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Enhancing quantum state reconstruction
with structured classical shadows
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While classical shadows can efficiently predict key quantum state properties, their suitability for certified
quantum state tomography remains uncertain. In this paper, we address this challenge by introducing a
projected classical shadow (PCS) that extends the standard classical shadow by incorporating a
projection steponto the target subspace. For ageneral quantumstateconsistingofnqubits, ourmethod
requires aminimumofO(4n) total state copies to achieve a bounded recovery error in the Frobenius norm
between the reconstructedand truedensitymatrices, reducing toO(2nr) for statesof rank r<2n—meeting
information-theoretic optimal bounds in both cases. Formatrix productoperator states,wedemonstrate
that the PCS can recover the ground-truth state with O(n2) total state copies, improving upon the
previously established Haar-random bound of O(n3). Numerical simulations validate our scaling results
and demonstrate the practical accuracy of the proposed PCS method.

Quantum state tomography (QST) is widely used for estimating quantum
states1–5. To reconstruct the density matrix with high accuracy, measure-
ments should be performed on a large number of identical copies; specifi-
cally, for single-copy (i.e., non-collective) measurements, a minimum of
O(4n) total copies is required to estimate the density matrix of an n-qubit
system with a bounded recovery error, as defined by the Frobenius norm
between the reconstructed and true density matrices6. Various methods
have been proposed to achieve efficient and accurate QST. Classical com-
putational approaches include linear inversion7, maximum likelihood
estimation4,5,8, Bayesian inference9–11, region estimation12,13, classical
machine learning14, and least squares estimators15–17. In contrast, quantum
machine learning methods encompass algorithms such as variational
quantum circuits18,19, quantum principal component analysis20, and quan-
tum variational algorithms combined with classical statistics21.

A significant reduction in the number of required state copies can be
achieved by assuming two common low-dimensional structures: low-
rankness and matrix product operators (MPOs). (i) Low-rank density
matrices frequently emerge in quantum systems with pure or nearly pure
states that exhibit low entropy6,16,22–24, and low-rank assumptions are
employed in various state estimation procedures, with a range of associated
measurement processes, including 4-designs22, Pauli strings23,25, Clifford
gates16, and Haar-random projective measurements24. When the density
matrixhas rank r, the requirednumber of total state copies canbe reduced to
O(2nr)6,16, yet this remains exponential in n, posing challenges for current
quantum computers exceeding 100 qubits. (ii) MPOs, on the other hand,
offer a more scalable alternative for certain quantum systems, including

one-dimensional spatial systems26, Hamiltonians with decaying long-range
interactions27, and states generated by noisy quantum devices28. When
employing Haar-random projective measurements29 or specific classes of
informationally complete positive operator-valued measures (IC-
POVMs)30, the required number of total state copies can be reduced to
polynomial scaling—either O(n3) or O(n), respectively—while ensuring
bounded recovery error for MPO states.

While algorithms with low-rank assumptions or low-dimensional
structures can enable significantly improved scaling, they still face con-
siderable computational complexity, which in existing approaches can be
attributed to four potential operations: (i) the calculation of the inverse; (ii)
repeated inner product operations between matrices that grow exponen-
tiallywithn; (iii)multipleprojection steps onto the target subspace; and (iv)
additional matrix multiplications introduced by iterative algorithms to
enforce low-rankness or MPO representations. Recently, an efficient and
experimentally feasible approach, known as classical shadow (CS) esti-
mation,was introduced by ref. 31 to infer limited sets of state properties like
fidelity, entanglement measures, and correlations. By exploiting efficient
computational and storage capabilities on classical hardware, all necessary
processing to predict these properties can be carried out via classical
computations. This has sparked a series of studies leveraging the CS
method32–36. Meanwhile, CS has also been utilized for full quantum state
reconstruction37,38, and integrated with projection techniques to recover
physical quantum states in39,40. Yet to the best of our knowledge, no existing
theoretical analysis of the sampling complexity for the CS-based method
addresses the reconstruction of other structured quantum states, above and
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beyond simply enforcing physicality. Thus, a theoretical understanding of
whether the CS-based method can be effectively extended to the full state
(i.e., QST) with provable performance guarantees remains absent.

In this paper, we derive performance guarantees for QST using a
method we term projected classical shadow (PCS), which projects CS esti-
mators onto target subspaces of the Hilbert space, as illustrated in Fig. 1.
Given that the original CS density matrix is Hermitian but not in general
positive semidefinite (PSD), our method involves projecting its eigenvalues
onto the simplex41. We demonstrate that this approach requiresO(4n) total
state copies to sufficiently achieve a bounded recovery error in the Frobenius
norm. For low-rank states, we further leverage (truncated) low-rank
eigenvalue decomposition and show that the required number of total state
copies can be reduced to O(2nr) for the same accuracy. Finally, for MPO
states, we employ a quasi-optimal MPO projection—tensor-train singular
value decomposition (TT-SVD)42 with a simplex projection—to form the
PCS step, demonstrating that with O(n2) total state copies, the method
reliably recovers the ground-truth state. While suboptimal relative to the
degrees of freedom for MPO states, this approach improves upon the the-
oretical O(n3) scaling in ref. 29. PCS also offers a framework for incorpor-
ating prior knowledge about the target state form into the CS approach.

Notation
Weuse bold capital letters (e.g.,X) to denotematrices, bold lowercase letters
(e.g., x) to denote column vectors, and italic letters (e.g., x) to denote scalar
quantities. Matrix elements are denoted in parentheses. For example, X(i1,
i2) denotes the element in position (i1, i2) of the matrix X. The superscripts
(⋅)⊤ and (⋅)† denote the transpose andHermitian transpose, respectively. For
two matrices A, B of the same size, A;Bh i ¼ trace ðAyBÞ denotes the inner
product. ∥X∥, ∥X∥1, and ∥X∥F respectively represent the spectral, trace, and
FrobeniusnormofX. For twopositivequantitiesa; b 2 Rþ, the inequalityb
≲aorb=O(a) impliesb ≤ ca for someuniversal constant c; likewise,b≳aor
b = Ω(a) represents b ≥ ca for some universal constant c.

Results
Classical shadows
Quantum information science harnesses quantum states for information
processing43. The state of an n-qubit system can be described by the density
operator ρ 2 C2n × 2n , which is PSD (ρ≽ 0) and has unit-trace (trace(ρ) = 1).
In order to estimate this state, measurements can be performed on a col-
lection of copies.

Projective measurements. Within the most general quantum mea-
surement framework of positive operator valued measures (POVMs)
(Specifically, a POVM is characterized as a set of PSD matrices:

fA1; . . . ;AKg 2 C2n × 2n ; s: t:
PK

k¼1 Ak ¼ I2n . Each POVM element Ak

corresponds to a potential outcome of a quantummeasurement with the
special case of projective measurements corresponding to the case where
all Ak are pairwise orthogonal projection operators, meaning they satisfy
A2
k ¼ Ak and AkAj = 0 for k ≠ j.), the special case of projective mea-

surements is often employed, where the measurement outcomes are
associated with an orthonormal eigenbasis of the system. To implement
such a measurement defined by an arbitrary orthonormal basis

fϕk : ϕ
y
kϕl ¼ δklg, we can introduce a unitary matrix U ¼

ϕ1 � � � ϕ2n
� � 2 C2n × 2n and applyU† to the state ρ before conducting
a projective measurement in the computational basis {ek}, where Uek =
ϕk. The probability of observing the k-th outcome is given by:

pk ¼ hϕkϕ
y
k; ρi ¼ eyk UyρU

� �
ek: ð1Þ

However, a single projective measurement, even if repeated infinitely many
times, provides only partial information on ρ, so multiple projective mea-
surements must be conducted in various bases. In the subsequent discus-
sion, we denote the number of distinct measurement bases by M, and the
measurement operators for the m-th projective measurement
by fϕm;1ϕ

y
m;1; . . . ;ϕm;2nϕ

y
m;2n g.

