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Enhancing quantum state reconstruction
with structured classical shadows
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While classical shadows can efficiently predict key quantum state properties, their suitability for certified
quantum state tomography remains uncertain. In this paper, we address this challenge by introducing a
projected classical shadow (PCS) that extends the standard classical shadow by incorporating a
projection step onto the target subspace. For a general quantum state consisting of n qubits, our method
requires a minimum of O(4") total state copies to achieve a bounded recovery error in the Frobenius norm
between the reconstructed and true density matrices, reducing to O(2"r) for states of rank r < 2" —meeting
information-theoretic optimal bounds in both cases. For matrix product operator states, we demonstrate
that the PCS can recover the ground-truth state with O(n?) total state copies, improving upon the
previously established Haar-random bound of O(n®). Numerical simulations validate our scaling results
and demonstrate the practical accuracy of the proposed PCS method.

Quantum state tomography (QST) is widely used for estimating quantum
states'”. To reconstruct the density matrix with high accuracy, measure-
ments should be performed on a large number of identical copies; specifi-
cally, for single-copy (i.e., non-collective) measurements, a minimum of
O(4") total copies is required to estimate the density matrix of an n-qubit
system with a bounded recovery error, as defined by the Frobenius norm
between the reconstructed and true density matrices’. Various methods
have been proposed to achieve efficient and accurate QST. Classical com-
putational approaches include linear inversion’, maximum likelihood
estimation*, Bayesian inference’"', region estimation'”, classical
machine learning', and least squares estimators'*™"". In contrast, quantum
machine learning methods encompass algorithms such as variational
quantum circuits'*"”, quantum principal component analysis”’, and quan-
tum variational algorithms combined with classical statistics™'.

A significant reduction in the number of required state copies can be
achieved by assuming two common low-dimensional structures: low-
rankness and matrix product operators (MPOs). (i) Low-rank density
matrices frequently emerge in quantum systems with pure or nearly pure
states that exhibit low entropy®'**™, and low-rank assumptions are
employed in various state estimation procedures, with a range of associated
measurement processes, including 4-designs™, Pauli strings™, Clifford
gates'’, and Haar-random projective measurements”. When the density
matrix has rank , the required number of total state copies can be reduced to
O(2"r)*'°, yet this remains exponential in 7, posing challenges for current
quantum computers exceeding 100 qubits. (if) MPOs, on the other hand,
offer a more scalable alternative for certain quantum systems, including

one-dimensional spatial systems’, Hamiltonians with decaying long-range

interactions”, and states generated by noisy quantum devices™. When
employing Haar-random projective measurements™ or specific classes of
informationally complete positive operator-valued measures (IC-
POVMs)™, the required number of total state copies can be reduced to
polynomial scaling—either O(n’) or O(n), respectively—while ensuring
bounded recovery error for MPO states.

While algorithms with low-rank assumptions or low-dimensional
structures can enable significantly improved scaling, they still face con-
siderable computational complexity, which in existing approaches can be
attributed to four potential operations: (i) the calculation of the inverse; (i)
repeated inner product operations between matrices that grow exponen-
tially with n; (4ii) multiple projection steps onto the target subspace; and (iv)
additional matrix multiplications introduced by iterative algorithms to
enforce low-rankness or MPO representations. Recently, an efficient and
experimentally feasible approach, known as classical shadow (CS) esti-
mation, was introduced by ref. 31 to infer limited sets of state properties like
fidelity, entanglement measures, and correlations. By exploiting efficient
computational and storage capabilities on classical hardware, all necessary
processing to predict these properties can be carried out via classical
computations. This has sparked a series of studies leveraging the CS
method™ ™. Meanwhile, CS has also been utilized for full quantum state
reconstruction’””, and integrated with projection techniques to recover
physical quantum states in*>"’. Yet to the best of our knowledge, no existing
theoretical analysis of the sampling complexity for the CS-based method
addresses the reconstruction of other structured quantum states, above and
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Fig. 1 | Illustration of proposed PCS method.
Given an initial CS estimate pcs lying in the space of
Hermitian and unit-trace matrices (not necessarily
PSD), we compute the closest state ppcs in the
physical space of interest-either the space of all
possible states (left) or a subspace possessing a
desired structure (right).

{p: p = 0,trace(p) = 1}

{p: p = 0,trace(p) = 1}

Structured states

beyond simply enforcing physicality. Thus, a theoretical understanding of
whether the CS-based method can be effectively extended to the full state
(i.e., QST) with provable performance guarantees remains absent.

In this paper, we derive performance guarantees for QST using a
method we term projected classical shadow (PCS), which projects CS esti-
mators onto target subspaces of the Hilbert space, as illustrated in Fig. 1.
Given that the original CS density matrix is Hermitian but not in general
positive semidefinite (PSD), our method involves projecting its eigenvalues
onto the simplex"'. We demonstrate that this approach requires O(4") total
state copies to sufficiently achieve a bounded recovery error in the Frobenius
norm. For low-rank states, we further leverage (truncated) low-rank
eigenvalue decomposition and show that the required number of total state
copies can be reduced to O(2"r) for the same accuracy. Finally, for MPO
states, we employ a quasi-optimal MPO projection—tensor-train singular
value decomposition (TT-SVD)* with a simplex projection—to form the
PCS step, demonstrating that with O(n*) total state copies, the method
reliably recovers the ground-truth state. While suboptimal relative to the
degrees of freedom for MPO states, this approach improves upon the the-
oretical O(r’) scaling in ref. 29. PCS also offers a framework for incorpor-
ating prior knowledge about the target state form into the CS approach.

Notation

We use bold capital letters (e.g., X) to denote matrices, bold lowercase letters
(e.g., x) to denote column vectors, and italic letters (e.g., x) to denote scalar
quantities. Matrix elements are denoted in parentheses. For example, X(i;,
i) denotes the element in position (ij, i) of the matrix X. The superscripts
()" and ()" denote the transpose and Hermitian transpose, respectively. For
two matrices A, B of the same size, (A, B) = trace (ATB) denotes the inner
product. || X]|, || X||;, and || X|| r respectively represent the spectral, trace, and
Frobenius norm of X. For two positive quantitiesa, b € R, the inequality b
Saorb=0(a) implies b < ca for some universal constant ¢; likewise, b > a or
b = Q(a) represents b > ca for some universal constant c.

