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The solution of large systems of nonlinear differential equations is essential for many applications in
science and engineering. We present three improvements to existing quantum algorithms based on
the Carleman linearisation technique. First, we use a high-precision method for solving the linearised
system that yields logarithmic dependence on the error and near-linear dependence on time. Second,
we introduce a rescaling strategy that significantly reduces the cost, which would otherwise scale
exponentially with the Carleman order, thus limiting quantum speedups for PDEs. Third, we derive
tighter error bounds for Carleman linearisation. We apply our results to a class of discretised reaction-
diffusion equations using higher-order finite differences for spatial resolution. We also show that
enforcing a stability criterion independent of the discretisation can conflict with rescaling due to the
mismatch between the max-norm and the 2-norm. Nonetheless, efficient quantum solutions remain
possible when the number of discretisation points is constrained, as enabled by higher-order

schemes.

Many processes in nature exhibit nonlinear behaviour that is not sufficiently
approximated by linear dynamics. Examples range from biological systems,
chemical reactions, fluid flow, and population dynamics to problems in
climate science. Because the Schrodinger equation is linear, quantum
algorithms are more naturally designed for linear ordinary differential
equations (ODEs), as in refs. 1-9. These algorithms are normally based on
discretising time to encode the ODE in a system of linear equations, then
using quantum linear system solvers'*". Others are based on a time-
marching strategy, solving the ODE using a linear combination of unitary
dynamics*’. The advantage of these quantum algorithms is that they
naturally provide an exponential speedup in the dimension (number of
simultaneous equations), similar to the simulation of quantum systems,
with the caveat that the solution is encoded in the amplitudes of a
quantum state.

The most natural way to approximate quantum solutions of partial
differential equations (PDEs) is to first discretise the PDE to construct an
ODE, which can then be solved using a quantum ODE algorithm. Although
one might expect an exponential speedup in the number of discretisation
points (which would give the dimension for the ODE), this is not realised.
This approach to solve PDEs typically has a more modest polynomial
speedup over classical methods due to the norm or condition number of the

matrices resulting from the discretisation. Clader et al.” suggested using
preconditioners, though later work found that the preconditioners did not
significantly reduce the condition number. Childs et al.”> approached this
problem by using higher-order finite difference stencils as well as a pseudo-
spectral method. Alternatively, one can use a wavelet-based preconditioner
to achieve scaling independent of the condition number in some cases™. Jin
et al.”'® introduce a new method using a variable transformation which
provides solutions of PDEs in an equivalent frame using quantum simu-
lation techniques.

Quantum algorithms for nonlinear differential equations were
addressed in early work which had very large complexity'’. Later
proposals were based on the nonlinear Schrédinger equation', or an
exact mapping of the nonlinear Hamilton-Jacobi PDE into a linear
PDE"?. Possibly the most promising approach for the solution of
nonlinear ODEs is based on Carleman linearisation’!, which involves
transforming the nonlinear differential equation into a linear differ-
ential equation on multiple copies of the vector. This approach can be
realised particularly easily for differential equations with polynomial
nonlinearities and has been applied to quantum algorithms in the case
of a quadratic function as the nonlinear part of the ODEs™, for a higher
power of the function for a specific PDE”, and for the notorious
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Navier-Stokes equations™. The homotopy perturbation method to
tackle quadratic nonlinear equations in ref. 25 leads to similar equa-
tions as Carleman linearisation.

However, most approaches to quantum Carleman linearisation***’
applied to PDEs suffer from high error rates due to simple discretisa-
tion schemes for the underlying PDE in time and space. One work” does
use an improved discretisation in time via a truncated Taylor series”.
Using a finer discretisation to achieve a given accuracy results in higher
complexity, typically due to the complexity depending on the matrix
condition number. That can result in the complexity being the same or
worse than that for classical solution. Another difficulty in the use of
Carleman linearisation in prior work is that the component with the
solution may have low probability to be measured. In this study, we
provide three improvements over prior work. First, we use higher-
order methods in the time evolution as well as for the spatial dis-
cretisation for PDEs. Second, we use rescaling in order to eliminate the
problem of the low probability of the component with the solution for
an intrinsic system of ODEs. (Krovi’ mentioned a rescaling at one
point, though their explanation is unclear and it is unclear if they are
using it.) Third, we provide a tighter bound on the error in Carleman
linearisation by explicitly bounding repeated integrals. In the case of a
PDE, the appropriate stability condition is in terms of the max-norm.
However, the interaction of the requirement of the rescaling with the
Carleman linearisation and the stability requirement for the ODE
solver means that a stronger stability criterion is needed to enable
efficient solution.

It is important to note that in the case of PDEs the factor that is
exponential in N in prior work™ would give a large power in the
number of grid points. Since a simple classical algorithm would have
complexity linear in the number of grid points, the quantum speedup
would be eliminated. Our work demonstrates that quantum com-
puters can provide a sublinear complexity in the number of grid
points for nonlinear PDEs, as well as establishing the limitations to
this type of approach. We present an overview of the general solution
procedure of nonlinear differential equations on quantum computers
in relation to the present work in Fig. 1.

Results

The main focus of this work is the treatment of nonlinear differential
equations, when we have an arbitrary power M in the nonlinear ODE
problem on quantum computers, that is

du
E=F1U+FMH®M7 (1)

followed by its application to the nonlinear reaction-diffusion PDE,
9,u(x, t) = DAu(x, t) + cu(x, t) + buM(x, t). 2)

We give a number of improvements to the solution of nonlinear ODEs
and PDEs.

Discretisation Carleman Linearisation
Nonlinear Differential Equations

dissipative, polynomial
= nonlinearity —>

Reaction-diffusion-like PDEs
Oyu = DAu + cu + buM

48 = Pya®M + FBa

Higher-order spatial discretisation
Section VI

Improved Carleman error bounds
Section IV

System of ordinary DEs
5y _ 7o
a = ANy

Re-scaled Carleman vector
Section IV

1. We use a higher-order method for discretisation of the PDE, which will
be required in practice because the stability of the solution will require
that the number of points is not too large.

2. We use rescaling of the components in the Carleman linearisation in
order to ensure that the first component containing the solution can be
obtained with high probability. We show that the amount of rescaling
that can be used is closely related to the stability of the equations.

3. We provide a much tighter analysis of the error due to the Carleman
linearisation for ODEs, and extend this analysis to PDEs. This analysis
is dependent on the stability and the discretisation of the PDE.

All these improvements are dependent on the stability of the equations,
which is required for the quantum algorithm to give an efficient solution.
The equations have a linear dissipative term and the nonlinear growth term.
As the input is made larger, the nonlinear term will cause growth and make
the solution unstable. Therefore, for the solution to be dissipative, the input
needs to be sufficiently small that the dissipative term dominates. In the
ODE case the input is a vector uy,, and the stability criterion can be given in
terms of the 2-norm of that vector. In the case of the PDE, it is more
appropriate to give the stability criterion in terms of the max-norm, because
the 2-norm will change depending on the number of discretisation points.

Giving the stability criterion in terms of the max-norm then makes the
analysis of higher-order discretisations challenging. The reason is that, while
the first-order discretisation of the Laplace operator is stable in terms of the
max-norm, the higher-order discretisations no longer are. In the analysis of
the Carleman linearisation error it is required that the equations are stable.
For the ODE this stability in terms of the 2-norm enables the 2-norm of the
error to be bounded. For the PDE, stability in terms of the max-norm
enables the max-norm to be bounded, but the higher-order discretisation
complicates the analysis and means slightly stronger stability is required.

The reason why rescaling is needed is that the Carleman method
involves constructing a quantum state with a superposition of one copy of
the initial vector, two copies, and so forth up to N copies. If the initial vector
is not normalised, then this means that there can be an exponentially large
weight on the largest number of copies, whereas the first part of the
superposition with a single copy is needed for the solution. In order to
ensure the probability for obtaining that component is not exponentially
small, the Carleman vector needs to be rescaled by (at least) the 2-norm so
that there is sufficient weight on that first component. Even if N is small, this
feature means that rescaling is essential in order to obtain any speedup over
classical algorithms for PDEs. Without the rescaling, the complexity is
superlinear in the number of grid points.

