcj þ dDn2=d ja0j þ
Xk
j¼1

jajj
 !

≤ jcj þ dDn2=d
4π2

3
: ð88Þ

The value of λF1 for the block encoding of F1 can be determined in a
similar way. The block encoding can be implemented by a linear combi-
nation of unitaries of the identity andpowers of the circulantmatrices S. The
value of λF1 is then exactly equal to the sum

λF1 ¼ jcj þ dDn2=d ja0j þ
Xk
j¼1

jajj
 !

≤ jcj þ dDn2=d
4π2

3
: ð89Þ

Similarly, since FM is one-sparse it can be easily block encoded with a value
of λFM equal to its normof ∣b∣.We thenobtain the value of λ for the complete
block encoding as

λeAN

¼ NλF1
þ ðN �M þ 1ÞγM�1λFM

≤ N jcj þ dDn2=d 4π2
3

� �þ ðN �M þ 1ÞγM�1jbj :
ð90Þ

The condition on the dissipativity of the ODE R < 1 implies that

N jcj þ dDn2=d
4π2

3

� �
> ðN �M þ 1ÞγM�1jbj : ð91Þ

Given these results for thediscretisationof thePDE,we canuse Lemma
5 to provide the following corollary.

Corollary 6. (Complexity of solving a dissipative reaction-diffusion
PDE) There is a quantum algorithm to solve the nonlinear PDE in Eq. (74)
i.e., to produce a quantum state ∣ûðTÞ� encoding the solution such that
kûðTÞ � uðTÞk ≤ εkuink, using an average number

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞk ðdDn

2=d þ jcjÞTN log
N
ε

� �
log

NðdDn2=d þ jcjÞT
ε

� � !
;

ð92Þ

of calls to oracles for F1 and FM, as defined in Eq. (75) and Eq. (83)
respectively,

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=ðM�1Þ

p kuink
kuðTÞ k ðdDn

2=d þ jcjÞTN2 log
N
ε

� � !
; ð93Þ

calls to oracles for preparation of uin, and

O 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�R2=ðM�1Þ

p kuink
kuðTÞk ðdDn2=d þ jcjÞTN2M log N

ε

� �
log NðdDn2=dþjcjÞT

ε

	 
2
log n

� �
;

ð94Þ

additional gates, with

N ¼ O ðM � 1Þ log 1=ε
� �

log 1=R
� � !

: ð95Þ

We require that R < 1, where R is computed from the discretised input
vector uin.

Proof.. We first discretise the reaction-diffusion problem in Eq. (74) to the
nonlinear ODE system with n discretisation points. We consider just the
error in the solution of this ODE here, with the choice of n to accurately
approximate the solutionof thePDEdescribedbelow. For thisODEwehave
an explicit bound for λF1

given in Eq. (89), and can use it in the expressions
in Lemma 5. For this simple FM the values of λFM

and ∥FM∥ are equal, so the
condition λFM=kFMk ¼ OðλF1

=kF1kÞ is satisfied.
Note that for this result the oracles for F1 and FM can be easily

implemented in terms of calls to elementary gates, with logarithmic com-
plexity inn and linear complexity inM. Powers of the circulantmatrices can
be implemented with modular addition, and FM can be implemented via
equality tests between the copies it acts upon. Note also that, apart from the
R < 1 condition, this complexity scales as n2/d up to logarithmic factors. For
d ≥ 3 this complexity is sublinear in n. This factor comes from the size of the
discretised Laplacian, and is similar to that for quantum algorithms for
linear PDEs. If we had the factor of ∥uin∥2N as in ref. 23, then because ∥uin∥2

∝ n with the discretisation there would be a further factor of nN for the
scaling with n, making the complexity far worse than that for a simple
classical solver.