Results

Classical shadows

Quantum information science harnesses quantum states for information
processing™. The state of an n-qubit system can be described by the density
operator p € C¥*?" whichis PSD (p > 0) and has unit-trace (trace(p) = 1).
In order to estimate this state, measurements can be performed on a col-
lection of copies.

Projective measurements. Within the most general quantum mea-
surement framework of positive operator valued measures (POVMs)
(Specifically, a POVM is characterized as a set of PSD matrices:

{A},..., A} € C7% st 38 | Ay = L. Each POVM element A,

corresponds to a potential outcome of a quantum measurement with the
special case of projective measurements corresponding to the case where
all Ay are pairwise orthogonal projection operators, meaning they satisfy
A} = A and A4A; = 0 for k = j.), the special case of projective mea-
surements is often employed, where the measurement outcomes are
associated with an orthonormal eigenbasis of the system. To implement
such a measurement defined by an arbitrary orthonormal basis
{¢ : ¢;[¢l =Jdy}, we can introduce a unitary matrix U=

[ ¢, fo3se ] e C**? and apply U' to the state p before conducting
a projective measurement in the computational basis {e}, where Ue; =
¢« The probability of observing the k-th outcome is given by:

Pk = (¢k¢27P) = e,t(UTpU)ek. (1)

However, a single projective measurement, even if repeated infinitely many
times, provides only partial information on p, so multiple projective mea-
surements must be conducted in various bases. In the subsequent discus-
sion, we denote the number of distinct measurement bases by M, and the
measurement operators for the m-th projective measurement

BY (1Ot s B Bl -

Classical shadow (CS). Consider the original CS proposal with single-
shot Haar-random projective measurements. Given an unknown n-qubit
ground truth p*, we repeatedly execute the measurement procedure
above Eq. (1) in which Uis chosen randomly from the Haar distribution
and each measurement is performed on only one copy (i.e., a new U is
selected for each copy measured). The specific result e; yieldsasnapshot,
or “shadow,” of the underlying quantum state, which for Haar-
distributed unitaries can be expressed as’":

P =0Q"+1U,e e U}, — 1L,

n T @

=Q"+ D¢, b, — L
By construction, this snapshot equals the ground truth in expectation (over
both unitaries and measurement outcomes): E[p,,] = p*. Executing this
process M times produces an array of M independent classical snapshots for
the total CS estimator:
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CS for Tomography?. Although CS estimators can efficiently predict
observables of p*, to our knowledge, there exist no theoretical results
concerning the recovery error of the full state. Following the detailed
derivation in the section “Methods”, we find the expectation of the mean
squared error:

442" — 1 |lp*lI}
o :

(4)

Elpes —p* I =

Given that [|p* || < [trace (p*)] ® — 1, it follows that Eq. (4) can be simpli-
fied to

n

. 4
E 1l pes — p ||%:%M (5)

for large n. Eq. (5) demonstrates that stable recovery of the full state can be
achieved only when M scales proportionally to 4", aligning with the optimal
M required in QST for general states’.

A comparison between CS and traditional QST returns several key
observations of relevance to this study:

1. CS yields an unbiased estimate (E[p.s] = p*), whereas the solution
from QST is often biased", due to the fact that most QST methods
involve physical constraints, such as positivity and unit trace.

2. While the CS estimator is typically unphysical (not PSD), leading QST
methods like maximum likelihood estimation (MLE)’, projected least
squares®, and Bayesian inference’ enforce physicality by construction.

3. CS boasts significantly lower computational complexity compared to
standard QST methods, such as MLE using the fixed-point (FP)
algorithm**”’, MLE using gradient descent (GD)*, least squares (LS)
using GD”, and the one-step LS method"”. The number of iterations
required for convergence in iterative methods [e.g., MLE (FP), MLE
(GD), and LS (GD)] significantly increases computational complexity.
Moreover, the requirement of a suitable initialization further imposes a
strong and often nontrivial condition for successful recovery. Although
the one-step LS method'” avoids iterations, it does not incorporate any
constraint and still involves matrix inversion and multiple matrix
multiplications, resulting in substantial computational cost. In
contrast, the CS method offers the lowest computational complexity,
as it is also a one-step approach whose primary cost arises from
computing the outer product of two vectors.

4. For M < 2", CS outperforms QST in predicting certain linear obser-
vables, not in predicting the entire state'”*.

5. Including prior information about state structure allows for a reduction
in scaling in QST (see Tables 1 and 2). Apart from specialized CS
methods tailored for states generated by shallow circuits and Hamil-
tonian dynamics®', which aim to improve the accuracy of predicting
quantum state properties, there currently exists no known approach
that similarly reduces the sample complexity of CS for full quantum
state reconstruction. In other words, CS requires O(4") measurements
for estimating the full state, as demonstrated in Eq. (5).

In the next section we investigate methods for incorporating prior
information about state structure into CS to reduce the scaling shown in
Eq. (5).

Projected Classical Shadow (PCS) for QST

In this section, we will study the application of CS for the task of describing
the full quantum state and show that, with a simple projection step, CS
estimators are also effective for QST and achieve (nearly) information-
theoretically optimal bounds for broad classes of states. Let X denote the
class of states of interest, and assume that the underlying ground truth
p* € X. For instance, X could contain all physical states (PSD and unit-
trace) or be restricted to a specific structure with compact representations,
such as low-rank or MPO states. Because of the availability of previous
sample complexity results based on the Frobenius norm, we choose to define

Table 1 | Comparing the total number of state copies in PCS
using single-shot global Haar unitaries to that in optimal QST

Methods P e Xsimplex pe X"
PCS 0(8/8) 0Rr/&)
Optimal QST® 0@/ Q2"r? /(& log(1/8))

Here, n denotes the number of qubits, r represents the rank of the target state, and ¢ signifies the
desired precision in trace distance, i.e., || p — p*|l; < & for the estimator p.