In order to ensure that the same equations are being solved, the
components of the matrix need a matching rescaling, which can increase the
weight of the nonlinear part (causing growth) as compared to the linear
dissipative part. In the case of an ODE, we show that if the original nonlinear
equation is dissipative then the linear ODE obtained from Carleman line-
arisation is also stable. That stability is required for the quantum ODE solver
to be efficient. If the ODE is not stable, then the condition number will be
exponentially large (in time), which causes the linear equation solver to have
exponential complexity.

ODE Solver Measurement

State encod]ivng the solution
(7)) o< 37 ()
=

Extraction of expectation values

(a|Ofw)

High-performant ODE solver using truncated Taylor series
Section V

Fig. 1 | Overview of solution pipeline for nonlinear (partial) differential equati(l)ns in relation to presented contributions and location in paper. The PDE is
. . o L . Y~ o o
approximated by a vectorial ODE via discretisation, ¥ — u and we use a scaling u — u as described in Definition 1.
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Similarly for the discretised PDE, there needs to be rescaling by the
2-norm in order to ensure there is adequate weight on the first component of
the solution. The key difference now is that the stability of the equations is
given in terms of the max-norm, but the rescaling is by the 2-norm which is
typically larger. That rescaling can give a linear ODE that is no longer stable,
which in turn would mean an exponential complexity of the algorithm. That
is perhaps surprising, because the original nonlinear equation is stable.

However, if the PDE is sufficiently dissipative, then the discretised
equation will still satisfy the stability criterion in terms of the 2-norm, and
there will still be an efficient quantum algorithm. Because the 2-norm will
increase without limit with the number of discretisation points, it is then
crucial to minimise the number of discretisation points used. That further
motivates using the higher-order discretisation of the PDE, because that
minimises the number of discretisation points.

We now summarise the problem description and solution strategy
follow by the main results for Eqgs. (1) and (2).

The ODE problem
Here, we present the problem of solving the nonlinear ODE, including the
variable definitions and the dissipativity condition needed for an efficient
quantum algorithm.

Problem 1. We consider the solution of a system of nonlinear (vectorial)
dissipative ODEs of the form

%:Flu—l—FMu@M, 3)

with initial data
u(t=0)=u,, 4)
whereu = (u; - -, u,)" € R" with time-dependent components uj = uj(t)

for t € [0, T] and j € [n], using the notation [n] = {1, 2, ..., n}. The matrices
F) € R™ ™ F; € R™" are time-independent. We denote the eigenva-
lues of (F, + F})/2 by A;, and the dissipativity condition means that ; < 0.
Denoting the maximum eigenvalue by Ay, we require that R < 1, where

O M R
ol

(©)
The task is to output a state |u) encoding the solution to Eq. (3) at time T.

In the “Methods” section, we show that to solve Problem 1, we first map
the finite-dimensional system of nonlinear differential equations in Eq. (3)
to an infinite-dimensional, linear set of ODEs that can be truncated to some
order N. This mapping is the Carleman linearisation technique™', which has
previously been applied to quantum algorithms in refs. 7,22,23. Next, we
show that by rescaling the linearised ODEs, we can reduce the complexity of
the quantum algorithm. This is followed by improved error bounds due to
Carleman linearisation for the rescaled variable and an estimate of the
overall complexity for obtaining the solution of the truncated
linearised ODE.

In contrast to refs. 7,22, we do not consider the driving term; on the
other hand, we explore arbitrary nonlinear powers in the ODE problem
rather than constrained to the quadratic case as in refs. 7,22. When we have
an arbitrary power M in the nonlinear ODE it is more challenging to include
the driving term Fy, because F, will produce characteristics of a more general
polynomial of order M as opposed to just a single component. Therefore, to
analyse the driving term we would also need to consider a general poly-
nomial of order M for the nonlinear part of the ODE problem. We leave that
considerably more complicated analysis to future work.

The solution of a linearised form of Problem 1 relies on oracles for Fj,
Fyp, and the initial vector. We show later in the “Methods” section, that the

complexity of the solution in terms of calls to oracles for F; and F), scales as

Il wy, |l

o ! A TNlog( Y ) 1 N, T 6
1= e [ u(T) [ °g(?) Og( : ) - ©

In this complexity, ¢ is the allowable error, and A, is the A-value for block
encoding F; (with an extra assumption on the efficiency of the block
encoding of F);). An important quantity here is the Carleman order N,
which can be chosen logarithmically in the allowable error provided R < 1.
For the complexity in terms of calls to the preparation of the initial vector,
there is an extra factor of N, but the final log factor can be omitted, so the
overall complexity is similar. Without the rescaling, there would be an extra
factor in the complexity O(||u;, |V) that is exponential in N. Even though N
can be chosen logarithmic in the other parameters, that would still result in
large complexity.

The result as given in ref. 23 has that problem. The complexity from
ref. 23 is (using Eq. (4.2) of that work and replacing a in their notation with ¢
in our notation)

1 DdMn'/NsT
O <E sT2D*d*n*/IN? [y, ||2Npoly (log (#) > > , ()

Ge

where G denotes the average ¢, solution norm of the history state, and s is the
maximum sparsity of F}, Fyr. The factor ||u,||*Y exponential in N is due to
the higher-order components of the Carleman vector without rescaling.
They also have a factor of T° rather than T, which is due to using a simple
forward Euler scheme in time. We also give a further improvement in the
polynomial factor of N, with our scaling being N in comparison to their N°.

Carleman solver for the reaction-diffusion equation

A large system of ODE:s of the form in Eq. (3) may arise from discretisation
of partial differential equations. Specifically, we can derive the nonlinear
differential equation resulting from the discretisation of a nonlinear
reaction-diffusion PDE similar to ref. 23,

0,u(x, t) = DAu(x, t) + cu(x, t) + buM(x, t). 8)

This equation will be stable according to a criterion that depends on the
max-norm of u(x, t), in contrast to the condition for the ODE that is based
on the 2-norm. Discretising this PDE into an ODE, the stability condition
R < 1 would be stronger and depend on the number of discretisation points.
That condition is stronger than necessary for the PDE, but after we use
Carleman linearisation to give a linear ODE it requires R < 1 for stability.
This means that the stability condition needed for the quantum algorithm is
stronger than that for the original PDE.

We explore techniques of finite-difference methods with higher-order
approximations for the spatial discretisation of the PDEs. Our improved
nonlinear ODE solver is then applied to the reaction-diffusion equation Eq.
(8), with F; resulting from the Laplacian discretisation and F,, giving the
non-linearity from the PDE. The overall procedure is illustrated in Fig. 1.

We then show in the “Methods” section, Corollary 6, that for this PDE,
the overall cost for the solution in terms of calls to the oracles that block
encode F; and F); is

Il wy,

1
@)
(Wn (D) |

2/d
(dDr?/? + |c|)IN log <§> log (M)) ,

(€

where we have used # gridpoints in total for the spatial discretisation of the
d-dimensional PDE given in Eq. (8).