Classical shadow (CS). Consider the original CS proposal with single-
shotHaar-randomprojectivemeasurements. Given an unknown n-qubit
ground truth ρ⋆, we repeatedly execute the measurement procedure
above Eq. (1) in which U is chosen randomly from the Haar distribution
and each measurement is performed on only one copy (i.e., a new U is
selected for each copymeasured). The specific result ejm yields a snapshot,
or “shadow,” of the underlying quantum state, which for Haar-
distributed unitaries can be expressed as31:

ρm ¼ ð2n þ 1ÞUmejme
y
jm
Uy

m � I2n

¼ ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n :
ð2Þ

By construction, this snapshot equals the ground truth in expectation (over
both unitaries and measurement outcomes): E½ρm� ¼ ρ?. Executing this
processM times produces an array ofM independent classical snapshots for
the total CS estimator:

ρCS ¼ 1
M

PM
m¼1

ρm

¼ 1
M

PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n
h i

:

ð3Þ

Fig. 1 | Illustration of proposed PCS method.
Given an initial CS estimate ρCS lying in the space of
Hermitian and unit-trace matrices (not necessarily
PSD), we compute the closest state ρPCS in the
physical space of interest–either the space of all
possible states (left) or a subspace possessing a
desired structure (right).

https://doi.org/10.1038/s41534-025-01101-1 Article

npj Quantum Information |          (2025) 11:147 2

www.nature.com/npjqi


CS for Tomography?. Although CS estimators can efficiently predict
observables of ρ⋆, to our knowledge, there exist no theoretical results
concerning the recovery error of the full state. Following the detailed
derivation in the section “Methods”, we find the expectation of the mean
squared error:

EkρCS � ρ?k2F ¼ 4n þ 2n � 1� kρ?k2F
M

: ð4Þ

Given that kρ?k2F ≤ trace ðρ?Þ� �2 ¼ 1, it follows that Eq. (4) can be simpli-
fied to

E k ρCS � ρ?k2F � 4n

M
ð5Þ

for large n. Eq. (5) demonstrates that stable recovery of the full state can be
achieved only whenM scales proportionally to 4n, aligning with the optimal
M required in QST for general states6.

A comparison between CS and traditional QST returns several key
observations of relevance to this study:
1. CS yields an unbiased estimate (E½ρCS� ¼ ρ?), whereas the solution

from QST is often biased44, due to the fact that most QST methods
involve physical constraints, such as positivity and unit trace.

2. While the CS estimator is typically unphysical (not PSD), leading QST
methods like maximum likelihood estimation (MLE)5, projected least
squares45, and Bayesian inference9 enforce physicality by construction.

3. CS boasts significantly lower computational complexity compared to
standard QST methods, such as MLE using the fixed-point (FP)
algorithm46,47, MLE using gradient descent (GD)48, least squares (LS)
using GD29, and the one-step LS method17. The number of iterations
required for convergence in iterative methods [e.g., MLE (FP), MLE
(GD), and LS (GD)] significantly increases computational complexity.
Moreover, the requirement of a suitable initialization further imposes a
strong andoftennontrivial condition for successful recovery.Although
the one-step LSmethod17 avoids iterations, it does not incorporate any
constraint and still involves matrix inversion and multiple matrix
multiplications, resulting in substantial computational cost. In
contrast, the CS method offers the lowest computational complexity,
as it is also a one-step approach whose primary cost arises from
computing the outer product of two vectors.

4. For M ≪ 2n, CS outperforms QST in predicting certain linear obser-
vables, not in predicting the entire state17,49.

5. Includingprior informationabout state structure allows for a reduction
in scaling in QST (see Tables 1 and 2). Apart from specialized CS
methods tailored for states generated by shallow circuits and Hamil-
tonian dynamics50,51, which aim to improve the accuracy of predicting
quantum state properties, there currently exists no known approach
that similarly reduces the sample complexity of CS for full quantum
state reconstruction. In other words, CS requires O(4n) measurements
for estimating the full state, as demonstrated in Eq. (5).

In the next section we investigate methods for incorporating prior
information about state structure into CS to reduce the scaling shown in
Eq. (5).

Projected Classical Shadow (PCS) for QST
In this section, we will study the application of CS for the task of describing
the full quantum state and show that, with a simple projection step, CS
estimators are also effective for QST and achieve (nearly) information-
theoretically optimal bounds for broad classes of states. Let X denote the
class of states of interest, and assume that the underlying ground truth
ρ? 2 X. For instance, X could contain all physical states (PSD and unit-
trace) or be restricted to a specific structure with compact representations,
such as low-rank or MPO states. Because of the availability of previous
sample complexity results basedon theFrobeniusnorm,wechoose todefine

ρPCS as the projection of ρCS on the setX that minimizes Frobenius error,
i.e.,

ρPCS ¼ PXðρCSÞ :¼ argmin
ρ2X

ρ� ρCS
�� ��

F
: ð6Þ

Toprovide a unifiedandgeneral analysis of Eq. (6),we enlist tools from
ϵ-net and covering number29,52 to capture the complexity of the classes of

stateswithin the setX. First, consider the setN ¼ ρ
kρkF : ρ 2 X
n o

scaled to

unit Frobenius norm. For ϵ > 0, the setN ϵ � N is said to be an ϵ-net (or an

ϵ-cover) over N if for all ρ
kρkF 2 N , there exists ρ0

kρ0kF 2 N ϵ such that

ρ
kρkF �

ρ0

kρ0kF

��� ���
F
≤ ϵ. The size of an ϵ-netwith the smallest cardinality is called

the covering number of X, denoted by NϵðXÞ. Intuitively speaking, a
covering number is the minimum number of balls of a specified radius ϵ to
cover a given set entirely. Coverings are useful for managing the complexity
of a large set: instead of directly analyzing the behavior of an uncountable
number of points inN , we can analyze the finite number of points inN ϵ.
The behavior of all points inN is similar to that of the points inN ϵ, as each
point inN is close to some point in the covering.

Instead of the covering number NϵðXÞ, our analysis will rely on the
covering number of the set X formed by the differences between the ele-
ments inX:

X ¼ ρ1 � ρ2 : ρ1; ρ2 2 X; ρ1≠ρ2
� �

: ð7Þ

In many cases, the covering number NϵðXÞ can be upper-bounded by
N2

ϵðXÞ. Here we useX for convenience in the following.
The covering number whenX comprises all physical quantum states

can be computed as logNϵðXÞ ¼ Oð4n log 9
ϵÞ. By comparison, for quantum

states with rank at most r, this reduces to logNϵðXÞ ¼ Oð2nr log 9
ϵÞ; when

the density matrices are represented byMPOs with bond dimensionD, the
coveringnumber can be further reduced to logNϵðXÞ ¼ O 4nD2 log 4nþϵ

ϵ

� �
,

as discussed in the next part.