Table 2 | Total number of copies in MPO-PCS compared to
constrained LS using Haar measures, and spherical 3-designs

Method
Approximate PCS (Haar)

peXp
O(n2D? logn/(?)

Optimal PCS (Haar) O(nD?logn/{?)

Constrained LS (Haar)*® O(n®D?logn /%)

Constrained LS (spherical 3-designs)® O(nD? logn/¢?)

Here, n denotes the number of qubits, and { signifies the desired precision in Frobenius distance, i.e.,
I p—p*llr < ¢ for the estimator p.

prcs as the projection of pcs on the set X that minimizes Frobenius error,
ie.,

Prcs = Pxlpes) = argmin [[p — pes|l - ©)

To provide a unified and general analysis of Eq. (6), we enlist tools from

e-net and covering number”” to capture the complexity of the classes of
_p_.
P E X} scaled to

states within the set X. First, consider the set \ = {
unit Frobenius norm. For € > 0, the set A/, C N is said to be an e-net (or an
e-cover) over N if for all ﬁ € N, there exists ﬁ € N, such that

-
el NPl
the covering number of X, denoted by N,(X). Intuitively speaking, a
covering number is the minimum number of balls of a specified radius € to
cover a given set entirely. Coverings are useful for managing the complexity
of a large set: instead of directly analyzing the behavior of an uncountable
number of points in A/, we can analyze the finite number of points in \V..
The behavior of all points in N is similar to that of the points in A/, as each
point in NV is close to some point in the covering.

< e. The size of an e-net with the smallest cardinality is called
F

Instead of the covering number N (X), our analysis will rely on the
covering number of the set X formed by the differences between the ele-
ments in X:

X={p,—p,: p1.p, € X,p,%p,}. @)

In many cases, the covering number N .(X) can be upper-bounded by
N?(X). Here we use X for convenience in the following,

The covering number when X comprises all physical quantum states
can be computed as log N (X) = O(4" log %). By comparison, for quantum
states with rank at most r, this reduces to log N E(X) = O(2"rlog g); when
the density matrices are represented by MPOs with bond dimension D, the
covering number can be further reduced tolog N (X) = O (4nD? log2t¢),
as discussed in the next part.
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Theorem 1. For a given p* € X, let ppcs be the projected CS in Eq. (6).

Then with probability at least 1 — ¢~ (o8N 125,

. log N, ,(X)
lppcs —P*llF <O \IIT/Z . ®)

The proof is given in the section “Methods”. Here, the set X C
{pe c2 . p=p' trace(p) = 1} is any subspace of Hermitian,
trace-one matrices (tan space in Fig. 1. The set X will be specialized to
PSD matrices only (blue space in Fig. 1) in Corollary 1 and low-
dimensional structures (green space in Fig. 1) in Theorems 3 and 4.
Theorem 1 guarantees a stable recovery of the ground-truth p* with &-
closeness in the Frobenius norm, provided M = O(log N, /,(X)/ &)
number of Haar-random projective measurements, which scales linearly
with the logarithm of the covering number. For structured sets X that are
nonconvex, such as MPO states, computing the optimal projection P
might be difficult or even NP-hard. For these cases, we can use numerical
methods to compute an approximate projection P that we assume is a-
approximately optimal (« 2 1), satisfying

PupeX, [Pup—p| <valPup—pl,  ©

for any p. As will be explained in the next sections, there exist efficient
methods to find approximation projections for low-rank and MPO states.
Denote by ppeg = ﬁx(l’cs) the PCS estimator obtained with this
approximate projection. The following extends the results in Theorem 1
t0 ppcs-

Theorem 2. Fora given p* € X let p,,¢ be the approximate PCS estimator
in Eq. (9). Then with probability at least 1 — e~108N:/2(X),

_ . alogN X)
lecs = #"lle < O =5

General physical states. We first specialize X to all physical quantum
states (We chose the label “simplex” for this set since the eigenvalues {A;}
of all physical states define a standard simplex, i.e., 4 > 0 and > (A, = 1.):

(10)

Ksimplex = (P € C¥**" : p=0, trace (p) = 1}. (11)
For Xmpiexs the PCS projection in Eq. (6) can be implemented by per-
forming an eigenvalue decomposition, followed by projecting the eigenva-
lues onto the simplex {x € R*" : x,>0, 3% x; = 1} using the algorithm
proposed in Refs. 41,45, while keeping the eigenvectors unchanged. This
approach has also been employed in Refs. 39,40 to ensure the physical
structure of the reconstructed state. The computational complexity of the
projection step is O(aloga), where a denotes the number of nonzero
eigenvalues.

Since the corresponding set X has covering number
log N.(X) = O(4" log 2), we can plug this information into Theorem 1 to
obtain recovery guarantee for Py jex(Pcs)-

Corollary 1. For a given physical state p* € C*"**', we perform M pro-
jective measurements to obtain the CS estimate pcs. Then with probability at
least 1 — e~*"), the projected classical shadow P implex(Pcs) satisfies

e 4
”lpsimplex@CS) P “F <0 (\/;) .

(12)

Low-rank states. We next explore the structure of pure or nearly pure
quantum states characterized by low entropy and represented as low-
rank density matrices. Assuming p* has rank r < 2", we can refine our
attention to the set X, ={pe c 1 p=0,trace(p) =1,
rank (p) = r}. Denote Px (-) as the optimal projection satisfying Eq. (6).
It follows from Theorem 1'and the covering number of the corresponding
set log N (X) = O(2"rlog?) that IPx (pcs) = P*llp < O(/2"r/M).

However, since we are unaware of an algorithm to perform the ideal
projection Py (-), we instead consider a two-step alternative to obtain the
low-rank projécted classical shadow (LR-PCS):

Prr-pCS = ,Psimplex(lprankfr(pCS)» (13 )

where P,._.(-) denotes the rank-r projection obtained by setting all
eigenvalues beyond the r-th largest eigenvalue to zero. We can show that
Prr.pcs shares a similar guarantee as PX, (pcs)-

Theorem 3. Given M Haar-random projective measurements on physical
state p* € X, with probability 1 — e=*®") p . .., defined in Eq. (13),
satisfles

n

2r
—p s < — . 14
lprr—pcs — P I O( M) (14)

The detailed proof appears in the section “Methods”. This theoretical
recovery error is optimal, given that the degrees of freedom for the ground
truth p* are O(2"r). This highlights that LR-PCS can achieve the optimal
solution in QST using independent measurements, without requiring
multiple iterations of optimization algorithms.