Classically, it is less useful to perform linearisation by the Carleman
procedure, because the system size grows exponentially with the truncation
number N making the simulation prohibitively costly. In general, explicit
time-stepping methods like forward Euler or Runge-Kutta schemes do not
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Table 1 | Summary of variable names and conventions used
throughout the manuscript

Symbol Description

x,t, T Spatial coordinate, time, and final time

u Solution vector for the nonlinear ODE

y Carleman state vector: y = [u, u®?, ..., u®|

F1, Fm Linear and nonlinear terms of the ODE

N Carleman truncation order

A, Ay Full and truncated Carleman system matrix

A}” (j, ))-block component of Carleman matrix

€ Solution error

n Error in Carleman vector (also due to linearisation)

A Laplace operator

L, Lg Finite-difference Laplacians of stencil order k

D,c,b PDE coefficients: diffusion, decay, and nonlinearity

n,d Number of gridpoints and dimension of the PDE

I Identity matrix

M) Jjth eigenvalue of matrix argument

Ay Subnormalization constant for block encoding
Rescaling factor

®) Rescaled quantity

R Nonlinearity-to-decay strength ratio

fikm Bound function for Carleman truncation error

fop Interval defining Carleman error regime

s(-) Sparsity of matrix or operator

[N] Index set {1, 2, ..., N}

Scalars are denoted by lowercase letters (e.g., ¢), vectors by bold lowercase letters (e.g., u), and
matrices or operators by uppercase letters (e.g., A). Norms refer to the 2-norm unless otherwise
specified.

rely on linearisation of the underlying differential equations. However,
(semi-)implicit schemes which exhibit more favourable numerical stability
rely on inversion of the system. This either requires linearisation (e.g.,
Carleman or Koopman-von-Neumann schemes) or methods to solve
nonlinear systems, such as Newton-Raphson, which rely on a good initial
guess and require inversion of a Jacobian matrix.

Discussion
In this study, we proposed a set of improvements to quantum algorithms for
nonlinear differential equations via Carleman linearisation, eliminating
some of the exponential scalings seen in prior work. We have examined both
ODEgs, and a class of nonlinear PDEs corresponding to reaction-diffusion
equations”. These improvements include

* rescaling the original dynamics,

* atruncated Taylor series for the time evolution,

¢ higher-order spatial discretisation of the PDEs, and

* tighter bounds on the error of Carleman linearisation.

The rescaling boosts the success probability, needing exponentially
fewer steps for the amplitude amplification to obtain the solution compo-
nent of interest in the linearised ODE system. That is vital to enable the
complexity of the PDE solver to be sublinear in the number of discretisation
points. The solution approximation via the truncated Taylor method gives a
near-linear dependence on T, the total evolution time. The higher-order
spatial discretisation greatly improves the complexity of the quantum
solution of PDEs, because it reduces the number of discretisation points
needed, which is needed to avoid stability problems.

We show that the stability criterion for PDEs, rescaling, Carleman
linearisation, and stability criterion for ODE solvers all interact in a
way that makes the solution of PDEs more challenging than was
appreciated in prior work. In particular, the stability criterion for PDEs
is in terms of a max-norm, but rescaling by the 2-norm is required to
obtain a reasonable probability for the correct component of the
Carleman vector. But, rescaling by the 2-norm can make the resulting
system of linearised equations unstable, which causes the ODE solver
to have exponential complexity. If the discretised PDE is still stable in
terms of the 2-norm, then the resulting quantum algorithm will still be
efficient. Because the 2-norm increases as /7 in the number of dis-
cretisation points, the number of those points should be made as small
as possible, which is why it is crucial to use the higher-order
discretisation.

In future work, one could devise a less restricted quantum algorithm for
solving nonlinear PDEs via some other approach. The feature that the
linearised equations can be unstable even though the nonlinear equation is
stable suggests that an alternative linear equation solver may be efficient.
The reason why the condition number is large (causing the inefficiency) is
that the solution can grow exponentially over time, but for an initial vector
that is not of the Carleman form. A solver that is able to take advantage of the
restricted form of states could potentially be efficient.

Furthermore, there are a number of important generalisations that can
be made to the type of differential equations. Instead of just including a
nonlinear term of order M, one could include all nonlinear orders up to M.
That could also be used to analyse the effect of driving because the method
used for quadratic nonlinearities would produce nonlinearities at a range of
orders. A further generalisation that could be considered is time-dependent
differential equations. These generalisations can be made in a simple way in
the quantum algorithm, but the analysis to bound the error would be
considerably more complicated.

Methods

We begin by summarising the notation and key variables used throughout
the manuscript. Table 1 defines the principal symbols, their roles, and the
conventions adopted. This summary is intended to assist the reader in
navigating the derivations and algorithmic steps that follow.

Quantum Carleman solver with rescaling and improved error
bounds on Carleman truncation
Background on Carleman linearisation. We start with the Carleman
linearisation for the initial value problem described by the n-dimensional
equation with a nonlinearity of order M as given in Eq. (3). We recall the
dissipativity assumption on F, ie., the eigenvalues of (F; + F }L) /2 are
purely negative. The quantity A, the eigenvalue closest to zero, thus gives
the weakest amount of dissipation. This way, R in Eq. (5) can be used to
quantify the strength of the nonlinearity of the problem. As shown in ref. 22,
there exists a quantum algorithm that can solve Eq. (3) efficiently whenever
R < 1. Furthermore, for R > +/2, the problem was shown to be intractable on
quantum computers.

Next, we briefly outline the key idea of the Carleman linearisation. First,
notice that

— _ — _ T M
w®M = @M M M MW, WMy e R
(10)
In particular, for M = 2, the Kronecker product gives
®2 _ (,2 2\T n’
u® = (U, ugty, . WUy, Uy, U, i) € RT O (1)

Now, define a new variable consisting of Kronecker powers of the solution
vector

@’2,...,)'1,\,:u®1‘]7...7 (12)

Yi1=wYy,=u
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Fig. 2 | Depiction of a snippet of A, for M = 3 until N = 4. Given the exponential
increase in size, only a fraction of N = 4 is shown. The diagonal blocks correspond to
linear terms of the ODE, the upper-diagonal blocks to a nonlinearity on the (M — 1)
st off-diagonal.

which we can summarise as a vector y = [y;,¥,,---,¥Vx, - - 1%, If we con-
31der the t1me derivative, we can identify the time-independent matrices

c R and F; € R""" as follows,
dyj _dll®j
gt
du du
= QU - Qu+t---FuRuR - Q —
dt dt
=(FMU®M)®I.1®---®u—|—---—|—u®u®-~~®(FMu®M)
+Fu®u® - Qu+ - -+u®u®- - Q(Fu).
(13)
We can write this in compact form,
dy: .
dtj A](+M IYJ+M 1+A]( )Yj7 (14)

where A(+M L e R"X7™ A(l) R %" wi

AN =Fy @IV 1 1@ F, @ 1% +... + 1207V @ Fy,
A](-l) — Fl ® I[@(f*l) +1® Fl ® H@U*Z) RS H@U*l) ® F17

(15)

where the I operation is the identity with the same domain as Fy, i.e., R" xn
This results in an infinite-dimensional linear system, as there is no
bound on the range of j. To make this computationally feasible, we restrict to
j € [N] for some N > N> M. Further, we can see that N > M is a
requirement in order to be able to capture any effects coming from a
nonlinearity of order M. This allows one to write down a matrix form,

dy

i (16)

= ANY7

with
A o0 ... 0 AY o 0
1 M
o AP ... 0o o Al o
0 0 0
(M)
Ay = AT an
0
o AV, o
0
Lo o .- o AD ]

The matrix Ay € RN * et s called the Carleman matrix with truncation
order N, where N, = ZJ = "(" 71) The non-truncated, infinitely
large matrix we call A. As the dlmenswnahty of the system is exponential in
the order of Carleman truncation (see Fig. 2), this technique tends to be
intractable for practical applications on classical computers.

The simple block structure of the matrix .4, enables us to obtain the
upper bound for || Ay || in terms of the norms of the submatrix of Ay, that
is

max [|A]

Agll < max [|AD
Al S max 1401+ max

(18)
=N[F [+ (N =M+ D[Fyll -

A similar relation holds for the A-values, which is important for the esti-
mation of the complexity of our quantum algorithm. In what follows, we
present a lemma that allows us to quantify the total error involved in the
Carleman truncation. Our lemma considers the error from the Carleman
linearisation for the rescaled nonlinear ODE problem when we have an
arbitrary power M for the function, as opposed to the quadratic case without
the rescaling given in ref. 22. To that end, we will first present said rescaling.