Stability and discretisation. Here we discuss conditions on nonlinear
differential equations of the type in Eq. (74) so that numerical schemes
based on Carleman linearisation are stable. Recall that for the ODE we
have the stability condition R < 1 with

R ¼ kFMk � kuinkM�1

jλ0j
: ð96Þ

That condition is not ideal here, because the 2-norm of the solution
increases with the number of discretisation points. Thus this condition for
the stability depends not only on the underlying PDE and initial state but on
its discretisation.

Ideally wewould aim for a condition on themax-norm of the solution.
That can then be used in order to guarantee stability of the solution aswell as
to bound error. For example, ref. 23 considers stability in their Lemma 2.1
and bounds error in their Theorem 3.3. A simple stability criterion can be
given as

kuinkM�1
max

b
jcj < 1 : ð97Þ

Before discretisation, the stability can be shown simply by considering the
infinitesimal time interval dt and using

kuðx; tÞ þ dt½DΔuðx; tÞ þ cuðx; tÞ þ buMðx; tÞ�kmax

¼ kðIþ dt DΔÞfuðx; tÞ þ dt½cuðx; tÞ þ buMðx; tÞ�gkmax

≤ kIþ dt DΔk1kuðx; tÞ þ dt½cuðx; tÞ þ buMðx; tÞ�kmax:

ð98Þ

Now using the triangle inequality

kuðx; tÞ þ dt½cuðx; tÞ þ buMðx; tÞ�kmax ≤ kuðx; tÞ þ dt cuðx; tÞkmax þ dtkbuMðx; tÞkmax

¼ ð1þ dt cÞkuðx; tÞkmax þ dt bkuðx; tÞkMmax :

ð99Þ

Table 2 | Central finite difference coefficients for
approximating a second derivative in one dimension28

Order k Coefficients a0 to ak

1 − 2, 1

2 − 5/2, 4/3, − 1/12

3 − 49/18, 3/2, − 3/20, 1/90

4 − 205/72, 8/5, − 1/5, 8/315, − 1/560

5 − 5269/1800, 5/3, − 5/21, 5/126, − 5/1008, 1/3150
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Then if ðb=cÞ kuðx; tÞkM�1
max ≤ 1 this expression is upper bounded

by kuðx; tÞkmax.
Moreover, it is a standard result that k Iþ dt DΔk1 ¼ 1. That is, the

diffusion equation smooths out any peaks in the distribution. That
expression also holds if we consider the discretised form, but only using the
first-order discretisation. Then for spatial grid spacing h, the discretised
form in one dimension has 1− 2dt D/h2 on the diagonal, and dt D/h2 on the
twooff-diagonals. The sumof the absolute values along a row for thismatrix
is then exactly 1, giving an ∞-norm of 1. That means Eq. (98) implies
k uðx; tÞkmax is non-increasing for the PDE given the stability criterion in
Eq. (97).

This result for the ∞-norm no longer holds for the discretised PDE
when using higher-order discretisations. For example, for the second-order
discretisation, the −1/12 on the off-diagonals means that

kIþ dt DL2k1 ¼ 1þ dt D=ð3h2Þ : ð100Þ

That means that the max-norm is only upper bounded by the initial max-
normmultiplied by a factor of expðD=ð3h2ÞÞ. In practice it is found that the
max-norm is far better behaved. If we calculate the ∞-norm of expðtDLkÞ,
then we obtain the results shown in Fig. 3. For the second-order
discretisation the initial slope is 1/3 as predicted using infinitesimal t, but
the peak value is less than 1% above 1. For the higher-order discretisations
this maximum increases, but it is still small for these orders. Therefore we
find that if we consider the max-norm for just evolution under the
discretised Laplacian then it is well-behaved, but that does not imply the
result for the nonlinear discretised PDE.