To compare LR-PCS with prior results, we convert the result of The-
orem 3 to trace norm leveraging the inequality between the Frobenius and
the trace norms’, namely [lpippcs = P*lly SV27llPrropes — P
£ <0(y/2"r? /M), which matches the optimal guarantee (up to small log
terms) with independent measurements according to ref. 6. We have
summarized the comparison in Table 1. We note that the sufficient con-
dition for PCS in the general setting matches the necessary condition
established in ref. 6. Similarly, the sufficient condition for PCS in the low-
rank setting is also close to the corresponding necessary condition in ref. 6,
up to logarithmic factors.

MPO states. While the computational and storage requirements for low-
rank density matrices are significantly smaller compared to general ones,
they still grow exponentially in the number of qubits n. Moreover, the
assumption of high purity on which the low-rank approximation is based
becomes increasingly tenuous in practice for existing processors in the
noisy intermediate-scale quantum (NISQ) era. For this reason, reducing
parameter count through alternative assumptions is worth pursuing.
Examples such as ground states of many quantum systems with short-
range interactions and states generated by such systems within a finite
duration” often possess entanglement localized to subsystems of the
entire quantum computer. Consequently, they can be compactly repre-
sented using MPOs, whose degrees of freedom scale only polynomially in
n. To assist in the development of an MPO-PCS method, we will first
establish their connection to tensor train (TT) decompositions®”, a
technique widely utilized in signal processing and machine learning.
For a n-qubit density matrix p* € C*'*%, we employ a single index
array iy -+ i, (j; +*+ j,) to denote the row (column) indices, where iy, ..., i, €
{1,2} (Specifically, i) -+ i, represents the (i, + > j_, 201 (i, — 1))-th row.).

We designate p* as an MPO if we can represent its (i; -+ i, j; =+ ju)-th
element using the following matrix product™:
PRy iy j) = XY X X (15)

where X?‘j* e CP*Pforee{2,...n— 1},Xi"jl e CH*P, Xi,"‘j” e CP*Y,
and D is the bond dimension, and thus we can introduce the set of physical
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MPO states with bond dimension D as

Xp = {p € C*% . p=0, trace (p) = 1, bond dimension (p) = D}.
(16)

Here, the corresponding difference set X has a covering number
log N,(X) = O(4nD? log #2<), which is proportional to the degrees of
freedom O(4nD”) in the MPO states. Given the optimal projection Py, ()it

follows from Theorem 1 that || Py (Pcs) —p*llp £ O(\/nD?log n/M).

However, we have been unable to implement the optimal Px_(-) due to
the difficulty in satisfying both the MPO and simplex conditions simulta-
neously. Therefore, we introduce a quasi-optimal projection based on a
sequential singular value decomposition (SVD) algorithm, commonly
referred to as tensor train SVD (TT-SVD)". Based on tensor-matrix
equivalence, we can design a two-step MPO PCS method:

Pypo—pcs = PsimpleSVD p(Pcs))s (17)
where SVD #(-) denotes the TT-SVD operation. It is worth noting that the
bond dimension of pyipo_pcs may differ slightly from D due to the simplex
projection, but the recovery error still depends on D. We analyze the
recovery error of Eq. (17) as follows:

Theorem 4. Consider an MPO state p* € X;, measured M times with
Haar-random projections. With pypo.pcs defined as in Eq. (17), with
probability 1 — e~2("2*1ogn) e have

N n2D*logn
lPvpo-pes — P71l < O(\/Mg>-

The proof can be found in the section “Methods”. Note that due to the
quasi-optimality of the TT-SVD, the upper bound of Eq. (18) is not optimal
when considering the degrees of freedom O(4nD?) in p*. To our knowledge,

(18)

Table 3 | Average runtime per trial (reported as mean =
standard deviation, in seconds) of numerical experiments in
Fig. 4, for the case M = 1000

Method Thermal (T = 0.2) Thermal (T = 2) GHz
cs (5.30£0.24)x10°  (5.80+0.51)x10°  (5.20+0.11)x 1072
LR-PCS (150 £0.17) x 1072 (1.42+0.25)x 1072 (1.44 +0.11) x 1072
MPO-PCS (3.16 £ 0.52) x 1072 (3.37 £ 0.85) x 1072 (2.97 £0.28) x 1072
LR-MLE 491 +4.4 57.4+2.8 497 +33
MPO-MLE 117.2+43 113.3+5.7 1124 +7.7
10" 10"
—CS
—LR-PCS 10°
102 107 Pl
=l
-3 3
1000 3000 5000 7000 9000 1000 3000
(@)

there exists no method that can guarantee both MPO and PSD constraints
simultaneously. Should such an optimal MPO projection be found, how-
ever, we could potentially remove one factor of # in the numerator of Eq.
(18), thus ensuring exact MPO rank. In Table 2, we summarize the total
number of state copies required for MPO-PCS compared to existing QST
methods. It is important to highlight that all QST results represent sufficient,
rather than necessary, conditions. Compared to the constrained LS method
using Haar measurements in ref. 29, MPO-PCS exhibits better sample
complexity. While the result” based on constrained least squares with
spherical 3-design POVMs—which are informationally complete—could
potentially outperform PCS in terms of sample complexity (but PCS
achieves the same complexity given an optimal projection), attaining the
bound in ref. 30 requires solving a highly nonconvex optimization problem
to global optimality. Table 3. However, there is currently a lack of practical
algorithms capable of achieving this bound. The gradient-based iterative
algorithm proposed in ref. 30 provides only a suboptimal guarantee and is
initialization-dependent—which may limit its practical applicability.
Additionally, spherical 3-designs are not known to have efficient imple-
mentations using current local quantum circuits, whereas Haar measure-
ments are generally more feasible in experimental settings.