Arescaled Carleman solver. We will motivate this rescaling by looking
at the measurement probabilities of components in the vector
y = [u,u®?, ... u®N 1". Recall that the sole entry we are interested in
measuring w111 be ¥1 = u. The standard way to encode the solution u(t) in
a computational basis { [j)} is

= i uj(t) l]>

=

lu(r)) (19)

Analogously, components |ym> of y are written as a quantum state as

@) = 2 w0 1, (O] ++ i, 0FEOE=)
T o (20)
= Y uw; - ujm(t)’}’(r{q']z*]m)>,
Juredm=1
with
) = [y g, O BN, 1)

This follows the state encoding outlined in the Supplementary Information
3.Cin ref. 22, where in each step up to the largest order N, extra dimensions
are padded in the form of |0)’s to avoid the structure of a superposition over
components of different size. The first register is set to m so we can dis-
tinguish the order by measurement of a subsystem. Then, we can write the
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full vector |y(t)) as follows:

Iy(t)) = z )+ 5w 0, 0

y2112)>
Jrd2=1 o (22)
U ®... ajhv(t)‘y(lf;lz._~jw)>_

++Z

Jisedn=1

For a normalised quantum state, the amplitudes u; (f) in Eq. (22) need to be
normalised so that (y]y) = 1. We then have to consider the normalisation

factor 1/,/V where

N 2N
1 — Jlu(®)ll
V= lIyl> = @I = lu@lP ~——" . (23)
NEIE T L 1= u()|?
Note that this formula does not work in the case that ||ju(f)|| = 1. We

therefore adopt the convention that wherever there appears a ratio of this
form, for ||u(t)|| = 1 it takes the value in the limit ||u(¢)|| — 1, so

Vy — N. (24)

The solution of the nonlinear ODE is given by the first component,
where the probability is given by

P, 0) = 3| (G0 y0)[ =
=

1— [u()]?
1= Jlu(t)

(25)

*i!%(ﬂ\z
=1

From this equation, we see that as we increase the Carleman truncation
order we also increase V), which suppresses the probability of extracting the
desired component. This brings an exponential cost in N for the algorithm
due to the O(1/+/P(y,(t))) rounds of amplitude amplification needed at
the end. To avoid this high cost in the algorithm, we propose the following
rescaling, which can significantly reduce the cost of amplitude amplification.

Definition 1. (Rescaled Carleman problem). Consider a nonlinear ODE
system of the form 4 = F u+ F,u®" as in Problem 1. Then, using a
variable transformation in the form of a rescaling u = u/y with y > 0, we
obtain another system in the rescaled variable

du
dr

~QM

= ﬁlu—l—FM , (26)

with F, = F, and F,; = y"~'F,,.
This allows us to improve the measurement probability in the
following sense.

Lemma 2. (Measurement probability of the rescaled Carleman pro-
blem). Using the rescaling in Definition 1, using a scaling factor y2 ||um||
and assuming dissipativity of the ODE, the probability to measure u =y, is
given by

_ lwoi?

with [[a(?)|| = |lu(t)||/y. Given dissipativity of the ODE, we have
[la()|| < |luipll, so [[u()|| < 1. In turn that implies

1 — [a())*Y
— < 29
1— [u()? @)
The measurement probability to obtain ¥, (¢) is then
2 Ju@l* 11— ||u(t)||2
P(y, (1) = Z ‘< |Y(t)>‘ VN =1_ ||u(t)||2N N (30)

Therefore, using the parameter y, we can adjust the probability to
obtainy,. Here we have taken y > ||uy,||, though the first expression does not
depend on this assumption. The probability is equal to 1/Nif y = ||, =
[[u(®)||, and otherwise for y > ||lu(#)|| the probability is even better. Thus the
rescaling avoids the exponential (in N) suppression of the probability of
obtaining the component of interest of the ODE problem, which occurs for
[lu(#)|| > 1 without rescaling.

When we apply the rescaling above into Eq. (15) we obtam alinearised

system in the rescaled solution vector with A =AY and
A] v =P lA](ﬂ\r% 1» and as a result we can write the rescaled Carleman
linearisation as
dy -~ _
E = ANY’ (31)
where
TAD 0 ... 0 pMAM 0 0
0o AD ... o 0 AN o
o . 0 0
T .. 1M
;ZlN _ . . oM IA;, )
' 0
0 A 0
1
Lo o 0 AQ
(32)

We discuss the cost of implementing the rescaled dynamics when intro-
ducing the ODE solver.

Error bounds on rescaled solution. Next, we present error bounds on
the global and component-wise errors due to Carleman linearisation in
Lemma 3 and Lemma 4, where we make use of the rescaling technique
outlined in the previous section. The first lemma provides a bound on the
overall error in the Carleman vector. The error bounds we present here
are based on the 2-norm.

Lemma 3. (Global rescaled Carleman error). Consider the ODE from Eq.
(3) with its Carleman linearisation in Eq. (13) truncated at order N. Let F; be

P, (1) = 1 7 S 1 dissipative, so that for Ay < 0 with [Ag| > |lw||* "||Fpmll and therefore
= 1— <Hu(¢)\|> NN @7) g, [l = [[u(#)|| for ¢ > 0. Then, the error in the rescaled solution as defined in
v Lemma 2 is given by #; = u® - y; at order j € [N] due to Carleman
truncation N > M > 2 and a scaling factor y = ||lu;,||; u denotes the exact
Proof.. Using the rescaling y > 0, we obtain a new normalisation solution to the underlying ODE whereas y is the approximation due to
Carleman truncation. Then, this error for any j € [N] is upper bounded by
N 2l N the overall error vector,
_ a®IN™ _ =2 L= @l
=Y (/) =lhOr——"r, (28)
= y 1— [fu@)] g 1 — NG IR 53)
7Ol < lIn®1 < (M = DIFy o 1™ —— 77— 33
K . o+ 7T IEy I
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The detailed proof is presented in Supplementary Section II of
the Supplementary Information. Related results were given in ref. 22
and ref. 7. Neither included a general power for the nonlinearity, and
were restricted to M = 2. Furthermore, we provide an exponential
reduction in the Carleman order dependence due to the rescaling, i.e.,
7]l o [lugll™ in opposed to ||u,||". Although ref. 7 mentioned
rescaling, it appears not to have been used in the error analysis. If the
rescaled form was being used in that work, then it would imply that
[lu;n|l would be equal to 1, so log(1/|lw,[l) =0 which results in N
being infinite in Eq. (7.23) of ref. 7.

A problem with using this form is that it does not go down with the
Carleman order. We aim to show that the error may be made arbitrarily
small with higher-order Carleman approximations. We can provide tighter
bounds when we consider the individual components of the Carleman
vector, as in the following lemma.

Lemma 4. (Component-wise Carleman error). Under the same setting as
in Lemma 3, and j € [N], the Carleman error for each individual component
of n); satisfies

()l < ( ) ) R m(olt),  jeoy (34)
where
; k=1 k—1 ,
_ (M—1) I'(k+j/(M—1)) V4 (M=t
fjsk«,M(T) =1- (k—l)!r(j/J(Mfl)) ;}(_1) ( / ) (M,Hjj . (35

fork € {1,2,---, [%1} and k is determined so that for any j, we have k
whenever j falls into the index set j €  with

=(N—kM—1)+1,....N+(k—1)1-M)}. (36
In particular, for k = [N/(M — 1)] we have
1n|| [+
I O < 2RI, a0 (). (37)

The proof of Lemma 4 can be found in Supplementary Section II
B of the Supplementary Information. The function f i »/(7) is mono-
tonically decreasing with k, and in particular fjip(7) < fi1m(7) =
1 — e’" (see Supplementary Section II B of the Supplementary
Information). This result does not depend on the choice of rescaling y.
There is a factor of 1/y in the definition of 7;, so the result is effectively
independent of the choice of rescaling. Moreover, ||#;(t)|| gives the
error in the desired component at the end, and shows that the error in
u is proportional to |[u,]|.