To determine stability for the 2-norm, the equivalent of Eq. (98) gives

kuðx; t þ dtÞk≤ Iþ dt DΔk k× uðx; tÞ þ dt cuðx; tÞ þ buMðx; tÞ� �

 


≤ uðx; tÞ þ dt cuðx; tÞ þ buMðx; tÞ� �

 


≤ uðx; tÞk þ dt ckuðx; tÞk þ bkuMðx; tÞk� �
≤ kuðx; tÞk þ dt ckuðx; tÞk þ bkuðx; tÞkM�1

max kuðx; tÞk� �
:

ð101Þ

Therefore the2-norm isnon-increasingprovided ðb=cÞ kuðx; tÞkM�1
max ≤ 1. In

the discretised case the non-positive eigenvalues of the discretised Laplacian
mean that the 2-norm is still stable given this condition, though as noted
above it is possible for k ukmax to increase above its initial value.

However, for the purpose of solving the ODE using Carleman line-
arisation, whatmatters is not the stability of the nonlinear equation, but that
of the linearised equation. That is because the stability of the linearised

equation governs the condition number of the linear equations to solve, and
in turn that is proportional to the complexity. For example, in ref. 23 their
Problem 1 assumes that ∥FM∥≤∣λ0∣ (λ1 in the notation of that work) after
some possible rescaling of the equation. Then Eq. (4.15) of that work gives
kIþ Ahk≤ 1 (with h the time discretisation), using that condition from
Problem 1. That is then used to provide the bound on the norm of ∥L−1∥ in
Eq. (4.28) of that work, which is then used to give the bound on the con-
dition number proportional to the number of time steps in Eq. (4.29)
in ref. 23.

According to our analysis above, the stability of the linearised system
will be satisfied provided γM−1≤∣λ0∣/∥FM∥. For the discretised PDE here we
have λ0 = c and ∥FM∥ = b. That means if γ≤ kuinkmax, then the stability
condition in Eq. (97) implies the stability of the matrix after Carleman
linearisation. That condition is needed in order to be able to use the ODE
solver of Ref. 3, but it will mean that the rescaling gives a smaller probability
of success for obtaining the correct component of the Carleman vector than
if we had the stability condition R < 1.

However, if we have sufficiently small b/∣c∣, then the condition R < 1
would be satisfied, so

kuinkM�1 b
jcj < 1 : ð102Þ

Because ∥uin∥ increases with the number of discretisation points asffiffiffi
n

p
, this inequality can only be satisfied if the number of dis-

cretisation points is made as small as possible. This gives a strong
motivation for using the higher-order spatial discretisation of the
PDE. See Supplementary Section IV of the Supplementary Informa-
tion for discussion of the number of points needed.

Error analysis. The overall error ε comes from three different parts,
• the spatial discretisation error of the semi-discrete dynamics εdisc,
• the error εCarl contributed by truncation in the Carleman linearisation

as bounded in Lemma 4, and
• the error in the time evolution εtime due to the Taylor series, as intro-

duced earlier in the treatment of the linearised differential equation
solver.Asusual in this typeof analysis,we can simplify thediscussionby
taking the error to be ε for each of these contributions. In reality, the
contribution to the error fromeach sourcewouldneed to be taken to be
a fraction of ε (e.g. ε/3), but because that fraction would at most give a
constant factor to the complexity, it would not affect the complexities
quoted usingO.
We have already considered εtime and εCarl above in Corollary 6. The

time discretisation error will not be further considered here, but we will
discuss how the Carleman error can be alternatively bounded in situations
where the PDE is stable butR ≥ 1. Abovewe show that theODEneedsR < 1
for the quantum solution to be efficient, but this bound on the Carleman
error will be useful if that limitation can be circumvented.