Simulation results

In this section, we conduct numerical QST experiments with Haar-random
projective measurements to compare CS, LR-PCS, and MPO-PCS methods.
For each configuration, we conduct 10 Monte Carlo tomographic experi-
ments in which each Haar measurement and result are sampled at random;
then we take the average over all 10 trials to report the results. For the
random state cases (Figs. 2, 3), each trial corresponds to a different randomly
chosen ground truth, whereas for the tailored state cases (Figs. 4, 5), each
trial in a given average is performed on the same ground truth. Furthermore,
since the magnitude of ||p*||r differs across quantum states with different
ranks or bond dimensions, we apply the normalized Frobenius norm to
enable fair comparisons and provide a consistent metric for reconstruction
accuracy.

In the first set of tests, we compare CS and LR-PCS for a specific rank r
as a function of measurements M. We generate random ground-truth
density matrices p* = F*F*" € C'*' (n = 4 qubits), where
F =, Ifjgf‘“ € C'*", and the entries of A* and B* are independent and
identically distributed (i.i.d.) samples drawn from the standard normal
distribution. Notably, when r = 16, LR-PCS reduces to projection onto the
set of general physical states defined in Eq. (11). The results in Fig. 2 for rank
r €{1, 4, 16} reveal two key observations: (i) as the rank r decreases and the
number of measurements M increases, the recovery error across all methods
consistently reduces, with the squared error quantitatively scaling as
expected (4"/M for CS and 2"+/M for LR-PCS); (i) for any r and M, LR-PCS
outperforms standard CS (even at full rank), as it preserves physicality under
any rank constraints; and (i) in Fig. 2c, since r =16 (i.e., p*is full rank), LR-
PCS provides only the additional PSD constraint compared to CS. As M

10°

—Cs
—LR-PCS| |

5000 7000 9000 1000 3000 5000 7000 9000
M
() ©

Fig. 2 | Estimating four-qubit low-rank states by CS and LR-PCS methods. Mean squared error as a function of state copies M, averaged over trials on ten randomly chosen
ground truth states of rank r = 1 (a), r = 4 (b), and r = 16 (c). The horizontal axes span M = 250 to M = 10000. Uncertainty is defined as the sample standard deviation.
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Fig. 3 | Estimating seven-qubit MPO states by CS 102
and LR-PCS methods. Mean squared error as a
function of state copies M, where each point is the

average over trials on ten randomly chosen ground

i

™

'\

truth states for bond dimension D=1 (a) and D =4 o «L'“ 10° —CS
(b). Uncertainty is defined as the sample standard é = —MPO-PCS
deviation.
D=1
-2 -2
250 500 1000 1500 2000 250 500 1000 1500 2000
M M
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Fig. 4 | Estimating seven-qubit thermal and GHZ states. Mean squared error as a
function of the number of state copies M for (a) thermal state (T'= 0.2), (b) thermal
state (T = 2), and (c) GHZ state. Comparison between different methods for (a)

thermal state (T'= 0.2), (b) thermal state (T = 2), and (c) GHZ state. All figures have
M =100 as the starting point.
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Fig. 5 | Estimating thermal and GHZ states with varied number of qubits. Mean squared error as a function of the total qubit number with M = 3000 for (a) thermal state (T

=0.2), (b) thermal state (T = 2), and (c) GHZ state.

increases, the performance gap between LR-PCS and CS narrows, as the
PSD constraint alone has limited impact on reducing the recovery error.

In the second set of trials, we test CS and MPO-PCS across varying
numbers of measurements M and bond dimension D. We consider n =
7-qubit matrix product states (MPSs, pure state special cases of MPOs) of
the form p* = w*u*" € C'**'%, where u* € C'**! satisfies ||u*||, = 1
and its (i; -+ iy)-element can be represented in the matrix product form:
w iy -+ i,) = U .. U3". Here, each matrix U} has size d x d, except
for U3 and U%” of dimensions of 1 x d and d x 1, respectively.

To generate each MPS u*, we draw a length-128 complex vector with
iid. standard normal elements, apply TT-SVD" to truncate it to an MPS,
and then normalize the result to unit length. Asa result, entry p*(iy -+ iz, j; -
j) can be _expressed as p*(i,---isj, --jy) = (U @UY)
---(U;"7 ® U’;j7T) = Xfi‘J‘ ---X;i7J7, where ® denotes the Kronecker
product. Thus, p* = w*u*" is also an MPO with bond dimension D =
(equal for all qubits). As shown in Fig. 3, MPO-PCS attains significantly

lower error than CS, as it leverages knowledge about the underlying MPO
structure. And the recovery error of MPO-PCS increases with higher MPO
bond dimension (in line with Table 2), whereas that of CS remains the same
regardless of D.

In the third set of trials, we simulate measurements on 7-qubit density
matrices: (i) thermal state (The thermal state is generated from the 1D

quantum Ising model H = Z}’: ofof, + >0, 0f with of =L ®

0" ®Ly; e R**¥ a=x,z and 0* = {(1) (1)}0Z= {(1) _01]-"”16

— e H/T

" trace (e H/T)
relatively low temperature close to the ground state); (i7) thermal state with
temperature T =2 (corresponding to a relatively high temperature); and (iii)
Greenberger-Horne-Zeilinger (GHZ) state (The GHZ state is constructed

L().,.()LT RY*1Y 1t i rth
7 VAR ). It is wor

thermal state is then defined as p* ) with temperature T=0.2 (a

as p* = gg' where g =
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noting that the low-temperature thermal state (i) and the GHZ state (iif)
simultaneously exhibit low-rank and MPO structures'****, making them
well-suited for demonstrating the advantages of exploiting structured sub-
spaces. We impose a rank constraint r € {4, 24, 1} for the estimator on each
state, respectively. For the T = 0.2 thermal state, the ground-truth density
matrix has rank of approximately 4, while for the high-temperature case (T
=2),itis full-rank; for LR-PCS r = 24 is selected, somewhat arbitrarily, which
is sufficient to encompass 80% of the sum of the eigenvalues of the ground-
truth density matrix. In addition, we apply TT-SVD on the CS estimator to
adaptively select the bond dimensions using the error tolerance 107" To
facilitate a comprehensive comparison between the PCS-based methods and
MLE, we introduce the low-rank MLE (LR-MLE) and matrix product
operator MLE (MPO-MLE) algorithms, as detailed in the section “Meth-
ods”. For LR-MLE and MPO-MLE, we adopt random initialization