Table 1 | Comparing the total number of state copies in PCS
using single-shot global Haar unitaries to that in optimal QST

Methods ρ? 2 Xsimplex ρ? 2 Xr

PCS O(8n/ξ2) O(2nr2/ξ2)

Optimal QST6 Ω(8n/ξ2) Ωð2nr2=ðξ2 logð1=ξÞÞÞ
Here, n denotes the number of qubits, r represents the rank of the target state, and ξ signifies the
desired precision in trace distance, i.e., k bρ� ρ?k1 � ξ for the estimator bρ.

Table 2 | Total number of copies in MPO-PCS compared to
constrainedLSusingHaarmeasures, and spherical 3-designs

Method ρ 2 XD

Approximate PCS (Haar) Oðn2D2 log n=ζ2Þ
Optimal PCS (Haar) OðnD2 log n=ζ2Þ
Constrained LS (Haar)29 Oðn3D2 log n=ζ2Þ
Constrained LS (spherical 3-designs)30 OðnD2 log n=ζ2Þ
Here,ndenotes thenumberof qubits, and ζ signifies thedesiredprecision inFrobeniusdistance, i.e.,
k bρ� ρ?kF � ζ for the estimator bρ.
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Theorem 1. For a given ρ? 2 X, let ρPCS be the projected CS in Eq. (6).

Then with probability at least 1� e�ΩðlogN1=2ðXÞÞ,

kρPCS � ρ?kF ≤ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logN1=2ðXÞ

M

s0@ 1A: ð8Þ

The proof is given in the section “Methods”. Here, the set X �
fρ 2 C2n × 2n : ρ ¼ ρy; trace ðρÞ ¼ 1g is any subspace of Hermitian,
trace-one matrices (tan space in Fig. 1. The set X will be specialized to
PSD matrices only (blue space in Fig. 1) in Corollary 1 and low-
dimensional structures (green space in Fig. 1) in Theorems 3 and 4.
Theorem 1 guarantees a stable recovery of the ground-truth ρ⋆ with ξ-
closeness in the Frobenius norm, provided M ¼ OðlogN1=2ðXÞ=ξ2Þ
number of Haar-randomprojectivemeasurements, which scales linearly
with the logarithmof the covering number. For structured setsX that are
nonconvex, such as MPO states, computing the optimal projection PX
might be difficult or evenNP-hard. For these cases, we can use numerical
methods to compute an approximate projection ePX that we assume is α-
approximately optimal (α ≥ 1), satisfying

ePXðρÞ 2 X; ePXðρÞ � ρ
��� ���

F
≤

ffiffiffi
α

p PXðρÞ � ρ
�� ��

F ð9Þ

for any ρ. As will be explained in the next sections, there exist efficient
methods to find approximation projections for low-rank and MPO states.

Denote by eρPCS ¼ ePXðρCSÞ the PCS estimator obtained with this
approximate projection. The following extends the results in Theorem 1
to eρPCS.
Theorem2. For a givenρ? 2 X, leteρPCS be the approximatePCSestimator
in Eq. (9). Then with probability at least 1� e�ΩðlogN1=2ðXÞÞ,

keρPCS � ρ?kF ≤ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α logN1=2ðXÞ

M

s0@ 1A: ð10Þ

General physical states. We first specialize X to all physical quantum
states (We chose the label “simplex” for this set since the eigenvalues {λk}
of all physical states define a standard simplex, i.e., λk ≥ 0 and∑kλk = 1.):

Xsimplex ¼ fρ 2 C2n × 2n : ρk0; trace ðρÞ ¼ 1g: ð11Þ

For Xsimplex, the PCS projection in Eq. (6) can be implemented by per-
forming an eigenvalue decomposition, followed by projecting the eigenva-
lues onto the simplex fx 2 R2n : xi ≥ 0;

P2n

i¼1 xi ¼ 1g using the algorithm
proposed in Refs. 41,45, while keeping the eigenvectors unchanged. This
approach has also been employed in Refs. 39,40 to ensure the physical
structure of the reconstructed state. The computational complexity of the
projection step is Oða log aÞ, where a denotes the number of nonzero
eigenvalues.

Since the corresponding set X has covering number
logNϵðXÞ ¼ Oð4n log 9

ϵÞ, we can plug this information into Theorem 1 to
obtain recovery guarantee for PsimplexðρCSÞ.

Corollary 1. For a given physical state ρ? 2 C2n × 2n , we perform M pro-
jectivemeasurements to obtain theCS estimateρCS.Thenwithprobability at
least 1� e�Ωð4nÞ, the projected classical shadow PsimplexðρCSÞ satisfies

kPsimplexðρCSÞ � ρ?kF ≤ O

ffiffiffiffiffi
4n

M

r !
: ð12Þ

Low-rank states. We next explore the structure of pure or nearly pure
quantum states characterized by low entropy and represented as low-
rank density matrices. Assuming ρ⋆ has rank r ≤ 2n, we can refine our
attention to the set Xr ¼ fρ 2 C2n × 2n : ρk0; trace ðρÞ ¼ 1;
rank ðρÞ ¼ rg. DenotePXr

ð�Þ as the optimal projection satisfying Eq. (6).
It follows fromTheorem 1 and the covering number of the corresponding
set logNϵðXÞ ¼ Oð2nr log 9

ϵÞ that kPXr
ðρCSÞ � ρ?kF ≤ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nr=M

p
Þ.

However, since we are unaware of an algorithm to perform the ideal
projection PXr

ð�Þ, we instead consider a two-step alternative to obtain the
low-rank projected classical shadow (LR-PCS):

ρLR�PCS ¼ PsimplexðPrank�rðρCSÞÞ; ð13Þ

where Prank�rð�Þ denotes the rank-r projection obtained by setting all
eigenvalues beyond the r-th largest eigenvalue to zero. We can show that
ρLR-PCS shares a similar guarantee as PXr

ðρCSÞ.

Theorem 3. GivenMHaar-random projective measurements on physical
state ρ? 2 Xr , with probability 1� e�Ωð2nrÞ ρLR�PCS, defined in Eq. (13),
satisfies

kρLR�PCS � ρ?kF ≤ O

ffiffiffiffiffiffiffi
2nr
M

r !
: ð14Þ

The detailed proof appears in the section “Methods”. This theoretical
recovery error is optimal, given that the degrees of freedom for the ground
truth ρ⋆ are O(2nr). This highlights that LR-PCS can achieve the optimal
solution in QST using independent measurements, without requiring
multiple iterations of optimization algorithms.

To compare LR-PCS with prior results, we convert the result of The-
orem 3 to trace norm leveraging the inequality between the Frobenius and
the trace norms6, namely kρLR-PCS � ρ?k1 ≤

ffiffiffiffiffi
2r

p kρLR-PCS � ρ?k
F ≤Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nr2=M

p
Þ, which matches the optimal guarantee (up to small log

terms) with independent measurements according to ref. 6. We have
summarized the comparison in Table 1. We note that the sufficient con-
dition for PCS in the general setting matches the necessary condition
established in ref. 6. Similarly, the sufficient condition for PCS in the low-
rank setting is also close to the corresponding necessary condition in ref. 6,
up to logarithmic factors.