A similar result was provided in ref. 23 without using the rescaling,
though that does not affect the result for the error. We give a significant
improvement over the result in ref. 23 by evaluating the nested integrals to
give the function fjj »/(7), whereas the result in ref. 23 just corresponds to
replacing f;x a(7) with its upper bound of 1.

We can use Lemma 4 to solve for a lower bound on N for a given
allowable error. In practice, we are interested in the error in the solution
relative to ||uy, || rather than y, so we aim to bound ||7;(£)||y/ ||, Given a
maximum allowable error ¢, we then require

or

log(l/s)

}—w—»

We can also numerically solve for N, by using the exact expression for
Sikm(7) givenin Eq. (35). That will give a tighter lower bound on N, but there
is not a closed-form expression.

Solution of the linearised system of ordinary differential equa-
tions using a truncated Taylor series
Next, we describe how to solve the system of ODEs that results from the
Carleman mapping applied onto the nonlinear system. The most simple
way to solve the system of ODEs is to apply the first-order method for time
discretisation known as the explicit Euler method. Upon application of the
Euler method, there is a linear system of equations that can be solved. Here,
this is a quantum linear system problem (QLSP), as the solution is encoded
in a quantum state. In what follows, we aim to solve the linear system by a
more sophisticated method than explicit Euler. The main drawback of the
forward Euler method is low accuracy since it is a first-order method,
meaning finer time discretisation is required to achieve a required precision.
As a result, the dependence of the complexity for solving the QLSP is
quadratic in the solution time, and there is a near-linear factor in the inverse
error’>”,

Here, we follow the procedure outlined in ref. 3, which allows us to
obtain an algorithm that has complexity near-linear in time and logarithmic
in the inverse error. The solution of a time-independent ODE system

du(t)
may be approximated by ug(f) = Wi(t, to)u(ty), with
AAD’
Wit tg) i= Z( 2 ()

This is a Taylor series truncated at order K. The error in the solution due to
time propagation can be bounded as

K+1
Qajan — ||u(to)||) . (43)

pu) - o e o UE120
We aim to solve Eq. (16) where the vector u(f) is mapped to a rescaled vector
y(#) and A is the rescaled Carleman matrix Uz, truncated at order N.
Following Theorem 2 in ref. 3, there exists a quantum algorithm that
can provide an approximation |y) of the solution |y(T)) satisfying
— [¥(T))|| £ &/ ppax- To do s0, we require that Ay has non-positive
logarithmic norm and we have the oracles U,, to prepare the initial state and
block encoding of Ay via U~ with (0|U~ [0) = ;lN /A~ . Then, to
Ay Ay Ay

achieve the desired accuracy, the average number of calls to U, and U:t
‘N

needed are
“:SR(%]fl,[N/(M—I)LM(Molt) <R (38) ~ 1
U,: @) <R/1} Tlog (E)) (44)
It is therefore sufficient to choose N as A
)L~ T
N 7 log(1/e) (39) U5« O R~ Tlog( ) log . (45)
M—1 log(l/R) Ax
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Furthermore, the number of additional elementary gates scales as

o R~ Tlog[1)10g 5T (46)
T og| - Jlog . .
In these expressions
>, Ymax
Rz %
Gl )
Yimax 2 max [[y(0)]|. (48)

t€[0,T]

The stability requirement on the ODE to use the solver as in ref. 3 is that
the logarithmic norm of the matrix is non-positive (similar to ref. 7). That
norm is given by the eigenvalues of (A ~ + Ay)/2. The eigenvalues of that
matrix can be bounded via the block form of the Gershgorin circle theorem.
That is equivalent to the usual Gershgorin circle theorem, except using the
spectral norms of the off-diagonal blocks. For example, see Theorem 2 of
ref. 26, or ref. 27.

For (Ay + AN)/Z we obtain rows with A( ) and yM- 1A(M)/Z (for
]>M) and M- IA( mo1/2 (for j o+ M - 1<N) Now
| ACD irar— I <1 Fy || so the sum of the norms of the off-diagonal blocks
is at most, forj>Mandj+ M — 1<N,

M+ DIIEyll -
(49)

HASD, 1+ IAYP IS Epll + G — M+ D[ Eyll = (2 —

In the case j < Mbutj + M — 1 < N then we get j||Fp||. If j + M — 1 > Nbut
j=M then we get (j — M + 1)||Fy|l. Now the maximum eigenvalue of
[AJ(.U + (A;l))l] /21s jAo. In that case the eigenvalues of (;lN + .:l:\,) /2 canbe
at most

o+ iy IEMI/2,
o+ Qj =M+ 1Dy IFyll /2,
Ao+ G =M+ DYMHIEyN /2,

0<j<M
j2MandjsSN-M+1
Nz2j>N-M+1

(50)

We can then see that the eigenvalues will be non-positive given all three
inequalities

—1 2|A0|
PSR L)

L Aol
P S = Djen - M DB (52)
Pl ! (53)

[1 — (M = 1/N]IFyll

Provided N22(M — 1) (as would normally be the case) the middle
inequality would imply the other two. In all cases we can satisfy these
inequalities using

|M71

yMl< LY

IIFMII R 7

(54)

or

|, |l
Y= R

(55)

where we used the definition of R from Eq. (5) in the equality above. Berry
and Costa’ argue that for cases where the solution does not decay

significantly, R € O(1). Here, we consider dissipative dynamics without
driving, so R may belarge. That is less of a problem for driven equations. We
expect that our methods can be applied to driven equations as well, but the
error analysis is considerably more complicated so we leave it as a problem
for future work. _

We can construct the block encoding of the Carleman matrix Ay in
terms of the block encoding of F, and F,, as discussed in Supplementary
Section VII of the Supplementary Information. Denoting the values of A for
Fyand F by Ap, and A respectively, the value of A for Ay is

)LZN <SNAp + (N =M+ 1)y, (56)
This expression easily follows from expressing AN asasum, and the Value of
A being the sum of the values of A in the sum. Since AN includes A up to
Aﬁ\l,), and A is a sum of N operators with identity tensored w1th Fy, we
obtain the term N above. Similarly, we have y~ 1A ) up to yM-1A0Y,

and A( )isasumof N — M + 1 operators Wlth with Fy; giving
the (N — M + 1)y~ "4, term.

If we choose Yy = |/\0|/ ||Fal] as above, then

N[IF [ >(N =M+ Dy Y Fyl . (57)

In typical cases we would expect that A o ||F, || and A o || Fy|l. That
would imply

A;N S2NAg, (58)
Note that the scaling has not increased the value of A by more than a constant
factor. Note that this is assuming that the A-values and norms in the block
encoding are comparable, so it is possible it could be violated if the block
encoding of Fy, is inefficient, so )LFM is much larger than ||Fy|.

Now for R we have y_ . which considers the maximum norm that the
vector can assume along the entire time evolution. Since we are working
with a dissipative problem the maximum occurs at ¢ = 0. First we consider
the case without the scaling for comparison. To compute the norm ||y(0)||,
note that it is the vector resulting from the Carleman mapping, i.e.,

y(0) = [uy, uﬁz, .. 7uEN] , SO
1— [Jug, 2N
YOI = flug, 1> —-, (59)
1— [y, |
as in Eq. (23). Similarly for the value of the norm at time T,
1— u(T)|*™Y
(DI = ()P~ (60)
1— [[u(T)|?
Therefore
Vimax
R =y
(1=l 1Y) (1= a(T)2) 12 (61)

(]

[

(1=l 1I2) (1= llu(T)|12)

Moreover, the above complexity is in order to obtain the full Carleman
vector. The quantity R corresponds to an inverse amplitude for obtaining
the state at the final time, so tells us how many steps of amplitude ampli-
fication are needed in the algorithm. In practice, we want only u(7) rather
than the full vector. That implies a further factor in the complexity of
[ly(DII/llu(T)||, corresponding to the inverse amplitude for obtaining the
component of the Carleman vector containing the solution. That gives a
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factor in the complexity of

la(T)l ©2

(DI | (1=l ™) 1/2
(T | (1=l ]1?)