(We generate a density matrix p,=F, F,' e o,

_ Ay+i-B 2" xr . . :
Fy =50 € C= ™", with the entries of Ay and B, independently

drawn from the standard normal distribution.) and spectral initialization®,
respectively. The step sizes are set to 0.5, 0.05, and 0.1 for LR-MLE, and 0.3,
0.05, and 0.1 for MPO-MLE across the three set of quantum states men-
tioned above; the number of iterations is fixed at 500 to guarantee con-
vergence for all cases. Given that the variance error in reconstructing the
thermal state and GHZ state is less than 10% of the mean error, we exclude
this error from the figure to preserve its clarity. Fig. 4 shows that the pro-
posed LR-PCS and MPO-PCS methods outperform standard CS, as
quantified by the Frobenius norm. Furthermore, MPO-PCS demonstrates
superior performance compared to LR-PCS, which can be attributed to the
lower degrees of freedom in the MPO structure relative to the low-rank
structure [cf. Egs. (14),(18))]. In addition, LR-PCS achieves performance
comparable to that of LR-MLE, as it attains the information-theoretically
optimal error bound. In contrast, the performance of MPO-PCS is slightly
inferior to that of MPO-MLE, primarily due to its suboptimal recovery error
bound, which contains a factor of n? rather than n. Nevertheless, according
to Table 3, we note that CS-based methods are significantly more compu-
tationally efficient than MLE-based methods (more than 100 x faster in the
cases considered), as the latter require iterative optimization procedures.

where

In the final test, we examine how the recovery error scales with qubit
number 7, using parameter settings of r=4for T=0.2,r=4(n — 1) for T=2,
r =1 for GHZ state and an error tolerance of 10" for determining bond
dimension D. As highlighted in Fig. 5, both LR-PCS and MPO-PCS effec-
tively attenuate the growth in recovery error as the system size » increases, in
contrast to the standard CS method. This improvement is attributed to the
utilization of the low-dimensional structure in these methods. Additionally,
the recovery error of MPO-PCS scales polynomially with n, as indicated in
Eq. (18), rather than exponentially as in Eq. (14) of LR-PCS; hence, MPO-
PCS outperforms LR-PCS in terms of recovery error.

Discussion

This paper has introduced the projected classical shadow (PCS) method to
address the computational challenges of quantum state tomography (QST)
in large Hilbert spaces by leveraging the classical shadow (CS) framework
combined with a physical projection step. The method provides guaranteed
performance under Haar-random measurements. Theoretical results show
that the PCS method achieves high accuracy in reconstructing general and
low-rank quantum states while minimizing the number of state copies,
meeting information-theoretically optimal bounds. Moreover, the PCS
method reduces the number of state copies required for matrix product
operator (MPO) states compared to existing results using Haar random
measurements. Numerical validation further demonstrates the practicality
and computational efficiency of PCS for large-scale quantum state
reconstruction.

More broadly, our formalism points to a promising new general
direction for CS methods. Although originally introduced for the estimation
of state properties rather than the state per se”’, CS nevertheless relies on an
estimator pcs of the full density matrix. As our results reveal, this generally

unphysical estimator can be projected onto a physical space of interest—
whether the entire Hilbert space or some subset thereof (Fig. 1)—with
performance guarantees that attain information-theoretic bounds (for the
case of arbitrary and low-rank states) or improve upon previous scaling
results (for MPO states). Therefore in merging the conceptual simplicity of
CS with the scaling improvements possible in structured quantum systems,
our results suggest a compelling role for PCS in traditional quantum state
estimation, with exciting opportunities for future exploration in even more
types of subspaces tailored to specific physical conditions or prior knowl-
edge, such as projected entangled pair operator (PEPO)** and multiscale
entanglement renormalization ansatz (MERA)* constructions.

Another promising direction is to analyze the PCS method under local
measurements. Although global measurements—characterized by joint
operations across all qubits—are theoretically advantageous, their imple-
mentation using practical quantum circuits poses substantial challenges. In
contrast, local measurements—whether taken from the Haar measure'’, the
Pauli set”, or local informationally complete POVMs'*—are significantly
more compatible with current quantum architectures and can be imple-
mented with greater experimental efficiency. While the projection-based
framework employed in this work could, in principle, be directly adapted to
local measurement scenarios, the theoretical machinery developed herein
does not extend to such cases, as the concentration inequality in Eq. (27) [see
section “Methods”] cannot be established under local measurements.
Addressing this gap necessitates the development of new analytical tools
tailored to the locality constraints, which we leave as an important direction
for future investigation.

Methods

This section provides detailed proofs and a comprehensive description of
the MLE-based methods (LR-MLE and MPO-MLE) introduced in the last
section.

Proof of Equation 4

Proof. We expand E||p.s — p* H; as follows:

Ellpcs — p*II7
2
—E

M
M2 PP
m=1 F

M M
= E<ﬁ mgl(Pm - p*)ﬁm;(pm - p*)>

1 M 2

= 20 lIpn = plle

=5 Elp, —plI;

= % lp*lI7 — 2E(p,, p*) + Edpy, py))

=4 [P+ @ DE 6L 1, 60)
—2(2" + DE($,; ¢}, Ln) +2

it T
=22l

(19)

where the third line follows from [E[p,]= p*, the fourth from the
equivalence under expectation of all measurements 1, and the last from the

.. +
normalization (¢, ; 61, ¢, ¢1,) = (¢, ¢]; , L) = 1.
Proof of Theorem 1
Proof. We define a restricted Frobenius norm as

llPpcs — P*”Fg = llppcs — P*lIF

= ma;\X(PPCS - P*’p)v
peX

(20)
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where X = {peC**?% :trace(p) = 0,p = p', lIplly < 1}. By the defini-
tion of the restricted Frobenius norm in Eq. (20), we can further analyze

Al

= llppcs

= ff< ] - P*7P>,

where the inequality follows from the assumption that the physical pro-
jection P (+) is optimal and therefore satisfies nonexpansiveness. Next, we

bound + Zm 2"+ D¢, ¢

ment. According to the assumptlon, we initially construct an e-net

lPpcs
—rll, sSIIpcs—p*II ~
(21)

> [@ 4 16,5, 8l —

m=1

— L,] — p* using the covering argu-

(pV, ..., pNy e X ¢ X, where the size of X is denoted by Ne(§~§)
such that
sup  min_|lp — P(p) lp<e. (22)
PlipllE<1p< N, (X)
In addition, we denote B, = 5; L2"+1)¢,,. i ¢m j — p*) and derive

(4

pPEL m=1

Bm,p>

M

peX m=1

M M
< ma>£< > Bm,p(‘”)> —I—eman< > Bm,p>.
pPeX m=1 peX m=1

By setting € = 0.5 and moving the second term on the right-hand side to
the left, we get

M M
man< > Bm,p> < ma)£2< > Bm,p(P)>.