MPOstates.While the computational and storage requirements for low-
rank density matrices are significantly smaller compared to general ones,
they still grow exponentially in the number of qubits n. Moreover, the
assumption of high purity onwhich the low-rank approximation is based
becomes increasingly tenuous in practice for existing processors in the
noisy intermediate-scale quantum (NISQ) era. For this reason, reducing
parameter count through alternative assumptions is worth pursuing.
Examples such as ground states of many quantum systems with short-
range interactions and states generated by such systems within a finite
duration26 often possess entanglement localized to subsystems of the
entire quantum computer. Consequently, they can be compactly repre-
sented usingMPOs, whose degrees of freedom scale only polynomially in
n. To assist in the development of an MPO-PCS method, we will first
establish their connection to tensor train (TT) decompositions42, a
technique widely utilized in signal processing and machine learning.

For a n-qubit density matrix ρ? 2 C2n × 2n , we employ a single index
array i1⋯ in (j1⋯ jn) to denote the row (column) indices, where i1,…, in∈
{1, 2} (Specifically, i1⋯ in represents the ði1 þ

Pn
‘¼2 2

‘�1ði‘ � 1ÞÞ-th row.).
We designate ρ⋆ as an MPO if we can represent its (i1 ⋯ in, j1 ⋯ jn)-th
element using the following matrix product53:

ρ?ði1 � � � in; j1 � � � jnÞ ¼ Xi1 ;j1
1 Xi2;j2

2 � � �Xin ;jn
n ; ð15Þ

where Xi‘;j‘
‘ 2 CD×D for ℓ ∈ {2,…, n− 1}, Xi1 ;j1

1 2 C1 ×D, Xin;jn
n 2 CD× 1,

and D is the bond dimension, and thus we can introduce the set of physical
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MPO states with bond dimension D as

XD ¼ ρ 2 C2n × 2n : ρk0; trace ðρÞ ¼ 1; bond dimension ðρÞ ¼ D
n o

:

ð16Þ

Here, the corresponding difference set X has a covering number
logNϵðXÞ ¼ O 4nD2 log 4nþϵ

ϵ

� �
, which is proportional to the degrees of

freedomO(4nD2) in theMPOstates.Given the optimal projectionPXD
ð�Þ, it

follows from Theorem 1 that kPXD
ρCS
� �� ρ?kF ≤ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nD2 log n=M

p
Þ.

However,wehavebeenunable to implement theoptimalPXD
ð�Þdue to

the difficulty in satisfying both the MPO and simplex conditions simulta-
neously. Therefore, we introduce a quasi-optimal projection based on a
sequential singular value decomposition (SVD) algorithm, commonly
referred to as tensor train SVD (TT-SVD)42. Based on tensor-matrix
equivalence, we can design a two-step MPO PCS method:

ρMPO�PCS ¼ PsimplexðSVD tt
DðρCSÞÞ; ð17Þ

where SVD tt
Dð�Þ denotes the TT-SVD operation. It is worth noting that the

bond dimension of ρMPO-PCS may differ slightly fromD due to the simplex
projection, but the recovery error still depends on D. We analyze the
recovery error of Eq. (17) as follows:

Theorem 4. Consider an MPO state ρ? 2 XD, measured M times with
Haar-random projections. With ρMPO-PCS defined as in Eq. (17), with
probability 1� e�ΩðnD2 log nÞ we have

kρMPO-PCS � ρ?kF ≤ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2D2 log n

M

r !
: ð18Þ

The proof can be found in the section “Methods”. Note that due to the
quasi-optimality of the TT-SVD, the upper bound of Eq. (18) is not optimal
when considering the degrees of freedomO(4nD2) in ρ⋆. To our knowledge,

there exists no method that can guarantee both MPO and PSD constraints
simultaneously. Should such an optimal MPO projection be found, how-
ever, we could potentially remove one factor of n in the numerator of Eq.
(18), thus ensuring exact MPO rank. In Table 2, we summarize the total
number of state copies required for MPO-PCS compared to existing QST
methods. It is important tohighlight that allQST results represent sufficient,
rather than necessary, conditions. Compared to the constrained LSmethod
using Haar measurements in ref. 29, MPO-PCS exhibits better sample
complexity. While the result30 based on constrained least squares with
spherical 3-design POVMs—which are informationally complete—could
potentially outperform PCS in terms of sample complexity (but PCS
achieves the same complexity given an optimal projection), attaining the
bound in ref. 30 requires solving a highly nonconvex optimization problem
to global optimality. Table 3. However, there is currently a lack of practical
algorithms capable of achieving this bound. The gradient-based iterative
algorithm proposed in ref. 30 provides only a suboptimal guarantee and is
initialization-dependent—which may limit its practical applicability.
Additionally, spherical 3-designs are not known to have efficient imple-
mentations using current local quantum circuits, whereas Haar measure-
ments are generally more feasible in experimental settings.

Simulation results
In this section, we conduct numerical QST experiments withHaar-random
projectivemeasurements to compareCS, LR-PCS, andMPO-PCSmethods.
For each configuration, we conduct 10 Monte Carlo tomographic experi-
ments in which eachHaar measurement and result are sampled at random;
then we take the average over all 10 trials to report the results. For the
randomstate cases (Figs. 2, 3), each trial corresponds to adifferent randomly
chosen ground truth, whereas for the tailored state cases (Figs. 4, 5), each
trial in a given average is performedon the sameground truth. Furthermore,
since the magnitude of ∥ρ⋆∥F differs across quantum states with different
ranks or bond dimensions, we apply the normalized Frobenius norm to
enable fair comparisons and provide a consistent metric for reconstruction
accuracy.

In the first set of tests, we compare CS and LR-PCS for a specific rank r
as a function of measurements M. We generate random ground-truth
density matrices ρ? ¼ F?F?y 2 C16 × 16 (n = 4 qubits), where
F? ¼ A?þiB?

kA?þiB?kF 2 C16 × r , and the entries ofA⋆ and B⋆ are independent and
identically distributed (i.i.d.) samples drawn from the standard normal
distribution. Notably, when r = 16, LR-PCS reduces to projection onto the
set of general physical states defined in Eq. (11). The results in Fig. 2 for rank
r∈ {1, 4, 16} reveal two key observations: (i) as the rank r decreases and the
number ofmeasurementsM increases, the recovery error across allmethods
consistently reduces, with the squared error quantitatively scaling as
expected (4n/M for CS and 2nr/M for LR-PCS); (ii) for any r andM, LR-PCS
outperforms standardCS (evenat full rank), as it preservesphysicality under
any rank constraints; and (iii) in Fig. 2c, since r=16 (i.e., ρ⋆ is full rank), LR-
PCS provides only the additional PSD constraint compared to CS. As M

Table 3 | Average runtime per trial (reported as mean ±
standard deviation, in seconds) of numerical experiments in
Fig. 4, for the case M = 1000

Method Thermal (T = 0.2) Thermal (T = 2) GHZ

CS (5.30 ± 0.24) × 10−3 (5.80 ± 0.51) × 10−3 (5.20 ± 0.11) × 10−3

LR-PCS (1.50 ± 0.17) × 10−2 (1.42 ± 0.25) × 10−2 (1.44 ± 0.11) × 10−2

MPO-PCS (3.16 ± 0.52) × 10−2 (3.37 ± 0.85) × 10−2 (2.97 ± 0.28) × 10−2

LR-MLE 49.1 ± 4.4 57.4 ± 2.8 49.7 ± 3.3

MPO-MLE 117.2 ± 4.3 113.3 ± 5.7 112.4 ± 7.7

Fig. 2 | Estimating four-qubit low-rank states byCS and LR-PCSmethods.Mean squared error as a function of state copiesM, averaged over trials on ten randomly chosen
ground truth states of rank r = 1 (a), r = 4 (b), and r = 16 (c). The horizontal axes span M = 250 to M = 10000. Uncertainty is defined as the sample standard deviation.
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increases, the performance gap between LR-PCS and CS narrows, as the
PSD constraint alone has limited impact on reducing the recovery error.