From the equation above we can see how R grows exponentially in N for
llwall > 1.

Now with the rescaling, we simply divide each w;,, or u(T) by y. That
gives us

O 5 - [ = Bl /9] )
[a(T)]| (L= llw,li?/y?) | (DI
With the choice y™" = |A|/|| Faql, we obtain
(DI ~ 1 N )
WOl - g ()]

We then can see that the amplitude amplification cost can be exponentially
reduced when ||uy, || > 1. We could also use y = ||uy,|| to give

O~ ~ gl
il =Y N ()

(65)

but that bound is looser for realistic parameters.

A further consideration is the relation between the relative error in the
solution for y(T) and that for u(T). The complexity of the solution for the
ODE solver is in terms of the former, whereas we need to bound the relative
error in u(T). We have the error upper bounded by (with hats used to
indicate results given by the linear equation solver)

18(T) — u(T) | < YIF(T) - Y(D]
< Y& max
B L ) R T RS
(1= lw,l12/92) Y
<ellu .

ol s

In the second line we have assumed that the ODE solver has given the
solution for y(T) to within error ey, . . This shows that the relative error in
u(T) is the same as that for y(T), up to a factor of 1/v/1 — R¥M=D which
should be close to 1. We can also use the simpler but looser upper bound

18(T) — u(T) || <efluy, | VN, (67)
which is obtained by noting that the expression in the square brackets in the
third line of Eq. (66) is upper bounded by N.

We can now use the ODE solver given in ref. 3 in combination with our
rescaling technique to provide our quantum algorithm for Problem 1.

Lemma 5. (Complexity of solving ODE) There is a algorithm to solve the
nonlinear ODE from Eq. (3) ie., to produce a quantum state [a(T))
encoding the solution such that [|a(T) — w(T)|| < ¢luy, ||, using an average
number

of calls to oracles for F, and F,,,

(69)

Ar, Az TN?lo (N) >7

1 [T
V1 — /=1 [[u(D)]|

calls to oracles for preparation of u;,, and
5 NAp,
Ap, IN"M log log

additional gates for dimension #, with

T 2
) logn),

(70)

1 sl
\/W ) [la(T)]l

N= 0<(M —1) (71)

log(1/¢)
log(l / R) '
We require that R < 1 and assume that )LFM/||FM|| = (9()LF1/||F1 ||) for the
block encodings of F; and Fy,.

Proof.. The main step to derive our quantum algorithm is first to apply the
Carleman linearisation in the rescaled nonlinear ODE problem, which is
given in Eq. (26). We then have a linear ODE problem with the Carleman
matrix of order N, denoted AN We can then apply the ODE solver given in
ref. 3 to this equation.

There are then a number of considerations needed to give the overall
complexity.

* We need to multiply by a further factor of || y(T) || / || w(T) || to
obtain the correct component of the solution containing the approx-
imation of u(T). The product of that with R is given above in Eq. (64).

¢ The value of /\~ is given above in Eq. (58) under the assumption

AFM/||FM|| = O(AF]/HF II), which gives A~ = O(NA).

 The matrix AN can be block encoded with O(l) calls to the oracles for
Fy, Fyr. There is an extra O(N) factor for the number of calls to u;,. The
implementation of the oracles is explained in the Supplementary
Section VII of the Supplementary Information.

* The choice of the Carleman order N in order to obtain a sufficiently
accurate solution is given in Eq. (40). The error from the Carleman
truncation can be chosen to be a fraction of the total allowable relative
error ¢ here, which is accounted for using the order notation for N.

o The solution for the ODE can be given to relative error &/+/N.
According to Eq. (67) that will ensure that the relative error in u(T)
obtained is € as required. It is for this reason that we have replaced the 1/
¢ in the complexity for the ODE solver with N/e.For the additional
elementary gates, the block encoding is as in Supplementary Section VII
of the Supplementary Information requires a factor of O(NM log n) for
swapping target registers into the appropriate location. That is a factor
on the number of block encodings of .Ay. Moreover, ref. 3 gives a log
factor to account for the complexity of correctly giving the weighting in
the Taylor series. For simplicity we give the product of these factors, but
these factors are for different contributions to the complexity and we
could instead give a more complicated expression with the maximum of
NMlog n and the logarithm.

We can compare our quantum algorithm performance with what is
given in Theorem 8 of ref. 7 for the case M = 2. The complexity given in that
theorem can be simplified to the situation we consider by removing the
driving term and replacing ||A|| with A 4 . Then the complexity from ref. 7 is

! v | Ap TNlog( )log(N/l}7 T) ,  (68) o llug, |l 1 TN volv( N 1 1 loe( TN )
/1 — R/ [lu(T)|[ " F jucry TV poly | N log{ 2 ;log(TNAg ) | |- (72)
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The speedup is unclear because the complexity in that work is given in terms
of poly factors. That work appears to be assuming a rescaling in order to
avoid complexity exponential in N, but by assuming ||u;,|| = 1. The problem
is that they give a formula for N as

_ [210g(TIE, I/81u(D)1)
log(1/lu, )

(73)

Using ||uj,|| = 1 in that formula gives infinite N. In contrast, here we have
given the rescaling explicitly and given a working formula for N.

Application to the quantum nonlinear PDE problem
Complexity of the quantum algorithm. We now demonstrate our
techniques applied to the nonlinear PDE”

9,u(x, t) = DAu(x, t) + cu(x, t) + buM(x, 1), (74)
for some diffusion coefficient D >0 and constants ¢, b € R. As a simple
means of discretisation we consider finite differences with periodic
boundary conditions, which leads to a vector-valued ODE that approx-
imates the dynamics in Eq. (74). We go beyond the two-point stencil
demonstrated in ref. 23 and apply higher-order finite differences similar to
ref. 13 for the linear case.

We discretise a d-dimensional space in each direction with uniformly
equidistant grid points. As a result, we obtain a nonlinear system of ODEs as
in Eq. (3) with # grid points in total, or # in each direction. Moreover, we
consider the width of the simulation region to be 1 in each direction, so X €
[0, 1], for simplicity.

The linear operator F; resulting from the spatial discretisation of our
PDE is given by

F, = DLy, + cI®, (75)
where I is the n'" x n''? identity matrix, and
d
Lk,d — Z I®(H—1) ® Lk ® H®(d—l4). (76)

u=1

The operator Ly, above for the discretised Laplacian in dimension d is
constructed from the sum of the discretised Laplacians in one dimension, L.
Here, k is the order, so the truncation error scales as the inverse grid spacing
to the power of 2k — 1, and 2k + 1 stencil points are used.

A Taplacian in one dimension with a kth order approximation and
periodic boundary conditions can be expressed in terms of weights a; as (see
ref. 13)

k
L =n? (uol +> a9+ S"')) : (77)

j=1

where S is a n'' x n'" matrix, where the entries are S;; = 6, 1modni/s;
S is also known as a circulant matrix. Note that for a total of n' grid
points and a region size of 1 in each direction, the grid spacing is 1/
n'". The method to obtain the coefficients a; for the Laplacian
operator is given in Supplementary Section V of the Supplementary

Information guarantees that

k
a+2) a;=0, (78)
j=1

and we provide the coefficients for 1 <k <5 in Table 2 (these are from
ref. 28). Moreover, this procedure leads to a truncation error in the

representation of the Laplacian operator which scales as (for the 2-norm)'**

o (C(u, k) @ an(—m“/d) , (79)

where C(u, k) is a constant depending on the (2k + 1)st spatial derivative in
each direction

d

Clu k)=

=1

d2k+1 u

| (80)
7

This expression is obtained from that in refs. 13,29 by adding the errors for
derivatives in each direction.