In the case of higher-order discretised Laplacians we obtain a some-
what worse bound as derived in Supplementary Section II C of the Sup-
plementary Information,

k ηjðtÞkmax≲G
dj
κ

kFMk1
jcj kuinkM�1

max GdM
κ

� �k

f j;k;M jcjtð Þ; ð103Þ

where

Gκ :¼ max
τ ≥ 0

keLκτk1 : ð104Þ

The ≲ is because it is assuming that the max-norm of the solution is not
increasing. We can use ≤ if k uinkmax is replaced with the maximum of
k ukmax over time. The quantity Gκ is greater than 1 for higher-order
discretisedLaplacians, so this is a slightly largerupperbound than in the case
of first-order discretised Laplacians. Nevertheless, the Carleman error may
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Fig. 3 |The (induced)∞-normof the exponential of tDΔhwhenusing a discretisation
of the Laplacian of second order (blue), third order (red), and fourth order (orange).
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be made arbitrarily small with order provided

kuinkM�1
max

b
jcjG

dM
κ < 1 : ð105Þ

This condition is slightly stronger than the condition for stability of the PDE
by the factor ofGdM

κ , but that will typically be close to 1. Typically thiswill be
a much weaker requirement than the stability condition R < 1.

Next, we consider the bound on the error due to the spatial dis-
cretisation, which can be used to derive the appropriate number of dis-
cretisation points n to use. Using that in Corollary 6 then gives the
complexity entirely in terms of the parameters of the problem instead of the
value chosen for n. Our bound on the error is as given in the following
Lemma, with the proof given in Supplementary Section III of the Supple-
mentary material.

Lemma 7. (Nonlinear PDE solution error when discretising the
Laplacianwithhigher-orderfinitedifferences).Using ahigher-orderfinite
difference discretisation with 2k + 1 stencil points in each direction, the
solution of the PDE

du
dt

¼ ðDLk;d þ cÞuþ bu�M ; ð106Þ

at time T > 0 has error due to spatial discretisation when c < 0 and ∣c∣ >
M∣b∣∥uin∥M−1 bounded as

k εdiscðTÞ k¼ O Cðu; kÞ ffiffiffi
n

p e
2

	 
2k
n�ð2k�1Þ=d 1� exp cþMjbjk uin kM�1

max

� �
t

� �
∣cþMjbjk uin kM�1

max ∣

� �
;

ð107Þ

where C(u, k) given in Eq. (80) is a constant depending on the (2k + 1)st
spatial derivative of the solution assuming sufficient regularity, n is the
number of grid points used, and d is the number of dimensions.

In this result, we are considering the continuous time evolution. Note
that for the stability of the discretisation error we use the condition
jcj >MjbjkuinkM�1

max , which is stronger than the condition jcj > jbjkuinkM�1
max

for PDE stability. This appears to be a fundamental condition due to the
nonlinearity, because the derivative of the order-M nonlinearity produces a
factor ofM.

Next, if we take εdisc ∝ ε, then solving Eq. (107) for n gives

n ¼ Ω
Cðu; kÞ e

2

� �2k
cþMjbjkuinkM�1

max

�� �� 1ε
" # 2d

2ð2k�1Þþd
0@ 1A: ð108Þ

That is, this choice of n is sufficient to give εdisc as some set fraction of ε. In
practice we would choose the minimum n needed to give the desired
accuracy, so we would choose n proportional to the expression in Eq. (108).
For simplicity of the solution for n, we have used

1� exp cþMjbjkuinkM�1
max

� �
t

� �
≤ 1 : ð109Þ

In Supplementary Section IV of the Supplementary Information we show
how the discretisation error is reduced with the number of grid points with
different orders of discretisation and a simple toy model.

The benefit of having fewer grid points comes with the drawback of
having a less sparse operator. The block encoding of F1 is performed by a
linear combination of unitaries over (2k + 1) basis states with amplitudes
given by a table, and so has complexity in terms of elementary gates pro-
portional to k. That is not immediately obvious fromCorollary 6, because it
gives complexity in terms of block encodings of F1 and FM. It is also possible
forC(u, k) to increase with k. In a real implementation it would therefore be
desirable to choose an optimal k to minimise the complexity, instead of
taking k as large as possible.
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