In the second set of trials, we test CS and MPO-PCS across varying
numbers of measurements M and bond dimension D. We consider n =
7-qubit matrix product states (MPSs, pure state special cases of MPOs) of
the form ρ? ¼ u?u?y 2 C128 × 128, where u? 2 C128 × 1 satisfies ∥u⋆∥2 = 1
and its (i1 ⋯ i7)-element can be represented in the matrix product form:
u?ði1 � � � i7Þ ¼ U?

1
i1 � � �U?

7
i7 . Here, each matrix U?

‘
i‘ has size d × d, except

for U?
1
i1 and U?

7
i7 of dimensions of 1 × d and d × 1, respectively.

To generate each MPS u⋆, we draw a length-128 complex vector with
i.i.d. standard normal elements, apply TT-SVD42 to truncate it to an MPS,
and thennormalize the result tounit length.As a result, entryρ⋆(i1⋯ i7, j1⋯
j7) can be expressed as ρ?ði1 � � � i7; j1 � � � j7Þ ¼ ðU?

1
i1 � U?

1
j1 yÞ

� � � ðU?
7
i7 � U?

7
j7 yÞ ¼ X?

1
i1 ;j1 � � �X?

7
i7 ;j7 , where ⊗ denotes the Kronecker

product. Thus, ρ? ¼ u?u?y is also an MPO with bond dimension D = d2

(equal for all qubits). As shown in Fig. 3, MPO-PCS attains significantly

lower error than CS, as it leverages knowledge about the underlying MPO
structure. And the recovery error of MPO-PCS increases with higherMPO
bond dimension (in line with Table 2), whereas that of CS remains the same
regardless of D.

In the third set of trials, we simulate measurements on 7-qubit density
matrices: (i) thermal state (The thermal state is generated from the 1D
quantum Ising model H ¼Pn�1

j¼1 σzj σ
z
jþ1 þ

Pn
j¼1 σ

x
j with σaj ¼ I2j�1 �

σa � I2n�j 2 R2n × 2n ; a ¼ x; z and σx ¼ 0 1
1 0


 �
; σz ¼ 1 0

0 �1


 �
. The

thermal state is thendefined as ρ? ¼ e�H=T

trace ðe�H=TÞ,) with temperatureT= 0.2 (a

relatively low temperature close to the ground state); (ii) thermal state with
temperatureT=2 (corresponding to a relatively high temperature); and (iii)
Greenberger–Horne–Zeilinger (GHZ) state (The GHZ state is constructed

as ρ⋆ = gg† where g ¼ 1ffiffi
2

p 0 � � � 0 1ffiffi
2

p
h i>

2 R2n × 1.). It is worth

Fig. 3 | Estimating seven-qubit MPO states by CS
and LR-PCS methods. Mean squared error as a
function of state copies M, where each point is the
average over trials on ten randomly chosen ground
truth states for bond dimension D = 1 (a) and D = 4
(b). Uncertainty is defined as the sample standard
deviation.

Fig. 4 | Estimating seven-qubit thermal and GHZ states.Mean squared error as a
function of the number of state copiesM for (a) thermal state (T = 0.2), (b) thermal
state (T = 2), and (c) GHZ state. Comparison between different methods for (a)

thermal state (T = 0.2), (b) thermal state (T = 2), and (c) GHZ state. All figures have
M = 100 as the starting point.

Fig. 5 | Estimating thermal andGHZ stateswith varied number of qubits.Mean squared error as a function of the total qubit number withM=3000 for (a) thermal state (T
= 0.2), (b) thermal state (T = 2), and (c) GHZ state.
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noting that the low-temperature thermal state (i) and the GHZ state (iii)
simultaneously exhibit low-rank and MPO structures16,48,54, making them
well-suited for demonstrating the advantages of exploiting structured sub-
spaces. We impose a rank constraint r∈ {4, 24, 1} for the estimator on each
state, respectively. For the T = 0.2 thermal state, the ground-truth density
matrix has rank of approximately 4, while for the high-temperature case (T
=2), it is full-rank; for LR-PCS r=24 is selected, somewhat arbitrarily,which
is sufficient to encompass 80% of the sum of the eigenvalues of the ground-
truth density matrix. In addition, we apply TT-SVD on the CS estimator to
adaptively select the bond dimensions using the error tolerance 10−14. To
facilitate a comprehensive comparisonbetween thePCS-basedmethods and
MLE, we introduce the low-rank MLE (LR-MLE) and matrix product
operator MLE (MPO-MLE) algorithms, as detailed in the section “Meth-
ods”. For LR-MLE and MPO-MLE, we adopt random initialization

(We generate a density matrix ρ0 ¼ F0F0
y 2 C2n × 2n , where

F0 ¼ A0þi�B0
kA0þi�B0kF 2 C2n × r , with the entries of A0 and B0 independently

drawn from the standard normal distribution.) and spectral initialization30,
respectively. The step sizes are set to 0.5, 0.05, and 0.1 for LR-MLE, and 0.3,
0.05, and 0.1 for MPO-MLE across the three set of quantum states men-
tioned above; the number of iterations is fixed at 500 to guarantee con-
vergence for all cases. Given that the variance error in reconstructing the
thermal state and GHZ state is less than 10% of the mean error, we exclude
this error from the figure to preserve its clarity. Fig. 4 shows that the pro-
posed LR-PCS and MPO-PCS methods outperform standard CS, as
quantified by the Frobenius norm. Furthermore, MPO-PCS demonstrates
superior performance compared to LR-PCS, which can be attributed to the
lower degrees of freedom in the MPO structure relative to the low-rank
structure [cf. Eqs. (14),(18))]. In addition, LR-PCS achieves performance
comparable to that of LR-MLE, as it attains the information-theoretically
optimal error bound. In contrast, the performance of MPO-PCS is slightly
inferior to that ofMPO-MLE, primarily due to its suboptimal recovery error
bound, which contains a factor of n2 rather than n. Nevertheless, according
to Table 3, we note that CS-based methods are significantly more compu-
tationally efficient thanMLE-basedmethods (more than 100 × faster in the
cases considered), as the latter require iterative optimization procedures.

In the final test, we examine how the recovery error scales with qubit
numbern, using parameter settings of r=4 forT=0.2, r=4(n− 1) forT=2,
r = 1 for GHZ state and an error tolerance of 10−14 for determining bond
dimension D. As highlighted in Fig. 5, both LR-PCS and MPO-PCS effec-
tively attenuate the growth in recovery error as the system sizen increases, in
contrast to the standard CS method. This improvement is attributed to the
utilization of the low-dimensional structure in thesemethods. Additionally,
the recovery error of MPO-PCS scales polynomially with n, as indicated in
Eq. (18), rather than exponentially as in Eq. (14) of LR-PCS; hence, MPO-
PCS outperforms LR-PCS in terms of recovery error.