We also have the matrix F, resulting from the spatial discretisation of

the nonlinear part bu(x, t) that is a rectangular matrix Fy;,

Fy,:R™ > R", (81)

operating on the vector u®", as given in Eq. (10). Since we are only interested

in the components ufw from u®, where i = 1, 2, --- n, Fy, is a one sparse

matrix with the non-zero components given by b. Hence
1Eall = 1Epsllmax = 1B In the case M = 2, where

aunun—h

®2 _ (,2 2 T n?
u® = (U, ugtly, . Uy Uy, Uyl U u,) € R", (82)

We can express F2 as

b — _
[Fz]pq={ ; Oq p+@—1Dn 3

,  otherwise.

Returning to the Laplacian operator with periodic boundary condi-
tions, we see that Eq. (77) is a circulant matrix, so its eigenvalues are given by

ML) = nld

k
ag + Zl a; (0’ + “’[j)}
=

(84)
k .
= n?d|q, + 234 cos(ifg>:|, CenVd —1]
=1
where w = ¢27/"""_Since the aj, withj=0, 1, -+, k, satisty the condition in

Eq. (78), we see that for £=0, Ao = 0 gives the maximum eigenvalueand 1,< 0
for £ # 0. Moreover, using the triangle inequality in Eq. (77) we see that

k
I Ly Snz/d<|ao|+22|aj|>. (85)

=1

By a simple application of Gershgorin’s circle theorem, one may obtain the
asymptotic bound (Lemma 2 in ref. 13, Lemma 6 in ref. 29),

4 2
I L st = (86)
From the eigenvalues of L; we can then determine the eigenvalues of F
(which is symmetric so equal to (F; + FI) /2) as defined in Eq. (75) as

k 270, j
“0+22“jc°5(n1/1;):|~ (87)
=1

As discussed above the maximum eigenvalue of Ly is 0 with periodic
boundary conditions (it can be negative for non-periodic boundary
conditions). For Carleman linearisation to be successful, we require R < 1
and, in particular, A, < 0. Since the maximum eigenvalue of F, is ¢, we choose
negative ¢ such that the overall dynamics becomes dissipative and satisfies

d
A—(F,) = c + Dn*/?
[ p;
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Table 2 | Central finite difference coefficients for
approximating a second derivative in one dimension®

Order k Coefficients ao to a,

1 -2,1

2 —5/2,4/3, — 1/12

3 — 49/18, 3/2, — 3/20, 1/90

4 — 205/72, 8/5, — 1/5, 8/315, — 1/560

5 — 5269/1800, 5/3, — 5/21, 5/126, — 5/1008, 1/3150

the stability condition R < 1. Moreover, we obtain the following bounds

IF, ||<|c|+an2/d(|ao|+Z|a|) <|c|+an2/”’ (88)

=

The value of A, for the block encoding of F; can be determined in a
similar way. The block encoding can be implemented by a linear combi-
nation of unitaries of the identity and powers of the circulant matrices S. The
value of A is then exactly equal to the sum

= || +an2/d<|a0| +Z|a |> <lel +an2“ (89)

=1
Similarly, since F, is one-sparse it can be easily block encoded with a value
of Ay equaltoits norm of |b]. We then obtain the value of A for the complete

block encoding as

Ay =Nl +(N-M+ DyM A,

. (90)
< N(le| + dDn*442) + (N — M + 1)yM=1|b].
The condition on the dissipativity of the ODE R < 1 implies that
2/a 4 M—1
N lel +dDn?/* == ) > (N = M+ 1y b (1)

Given these results for the discretisation of the PDE, we can use Lemma
5 to provide the following corollary.

Corollary 6. (Complexity of solving a dissipative reaction-diffusion
PDE) There is a quantum algorithm to solve the nonlinear PDE in Eq. (74)
i, to produce a quantum state [4(T)) encoding the solution such that
[a(T) — u(T)|| < ¢lluy, ||, using an average number

1 Il o 2/a N\, (N@Dn*? + )T
dD: TNlog| — | log| ——MMM——
(vl_Rz__/w Ty @0 DTN Ios (7 Jlog ‘ ’

(92)

of calls to oracles for F; and F,;, as defined in Eq. (75) and Eq. (83)
respectively,

1 [, | 2/d ) (N)
o % (dDn? TN?log( =) |, 93
< 70 u(T) ||( %+ [ TN log (93)

calls to oracles for preparation of u;,, and

additional gates, with

N= (’)((M -1) (95)

log(1/¢)
log(1/R) )
We require that R < 1, where R is computed from the discretised input
vector ;.

Proof.. We first discretise the reaction-diffusion problem in Eq. (74) to the
nonlinear ODE system with # discretisation points. We consider just the
error in the solution of this ODE here, with the choice of n to accurately
approximate the solution of the PDE described below. For this ODE we have
an explicit bound for A given in Eq. (89), and can use it in the expressions
in Lemma 5. For this simple F the values of A F,, and || Fy|| are equal, so the
condition /\FM/HFM | = (9(/\Fl JIIE, 1) is satisfied.

Note that for this result the oracles for F; and Fj; can be easily
implemented in terms of calls to elementary gates, with logarithmic com-
plexity in n and linear complexity in M. Powers of the circulant matrices can
be implemented with modular addition, and Fj; can be implemented via
equality tests between the copies it acts upon. Note also that, apart from the
R < 1 condition, this complexity scales as #** up to logarithmic factors. For
d 2 3 this complexity is sublinear in n. This factor comes from the size of the
discretised Laplacian, and is similar to that for quantum algorithms for
linear PDEs. If we had the factor of ||uy,||* as in ref. 23, then because ||uy,|*
o n with the discretisation there would be a further factor of n" for the
scaling with #, making the complexity far worse than that for a simple
classical solver.

Stability and discretisation. Here we discuss conditions on nonlinear
differential equations of the type in Eq. (74) so that numerical schemes
based on Carleman linearisation are stable. Recall that for the ODE we
have the stability condition R < 1 with

IFpell -l 1™

in

R =
ol

(96)

That condition is not ideal here, because the 2-norm of the solution
increases with the number of discretisation points. Thus this condition for
the stability depends not only on the underlying PDE and initial state but on
its discretisation.

Ideally we would aim for a condition on the max-norm of the solution.
That can then be used in order to guarantee stability of the solution as well as
to bound error. For example, ref. 23 considers stability in their Lemma 2.1
and bounds error in their Theorem 3.3. A simple stability criterion can be
given as

b
M—1
” m”max | I 1

(97)

Before discretisation, the stability can be shown simply by considering the
infinitesimal time interval d¢ and using

lu(x, t) + dt[DAu(x, t) + cu(x, £) + bu™ (X, )]l o
= ||(I + dt DA){u(x, t) 4+ dt[cu(x, £) + b (X, O} ||
< |IL+ dt DA lu(x, £) 4 dtfeu(x, £) + bu™ (x, ][] oy

(98)

Now using the triangle inequality

2 , dtfeu(x, £) + buM(x, O]l ae < l(x, 1) + dt cu(x, 1], + dt|| b (x, 1)
Wl gD/ 4 | TN?M 1 log (N ”+M)T 1 > llu(x, £) + max max max
(F oo Tachy (4075 + 1el) og ) 1og ( ) A = (1 dE O U(X, 1)+t B, L,
(94) (99)
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Fig. 3| The (induced) eo-norm of the exponential of tDA;, when using a discretisation
of the Laplacian of second order (blue), third order (red), and fourth order (orange).

Then if (b/¢) |lu(x,t) Hf‘“/[a;l <1 this expression is upper bounded
B 140X, 1) e

Moreover, it is a standard result that || I + d¢ DA||,, = 1. That s, the
diffusion equation smooths out any peaks in the distribution. That
expression also holds if we consider the discretised form, but only using the
first-order discretisation. Then for spatial grid spacing h, the discretised
form in one dimension has 1 — 2dt D/h* on the diagonal, and dt D/ on the
two off-diagonals. The sum of the absolute values along a row for this matrix
is then exactly 1, giving an co-norm of 1. That means Eq. (98) implies
I (X, t)|| e 15 NON-increasing for the PDE given the stability criterion in
Eq. (97).