(23)
peX m=1 pPeX m=1

Then we need to build the concentration inequality for the right-hand side
of Eq. (23). First, we define

M M ¥
5 o= 2 (@4 Dy, by, ~To =" p?), (Y

and due to E[2" + 1)¢,,; ¢1,;
Moreover, we rewrite s, as

— L. — p*] =0, we have E[s,] =

= <(2n + 1)¢mj ‘PZnJ =L *P*‘,P(‘D)>
= @+ (8 by, — 1P
()

= @+ (8, b PP — 52T, )

="+ 1)<¢m.jm¢m-jm’D>7

(25)

where the second line follows from trace (p®) = (L, p®y = 0. We can

further compute
_ E[(z” ¢ <¢m,,-,n‘/’fn,jva>’a}

Els,l]
<@"+1)F [(trace I |D|))“]

where |D| = VD? = UJZV' denotes the absolute value of the matrix D
with its compact SVD D* = ULV' and A®** = A ® - - - ® A holds for any
—_——
a
matrix A. Given that the unitary Haar measure conforms to any unitary p-
design, as exemplified in [ref. 57, Example 51], we can deduce the third line,
with Psy., representing an orthogonal projector onto the symmetric sub-
space. The second inequality follows from [ref. 58, Lemma 7] and
[1D]|2* = |||D|®*|| due to the positive semidefiniteness of |D|®** and the
orthogonal projection. In the last line, we utilize |||D]||, < |lp® ||+

P
2 L < 14 2 1Pl 611" 15 <2, [1PsymlI<1 and S+ < 2a1,
Based on Lemma 1 with [E[s,,] = 0Oand E[[s,,|* ]<6><2“ Za' foranyt

€ [0, 1], we have the probability

(M' Z <(2n + 1)¢m] ‘/)m]m IZ" _P*:P(P)>| 2 t>

<2e” Agrs

27)

Combining Egs. (23), (27), there exists an e-net X of X such that

- p*7p>>t)
)

- L —p p“’)>| %)

S t
P man<ﬁ > [(2" + D¢y, Sy,
peX m=1

1)¢m,jm¢jn.jm - L —p P(P)>

(TR

M
<P{ maxq; > <(2" +
p‘P‘EX m=1

(28)
M
<P<maxM| S (@ + 14, 6,

p'l’)ek m=1
M2
<N, (X)e s

< o5 +Hog 2N (X)

We opt for t= O<\/Ww>, and subsequently, with probability

1 — e~ ogN(X)) we derive

log N (X
lprcs —p*||p50<\/ gT()> (29)
Proof of Theorem 3
Proof. We define a restricted Frobenius norm as following:
ey = Palle2r = llpy — palle
= max(p, — p,.p). (30)
peX,,
where the set X, is defined as follows:
R =dpec®.p= 1,
r {P P=pr (1)

rank (p) = r, trace (p) = 0, ||pllp <1}.
By the definition of the restricted Frobenius norm in Eq. (30), we can
further analyze
=P llp

= lpir-pcs — P llp2r

lpir—pcs

= 7(5:“)“ trace (|D|®"Pg,,) (26) < Peplpcs) — P lIpar )
2" 4a— < 2 || P _ p*”
" = F,
< EH ) D Py, | @ "
S6X2a 2 ., =2mix< mz:[(zn—i_l)(pm] ¢me ] - P*7P>7
PeX, -
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where the first two inequalities respectively follow the nonexpansiveness
property of the projection and the quasi-optimality property of eigenvalue
decomposition (ED) projection”’. Next, we need to bound the first term in
the last line of Eq. (32) using the covering argument. Accordmg to [ref. 59,
Lemma 3.1], we initially construct an e-net {pV, ..., p¥ Xy e X . C

XZ, in which the size of §§2, is denoted by N 6(§~§2,) < (g)(2 2" such that

sup  min |p—p?

lr<e.
PPl <1p<N (X)) (33)

Combining Egs. (23), (27), there exists an e-net XZ, of §§2, such that

1M

Pe}gh m=

<Pl max &
pPeX, M

M +
SxP( max | 32 (2" + Dy, b, — Tr = 2072 %)

prex, ~ m=1

@" + 1)¢mﬁjm¢z-n¢jm = Lp| — pp)zt

-

M=

Il
-

(@ + 1)¢m.jm¢;rn,jm = Iy - p*,p(P))Zé)

2240y i
)" e

(34)

where we set ¢ = 1 and C is a positive constant. We opt for t = O (, /%)
and subsequently, with probability 1 — e=*?"", derive

n

2"r
I | .
lPrr-pcs — P Il < O( M) (35)

Proof of Theorem 4

Proof. We define a restricted Frobenius norm as follows:

llpy — pllEap = llpy — P2 lIE

= max (p; — p,,p).
peXyp

(36)

where we denote by XD the normalized set of MPOs with bond dimension
D:

XD = {p e C*% : p=pl |Ipllp <1, trace (p) = 0,
bond dimension (p) = D}.