Discussion
This paper has introduced the projected classical shadow (PCS) method to
address the computational challenges of quantum state tomography (QST)
in large Hilbert spaces by leveraging the classical shadow (CS) framework
combined with a physical projection step. Themethod provides guaranteed
performance under Haar-randommeasurements. Theoretical results show
that the PCS method achieves high accuracy in reconstructing general and
low-rank quantum states while minimizing the number of state copies,
meeting information-theoretically optimal bounds. Moreover, the PCS
method reduces the number of state copies required for matrix product
operator (MPO) states compared to existing results using Haar random
measurements. Numerical validation further demonstrates the practicality
and computational efficiency of PCS for large-scale quantum state
reconstruction.

More broadly, our formalism points to a promising new general
direction forCSmethods.Althoughoriginally introduced for the estimation
of state properties rather than the state per se31, CS nevertheless relies on an
estimator ρCS of the full density matrix. As our results reveal, this generally

unphysical estimator can be projected onto a physical space of interest—
whether the entire Hilbert space or some subset thereof (Fig. 1)—with
performance guarantees that attain information-theoretic bounds (for the
case of arbitrary and low-rank states) or improve upon previous scaling
results (for MPO states). Therefore in merging the conceptual simplicity of
CS with the scaling improvements possible in structured quantum systems,
our results suggest a compelling role for PCS in traditional quantum state
estimation, with exciting opportunities for future exploration in evenmore
types of subspaces tailored to specific physical conditions or prior knowl-
edge, such as projected entangled pair operator (PEPO)55 and multiscale
entanglement renormalization ansatz (MERA)56 constructions.

Another promising direction is to analyze the PCSmethod under local
measurements. Although global measurements—characterized by joint
operations across all qubits—are theoretically advantageous, their imple-
mentation using practical quantum circuits poses substantial challenges. In
contrast, local measurements—whether taken from theHaarmeasure16, the
Pauli set23, or local informationally complete POVMs48—are significantly
more compatible with current quantum architectures and can be imple-
mented with greater experimental efficiency. While the projection-based
framework employed in this work could, in principle, be directly adapted to
local measurement scenarios, the theoretical machinery developed herein
doesnot extend to such cases, as the concentration inequality inEq. (27) [see
section “Methods”] cannot be established under local measurements.
Addressing this gap necessitates the development of new analytical tools
tailored to the locality constraints, which we leave as an important direction
for future investigation.

Methods
This section provides detailed proofs and a comprehensive description of
the MLE-based methods (LR-MLE and MPO-MLE) introduced in the last
section.

Proof of Equation 4

Proof. We expand EkρCS � ρ?k2F as follows:

EkρCS � ρ?k2F
¼ E 1

M

PM
m¼1

ρm � ρ?
���� ����2

F

¼ E 1
M

PM
m¼1

ðρm � ρ?Þ; 1
M

PM
m¼1

ðρm � ρ?Þ
� 


¼ 1
M2 E

PM
m¼1

kρm � ρ?k2F
¼ 1

MEkρ1 � ρ?k2F
¼ 1

M ðkρ?k2F � 2Ehρ1; ρ?i þEhρ1; ρ1iÞ
¼ 1

M �kρ?k2F þ ð2n þ 1Þ2Ehϕ1;j1
ϕy
1;j1

;ϕ1;j1
ϕy
1;j1

i
h
�2ð2n þ 1ÞEhϕ1;j1

ϕy
1;j1

; I2ni þ 2n
i

¼ 4nþ2n�1�kρ?k2F
M ;

ð19Þ

where the third line follows from E½ρm� ¼ ρ?, the fourth from the
equivalence under expectation of all measurementsm, and the last from the
normalization hϕ1;j1

ϕy
1;j1

;ϕ1;j1
ϕy
1;j1

i ¼ hϕ1;j1
ϕy
1;j1

; I2n i ¼ 1.

Proof of Theorem 1

Proof. We define a restricted Frobenius norm as

kρPCS � ρ?k
F;bX ¼ kρPCS � ρ?kF

¼ max
ρ2bX hρPCS � ρ?; ρi; ð20Þ
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where bX ¼ fρ 2 C2n × 2n : trace ðρÞ ¼ 0; ρ ¼ ρy; kρkF ≤ 1g. By the defini-
tion of the restricted Frobenius norm in Eq. (20), we can further analyze

kρPCS � ρ?kF
¼ kρPCS � ρ?k

F;bX ≤ kρCS � ρ?k
F;bX

¼ max
ρ2bX 1

M

PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n
h i

� ρ?; ρ

� 

;

ð21Þ

where the inequality follows from the assumption that the physical pro-
jectionPXð�Þ is optimal and therefore satisfies nonexpansiveness. Next, we

bound 1
M

PM
m¼1½ð2n þ 1Þϕm;jm

ϕy
m;jm

� I2n � � ρ? using the covering argu-

ment. According to the assumption, we initially construct an ϵ-net

fρð1Þ; . . . ; ρðNϵðeXÞÞg 2 eX � bX, where the size of eX is denoted by NϵðeXÞ
such that

sup
ρ:kρkF ≤ 1

min
p≤NϵðeXÞ

kρ� ρðpÞkF ≤ ϵ: ð22Þ

In addition,wedenoteBm ¼ 1
M ðð2n þ 1Þϕm;jm

ϕy
m;jm

� I2n � ρ?Þ andderive

max
ρ2bX PM

m¼1
Bm; ρ

� 

¼ max

ρ2bX
PM
m¼1

Bm; ρ� ρðpÞ þ ρðpÞ
� 


≤ max
ρðpÞ2eX PM

m¼1
Bm; ρ

ðpÞ
� 


þ ϵmax
ρ2bX

PM
m¼1

Bm; ρ

� 

:

By setting ϵ=0.5 andmoving the second termon the right-hand side to
the left, we get

max
ρ2bX

PM
m¼1

Bm; ρ

� 

≤ max

ρðpÞ2eX 2
PM
m¼1

Bm; ρ
ðpÞ

� 

: ð23Þ

Then we need to build the concentration inequality for the right-hand side
of Eq. (23). First, we define

PM
m¼1

sm ¼ PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞ
D E

; ð24Þ

and due to E½ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?� ¼ 0, we have E½sm� ¼ 0.
Moreover, we rewrite sm as

sm ¼ ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞ
D E

¼ ð2n þ 1Þ ϕm;jm
ϕy
m;jm

� ρ?

2nþ1 ; ρ
ðpÞ

D E
¼ ð2n þ 1Þ ϕm;jm

ϕy
m;jm

; ρðpÞ � hρ?;ρðpÞi
2nþ1 I2n

D E
¼ ð2n þ 1Þ ϕm;jm

ϕy
m;jm

;D
D E

;

ð25Þ

where the second line follows from trace ðρðpÞÞ ¼ hI2n ; ρðpÞi ¼ 0. We can
further compute

E jsmja
� � ¼ E ð2n þ 1Þa ϕm;jm

ϕy
m;jm

;D
D E��� ���ah i

≤ ð2n þ 1ÞaE ðtrace ðϕm;jm
ϕy
m;jm

jDjÞÞa
h i

¼ ð2nþ1Þa
Ca
2nþa�1

trace ðjDj�aPSymÞ
≤ ð2nþ1Þa

Ca
2nþa�1

kjDjk�a
F kPSymk

≤ 6 × 2a�2a!;

ð26Þ

where jDj ¼
ffiffiffiffiffiffi
D2

p
¼ U

ffiffiffi
Σ

p
Vy denotes the absolute value of the matrix D

with its compact SVD D2 = UΣV† and A�a ¼ A� � � � � A|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
a

holds for any

matrix A. Given that the unitary Haar measure conforms to any unitary p-
design, as exemplified in [ref. 57, Example 51], we can deduce the third line,
with PSym representing an orthogonal projector onto the symmetric sub-
space. The second inequality follows from [ref. 58, Lemma 7] and
kjDjk�a

F ¼ kjDj�akF due to the positive semidefiniteness of ∣D∣⊗a and the
orthogonal projection. In the last line, we utilize kjDjkF ≤ kρðpÞkFþ
k hρ?;ρðpÞi

2nþ1 I2nkF ≤ 1þ 2n
2nþ1 kρðpÞkFkρ?kF ≤ 2, ∥PSym∥≤1 and ð2nþ1Þa

Ca
2nþa�1

≤ 3
2 a!.