This result for the co-norm no longer holds for the discretised PDE
when using higher-order discretisations. For example, for the second-order
discretisation, the —1/12 on the off-diagonals means that

Il 4+ dtDL,||,, =1+ dtD/(3K%). (100)
That means that the max-norm is only upper bounded by the initial max-
norm multiplied by a factor of exp(D/(34%)). In practice it is found that the
max-norm is far better behaved. If we calculate the co-norm of exp(tDL,),
then we obtain the results shown in Fig. 3. For the second-order
discretisation the initial slope is 1/3 as predicted using infinitesimal f, but
the peak value is less than 1% above 1. For the higher-order discretisations
this maximum increases, but it is still small for these orders. Therefore we
find that if we consider the max-norm for just evolution under the
discretised Laplacian then it is well-behaved, but that does not imply the
result for the nonlinear discretised PDE.

To determine stability for the 2-norm, the equivalent of Eq. (98) gives

llu(x, t + dt)|| < | T + dt DA|| x Hu(x7 £) + dt[cu(x, ) + buM(x, 1] H
< Hu(x, t) + dt [cu(x, 1)+ buM(x, t)] H
Su(x, ) + dt [cllulx, )] + bl (x, D)l
< u(x, Bl + dt[cllux, | + bllux, )| lux, )] -

(101)

Therefore the 2-norm is non-increasing provided (b/c) ||u(x, t) | X! < 1.In
the discretised case the non-positive eigenvalues of the discretised Laplacian
mean that the 2-norm is still stable given this condition, though as noted
above it is possible for || u|| ., to increase above its initial value.
However, for the purpose of solving the ODE using Carleman line-
arisation, what matters is not the stability of the nonlinear equation, but that

of the linearised equation. That is because the stability of the linearised

equation governs the condition number of the linear equations to solve, and
in turn that is proportional to the complexity. For example, in ref. 23 their
Problem 1 assumes that ||Fy||<|Ag| (A; in the notation of that work) after
some possible rescaling of the equation. Then Eq. (4.15) of that work gives
IT + Ah|| <1 (with h the time discretisation), using that condition from
Problem 1. That is then used to provide the bound on the norm of ||L || in
Eq. (4.28) of that work, which is then used to give the bound on the con-
dition number proportional to the number of time steps in Eq. (4.29)
in ref. 23.

According to our analysis above, the stability of the linearised system
will be satisfied provided y™'<|Ao|/||Faql|. For the discretised PDE here we
have Ay = ¢ and ||Fy|| = b. That means if y<||uy, ||, then the stability
condition in Eq. (97) implies the stability of the matrix after Carleman
linearisation. That condition is needed in order to be able to use the ODE
solver of Ref. 3, but it will mean that the rescaling gives a smaller probability
of success for obtaining the correct component of the Carleman vector than
if we had the stability condition R < 1.

However, if we have sufficiently small /||, then the condition R < 1
would be satisfied, so

|M*kg<1. (102)

N

Because [|lu;,|| increases with the number of discretisation points as
/1, this inequality can only be satisfied if the number of dis-
cretisation points is made as small as possible. This gives a strong
motivation for using the higher-order spatial discretisation of the
PDE. See Supplementary Section IV of the Supplementary Informa-
tion for discussion of the number of points needed.

Error analysis. The overall error € comes from three different parts,
o the spatial discretisation error of the semi-discrete dynamics &gjsc,
o the error ec,y contributed by truncation in the Carleman linearisation
as bounded in Lemma 4, and
o the error in the time evolution &y, due to the Taylor series, as intro-
duced earlier in the treatment of the linearised differential equation
solver.As usual in this type of analysis, we can simplify the discussion by
taking the error to be ¢ for each of these contributions. In reality, the
contribution to the error from each source would need to be taken to be

a fraction of ¢ (e.g. £/3), but because that fraction would at most give a

constant factor to the complexity, it would not affect the complexities

quoted using O.

We have already considered & and ec,y above in Corollary 6. The
time discretisation error will not be further considered here, but we will
discuss how the Carleman error can be alternatively bounded in situations
where the PDE is stable but R > 1. Above we show that the ODE needs R< 1
for the quantum solution to be efficient, but this bound on the Carleman
error will be useful if that limitation can be circumvented.

In the case of higher-order discretised Laplacians we obtain a some-
what worse bound as derived in Supplementary Section II C of the Sup-
plementary Information,

A Ey _ k
I nj(t)||masti’f( j‘g""numnﬁnﬂlez’M FixaCleld), (103)
where
N L,
Gy = max [l [l (104)

The < is because it is assuming that the max-norm of the solution is not
increasing. We can use < if || uy, ||, is replaced with the maximum of
| ull over time. The quantity G, is greater than 1 for higher-order
discretised Laplacians, so this is a slightly larger upper bound than in the case
of first-order discretised Laplacians. Nevertheless, the Carleman error may
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be made arbitrarily small with order provided

b
fu, M1 —G™M<q. (105)

n ! max |C| K

This condition is slightly stronger than the condition for stability of the PDE
by the factor of G, but that will typically be close to 1. Typically this will be
a much weaker requirement than the stability condition R < 1.

Next, we consider the bound on the error due to the spatial dis-
cretisation, which can be used to derive the appropriate number of dis-
cretisation points n to use. Using that in Corollary 6 then gives the
complexity entirely in terms of the parameters of the problem instead of the
value chosen for #. Our bound on the error is as given in the following
Lemma, with the proof given in Supplementary Section III of the Supple-
mentary material.

Lemma 7. (Nonlinear PDE solution error when discretising the
Laplacian with higher-order finite differences). Using a higher-order finite
difference discretisation with 2k + 1 stencil points in each direction, the
solution of the PDE

du _

= (106)

(DLi 4 + cyu + bu®",

at time T > 0 has error due to spatial discretisation when ¢ < 0 and |¢| >
M]b|||upn]]™ " bounded as

e\ o a1 —exp{(c+ Mbl|l uy, 1X1)¢
I €ae(T) u:0<c<u,kwﬁ(5) n Gk |c{+(M|b|n o ] 1,

max

(107)

where C(u, k) given in Eq. (80) is a constant depending on the (2k + 1)st
spatial derivative of the solution assuming sufficient regularity, » is the
number of grid points used, and d is the number of dimensions.

In this result, we are considering the continuous time evolution. Note
that for the stability of the discretisation error we use the condition
lc| > M|b][|u;, M=, which is stronger than the condition |c| > [b]|u;, jnvfa;l
for PDE stability. This appears to be a fundamental condition due to the
nonlinearity, because the derivative of the order-M nonlinearity produces a
factor of M.

Next, if we take eg;5c &, then solving Eq. (107) for n gives

e LA (108)
|c + Mb|[[u, 10" €

n =

o\ 2k ey
Clu, k) () 1}

That is, this choice of # is sufficient to give e4;5c as some set fraction of e. In
practice we would choose the minimum 7 needed to give the desired
accuracy, so we would choose 7 proportional to the expression in Eq. (108).
For simplicity of the solution for 7, we have used

1 — exp{ (c+ M|bllu, 2"t} <1. (109)
In Supplementary Section IV of the Supplementary Information we show
how the discretisation error is reduced with the number of grid points with
different orders of discretisation and a simple toy model.

The benefit of having fewer grid points comes with the drawback of
having a less sparse operator. The block encoding of F, is performed by a
linear combination of unitaries over (2k + 1) basis states with amplitudes
given by a table, and so has complexity in terms of elementary gates pro-
portional to k. That is not immediately obvious from Corollary 6, because it
gives complexity in terms of block encodings of F; and F,. It is also possible
for C(u, k) to increase with k. In a real implementation it would therefore be
desirable to choose an optimal k to minimise the complexity, instead of
taking k as large as possible.
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