Based onLemma1withE½sm� ¼ 0 andE½jsmja� ≤ 6 × 2a�2a!, for any t
∈ [0, 1], we have the probability

P 1
M ∣
PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞ
D E

∣≥ t
� �

≤ 2e�
Mt2
28 :

ð27Þ

Combining Eqs. (23), (27), there exists an ϵ-net eX of bX such that

P max
ρ2bX 1

M

PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n
h i

� ρ?; ρ

� 

≥ t

0@ 1A
≤P max

ρðpÞ2eX 1
M

PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞ
D E

≥ t
2

 !

≤P max
ρðpÞ2eX 1

M ∣
PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞ
D E

∣≥ t
2

 !
≤ 2NϵðeXÞe�Mt2

112

≤ e�
Mt2
112þlog 2NϵðeXÞ:

ð28Þ

We opt for t ¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNϵðeXÞ

M

r !
, and subsequently, with probability

1� e�ΩðlogNϵðeXÞÞ, we derive

kρPCS � ρ?kF ≤O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNϵðeXÞ

M

s0@ 1A: ð29Þ

Proof of Theorem 3

Proof. We define a restricted Frobenius norm as following:

kρ1 � ρ2kF;2r ¼ kρ1 � ρ2kF
¼ max

ρ2bX2r

hρ1 � ρ2; ρi; ð30Þ

where the set bXr is defined as follows:

bXr ¼ ρ 2 C2n × 2n : ρ ¼ ρy;
n

rank ðρÞ ¼ r; trace ðρÞ ¼ 0; kρkF ≤ 1
�
:

ð31Þ

By the definition of the restricted Frobenius norm in Eq. (30), we can
further analyze

kρLR�PCS � ρ?kF
¼ kρLR-PCS � ρ?kF;2r
≤ kPEDðρCSÞ � ρ?kF;2r
≤ 2 k ρCS � ρ?kF;2r
¼ 2 max

ρ2bX2r

1
M

PM
m¼1

½ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � � ρ?; ρ

� 

;

ð32Þ

https://doi.org/10.1038/s41534-025-01101-1 Article

npj Quantum Information |          (2025) 11:147 8

www.nature.com/npjqi


where the first two inequalities respectively follow the nonexpansiveness
property of the projection and the quasi-optimality property of eigenvalue
decomposition (ED) projection42. Next, we need to bound the first term in
the last line of Eq. (32) using the covering argument. According to [ref. 59,

Lemma 3.1], we initially construct an ϵ-net fρð1Þ; . . . ; ρNϵðeX2r Þg 2 eX2r �bX2r in which the size of eX2r is denoted by NϵðeX2rÞ≤ ð9ϵÞ
ð2nþ2þ2Þr such that

sup
ρ:kρkF ≤ 1

min
p≤NϵðeX2r Þ

kρ� ρðpÞkF ≤ ϵ: ð33Þ

Combining Eqs. (23), (27), there exists an ϵ-net eX2r of bX2r such that

P max
ρ2bX2r

h 1M
PM
m¼1

ð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n
h i

� ρ?; ρi≥ t
0@ 1A

≤P max
ρðpÞ2eX2r

1
M

PM
m¼1

hð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞi≥ t
2

 !

≤ xP max
ρðpÞ2eX2r

1
M ∣
PM
m¼1

hð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?; ρðpÞi∣≥ t
2

 !
≤ 2 9

ϵ

� �ð2nþ2þ2Þr
e�

Mt2
112

≤ e�
Mt2
112þC2nr;

ð34Þ

where we set ϵ ¼ 1
2 and C is a positive constant. We opt for t ¼ O

ffiffiffiffiffi
2nr
M

q� �
and subsequently, with probability 1� e�Ωð2nrÞ, derive

kρLR-PCS � ρ?kF ≤O
ffiffiffiffiffiffiffi
2nr
M

r !
: ð35Þ

Proof of Theorem 4

Proof. We define a restricted Frobenius norm as follows:

kρ1 � ρ2kF;2D ¼ kρ1 � ρ2kF
¼ max

ρ2bX2D

hρ1 � ρ2; ρi: ð36Þ

where we denote by bXD the normalized set of MPOs with bond dimension
D:

bXD ¼ ρ 2 C2n × 2n : ρ ¼ ρy; kρkF ≤ 1; trace ðρÞ ¼ 0;
n

bond dimension ðρÞ ¼ D
�
:

ð37Þ

Note that the presence of additional orthonormal structures arises from the
fact that, according to ref. 60, any TT form is equivalent to a left-orthogonal
TT form42.

We define Ptrace ð�Þ as a projection onto a convex set
fρ 2 C2n × 2n : trace ðρÞ ¼ 1g. By the definition of the restricted Frobenius

norm (36), we can derive

kρMPO-PCS � ρ?kF
≤ k Ptrace ð SVD tt

DðρCSÞÞ � ρ?kF
¼ kPtrace ð SVD tt

DðρCSÞÞ � ρ?kF;2D
≤ k SVD tt

DðρCSÞ � ρ?kF;2D
≤ ð1þ ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ÞkρCS � ρ?kF;2D

¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Þ max
ρ2bX2D

1
M

PM
m¼1

ð2n þ 1Þð ϕm;jm
ϕy
m;jm

�
� I2n

�� ρ?; ρ
�

¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Þ max
ρ2bX2D

1
M

PM
m¼1

ð2n þ 1Þð ϕm;jm
ϕy
m;jm

�
� I2n

�� ρ?; ρ
�

ð38Þ

where the first two inequalities respectively follow from the nonexpan-
siveness property of the projection onto the convex set, while the third
inequality is a consequence of the quasi-optimality property of TT-SVD
projection42. Additionally, we denote

bXD ¼ ρ 2 C2n × 2n : ρ ¼ ρy; trace ðρÞ ¼ 0;
n

ρði1 � � � in; j1 � � � jnÞ ¼ Xi1;j1
1 Xi2 ;j2

2 � � �Xin ;jn
n ;

Xi1 ;j1
1 2 C1 ×D;Xin ;jn

n 2 CD× 1;Xi‘;j‘
‘ 2 CD×D;

k LðX‘Þ k ≤ 1; ‘ 2 ½n� 1�; k LðXnÞkF ≤ 1
�
:

ð39Þ

Based on ∥ρ∥F = ∥L(Xn)∥F ≤ 1 for a left-orthogonal TT form using [ref. 61,
Eq.(44)], we obtain the last line.

Next, wewill apply the covering argument to bound (38). For any fixed
value of eρ 2 eX2D � bX2D, using Eq. (23), concentration inequality in Eq.
(27) and Lemma 3, there exists an ϵ-net eX2D of bX2D such that

P max
ρ2bX2D

h 1M
PM
m¼1

ðð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n Þ � ρ?; ρi≥ t
0@ 1A

≤ P maxeρ2eX2D

1
M

PM
m¼1

hð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?;eρi≥ t
2

 !

≤ P maxeρ2eX2D

1
M ∣
PM
m¼1

hð2n þ 1Þϕm;jm
ϕy
m;jm

� I2n � ρ?;eρi∣≥ t
2

 !
≤ 2 4nþϵ

ϵ

� �4nD2

e�
Mt2
112

≤ e�
Mt2
112þCnD2 log n;

ð40Þ

where we set ϵ ¼ 1
2 and C is a positive constant. We opt for t ¼

O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nD2 log n

M

q� �
and subsequently, with probability 1� e�ΩðnD2 log nÞ, derive

kρMPO-PCS � ρ?kF ≤O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2D2 log n

M

r !
: ð41Þ

Maximum Likelihood Estimation for Low-rank States and MPO states
Maximum likelihood estimation (MLE) is a widely used technique for
quantum state reconstruction. Under single-shot measurements, the MLE
loss function can be formulated as follows47,62–66:

min
ρ	0;

traceðρÞ¼1

f ðρÞ ¼ � 1
M

XM
m¼1

logðhϕm;jm
ϕy
m;jm

; ρiÞ: ð42Þ
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However, the objective function in (42) does not leverage the structural
properties inherent in quantum states. To address this limitation, we pro-
pose twoMLEmethods tailored for (1) low-rank states and (2)MPO states.

Low-rank MLE. When the density matrix is low-rank, we adopt a Rie-
mannian gradient descent (RGD) algorithm on the unit Frobenius norm

sphere. Specifically, for a quantum state ρ? 2 C2n × 2n satisfying trace(ρ⋆)

= 1 and ρ⋆ ≽ 0, we can factorize it as ρ? ¼ F?F?y; F? 2 C2n × r with ∥F⋆∥F
= 1. This leads to the reformulated MLE objective:

min
F2C2n × r ;
kFkF¼1

f1ðFÞ ¼ � 1
M

XM
m¼1

logðhϕm;jm
ϕy
m;jm

; FFyiÞ:

The corresponding Riemannian gradient descent update reads:

bFt ¼ Ft�1 � μPTFSp
ð∇F f 1ðFt�1ÞÞ and Ft ¼

bFt

kbFtkF
;

where the Euclidean gradient is∇F f 1ðFÞ ¼ � 1
M

PM
m¼1

ϕm;jm
ϕy
m;jm

hϕm;jm
ϕy
m;jm

;FFyi F and

PTFSp
ðVÞ ¼ V � hF;ViF denotes the projection onto the tangent space

TFSp = {F: ∥F∥F = 1}. Here, μ is the step size.

MPO-based MLE. When the density matrix admits an MPO repre-
sentation with bond dimension D, we consider the constrained optimi-
zation problem:

min
ρ2XD

f 2ðρÞ ¼ � 1
M

XM
m¼1

logðhϕm;jm
ϕy
m;jm

; ρiÞ:

We solve (43) using a projected gradient descent (PGD) scheme:

ρt ¼ PSimplexðSVD tt
Dðρt�1 � μ∇ρf 2ðρt�1ÞÞÞ;

where ∇ρf 2ðρÞ ¼ � 1
M

PM
m¼1

ϕm;jm
ϕy
m;jm

hϕm;jm
ϕy
m;jm

;ρi, and μ is the step size.

Materials

Lemma 1. (Classical Bernstein’s inequality23, Theorem 6) Let s1; . . . ; sn 2
R denote i.i.d. copies of a mean-zero random variable s that obeys
E½jsjp�≤ p!Rp�2σ2=2 for all integers p≥2, where R, σ2 > 0 are constants.
Then, for all t > 0,

P ∣
Xn
i¼1

si∣≥ t

 !
≤ 2e�

t2=2

nσ2þRt: ð43Þ

Lemma 2. (ref. 29, Lemma 10) For anyAi;A
?
i 2 Rri�1 × ri ; i 2 f1; . . . ;Ng,

we have

A1A2 � � �AN � A?
1A

?
2 � � �A?

N

¼ PN
i¼1

A?
1 � � �A?

i�1ðAi � A?
i ÞAiþ1 � � �AN :

ð44Þ

Lemma3. There exists an ϵ-net eXD for bXD in Eq. (39) under the Frobenius

norm, i.e., ∥ρ − ρ(p)∥F ≤ ϵ for ρðpÞ 2 eXD, obeying

NϵðeXDÞ ≤
4nþ ϵ

ϵ

� �4nD2

; ð45Þ

where NϵðeXDÞ denotes the number of elements in the set eXD.

Proof. For each set of matrices fLðX‘Þ 2 R4D×D :k LðX‘Þ k ≤ 1g,
according to ref. 67, we can construct an ξ-net fLðXð1Þ

‘ Þ; . . . ; LðXðN‘Þ
‘ Þg with

the covering number N‘ ≤ ð4þξ
ξ Þ4D

2

such that

sup
LðX‘Þ:kLðX‘Þk≤ 1

min
p‘ ≤N‘

k LðX‘Þ � LðXðp‘Þ
‘ Þ k ≤ ξ; ð46Þ

for all ℓ ∈ {1, …, n − 1}. Also, we can construct an ξ-net
fLðXð1Þ

n Þ; . . . ; LðXðNnÞ
n Þg for fLðXnÞ 2 R4D× 1 :k LðXnÞkF ≤ 1g such that

sup
LðXnÞ:kLðXnÞkF ≤ 1

min
pn ≤Nn

k LðXnÞ � LðXðpnÞ
n ÞkF ≤ ξ; ð47Þ

with the covering number Nn ≤ ð2þξ
ξ Þ4D.

Therefore, we can construct a ξ-net f½Xð1Þ
1 ; . . . ;Xð1Þ

n �; . . . ;
½XðN1Þ

1 ; . . . ;XðNnÞ
n �g with covering number

Πn
‘¼1N‘ ≤

4þ ξ

ξ

� �4nD2

ð48Þ

for anyMPOρ= [X1,…,Xn]with bonddimensionD. Thenwe expand∥ρ−
ρ(p)∥F as follows:

kρ� ρðpÞkF
¼ k½X1; . . . ;Xn� � ½Xðp1Þ

1 ; . . . ;XðpnÞ
n �kF

¼ k Pn
al¼1

½Xðp1Þ
1 ; . . . ;XðplÞ

al�1;X
ðpal Þ
al � Xal

;Xalþ1; . . . ;Xn�kF

≤
Pn
al¼1

k ½Xðp1Þ
1 ; . . . ;XðplÞ

al�1;X
ðpal Þ
al � Xal

;Xalþ1; . . . ;Xn�kF

≤
Pn�1

al¼1
k LðXðpal Þ

al Þ � LðXal
Þ k þ kLðXðpnÞ

n Þ � LðXnÞkF
≤ nξ ¼ ϵ;

where the second line and the second inequality respectively follow Lemma
2 and29, Eq.(47). In addition, we choose ξ ¼ ϵ

n in the last line. Ultimately, we
can construct an ϵ-net fρð1Þ; . . . ; ρN1���Nn g with covering number

NϵðeXDÞ≤
4nþ ϵ

ϵ

� �4nD2

ð49Þ

for any MPO ρ 2 bXD:
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