(37)

Note that the presence of additional orthonormal structures arises from the
fact that, according to ref. 60, any TT form is equivalent to a left-orthogonal
TT form®.

norm (36), we can derive

lPmpo-pcs — Pl
” Ptrace(SVD %(PCS)) - P*”F

= ||Ptrace(SVD (Pcs)) p ||F2D
<|ISVD] (Pcs) P llr2n

<1 +vn—=1lpes — p* ”FZD

— 4+ vaT) m§x< PICERITIS
~1,) —P*7;>‘

— (4 VAT m§x< (@ + 1,0,
~L) - p*7PP>A\2D

where the first two inequalities respectively follow from the nonexpan-
siveness property of the projection onto the convex set, while the third
inequality is a consequence of the quasi-optimality property of TT-SVD
projection®. Additionally, we denote

X, = {p e G . p=p' trace(p) =0,

b e X
CDXD

LKl < 1}

i, ~Dx1 lj
. c G ’ Je

p(il'”irﬂjl"
X e P x
| LX) Il <1,£€[n

(39)

Based on ||p||r = ||IL(X,,)||r < 1 for a left-orthogonal TT form using [ref. 61,
Eq.(44)], we obtain the last line.

Next, we will apply the covering argument to bound (38). For any fixed
value of p € X,, C X, using Eq. (23), concentration inequality in Eq.
(27) and Lemma 3, there exists an e-net X,, of X, such that

1 M T
a2 (@ + D, b

m=1

P| max (
PeXyp

— L) — pfp) 2t

L, — pp)2 %)
— L — p5p)l2 %)

IA

P (max M Z ((271 1)¢m,jm¢iﬂ~jm -
peX,, M= 1

(40)

IA

S i
ax ;| Z (2" + D¢y b,
EY2D m=1

P
2
< 2(4n+€)4”D e—“l%

<e™ m+CnD logn

where we set ¢ =1 and C is a positive constant. We opt for t=

O( v nDzAl; : n) and subsequently, with probability 1 — e~"?"1°6"_derive

Y n2D?logn
IPyo-pes = P16 <O (\/ Tg> :

Maximum Likelihood Estimation for Low-rank States and MPO states
Maximum likelihood estimation (MLE) is a widely used technique for
quantum state reconstruction. Under single-shot measurements, the MLE
loss function can be formulated as follows*”*~*;

(41)

We define P, .() as a projection onto a convex set min flp= ——Zlog( Lo ]m*’/’m G P (42)
{p e C*"*% : trace (p) = 1}. By the definition of the restricted Frobenius trace(p)=1
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However, the objective function in (42) does not leverage the structural
properties inherent in quantum states. To address this limitation, we pro-
pose two MLE methods tailored for (1) low-rank states and (2) MPO states.

Low-rank MLE. When the density matrix is low-rank, we adopt a Rie-
mannian gradient descent (RGD) algorithm on the unit Frobenius norm

sphere. Specifically, for a quantum state p* € cr satisfying trace(p*)
=1and p* > 0, we can factorize it as p* = F*F*' F* € C*"*" with ||F*||
= 1. This leads to the reformulated MLE objective:

min f;(F) =
FeC2"xr]

IFllp=1

——Zlog( G S FF)).

The corresponding Riemannian gradient descent update reads:

F F
F,=F_, - ”PTFSP(VFfl(Ft—l)) and F, = Ait,
IFll
here the Euclidean gradientis Vpf ((F) = — £ 5°M_|_#winum _pong
where the Eucly e€an gra ent 1s Ffl( )_ _Hzm: W an

Prs(V) = (F, V)F denotes the projection onto the tangent space
TrSp = {F: ||F || r = 1}. Here, y is the step size.

MPO-based MLE. When the density matrix admits an MPO repre-

sentation with bond dimension D, we consider the constrained optimi-
zation problem:

min f,(p) =

peXp

1 Y t
— 21 2 108 B, 61 )
m=1

We solve (43) using a projected gradient descent (PGD) scheme:
7)Slmplex(S\]I) D\Ft—1

where V,f,(p) = —;

Materials

A"lvpr(Pt—l)))7

, and y is the step size.

1’
D P
+

o2 B s )

Lemma 1. (Classical Bernstein’s inequality’’, Theorem 6) Lets;, ... ,s, €
R denote iid. copies of a mean-zero random variable s that obeys
[E[|s|P]< p!RP=26? /2 for all integers p>2, where R, 0> > 0 are constants.
Then, for all t > 0,

2/
<| Z |> t) <2e n.ﬂf;« (43)
Lemma 2. (ref. 29, Lemma 10) Forany A;, A} € R i e {1,...,N},
we have
Ay Ay — AL A
(44)

N
= TA
i=1

'Az‘*—l(Ai - AT)Ai+1 <Ay

Lemma 3. There exists an e-net X p for X p in Eq. (39) under the Frobenius
norm, ie., [|p — p?||5 < € for p® € X, obeying

4nDr
N,(Xp) < <4" + 6)
€

where N, E(XD) denotes the number of elements in the set XD.

(45)

Proof. For each set of matrices {L(X,) € R***P:| L(X,) || <1},
according to ref. 67, we can construct an &-net {L(Xi,l)), e L(XEN"))} with

4+f)

the covering number N, < (= such that

sup  min || LX) — LXP) | <¢,

L)L) <1 PesNe (46)
for al £ € {1, ..., n — 1}. Also, we can construct an &-net
(LXD), ..., LX) for (L(X,) € R || L(X,)||; < 1} such that

sup min || L(X,) — L(X(nP"))H <é,

L)L, < 160 <N ' “7)
with the covering number N, < 2+f)

Therefore, we can construct a &net {[X(11)7...7X£11)],...,
[X(lNl) . ¢ N”)]} with covering number
2
44 4nDr
< (Y1) (48)

forany MPO p=[X;, ..., X,,] with bond dimension D. Then we expand ||p —
p?|| as follows:
lp = p?l
(py) )
=X, X, = XP Xl
n
() e Pa)
= ” ZI[lel ) '7Xu€1—17X4111 - XuNXuﬂrl?-"vXn]”F
a=
n
( () (po))
<2 X, X X — Xy X Xl
a=

< S 1z - 10, 1+ 1) -

ﬂl—

<nf=e,

LX)l

where the second line and the second inequality respectively follow Lemma
2 and”, Eq.(47). In addition, we choose & = € in the last line. Ultimately, we
can construct an e-net {p(l)7 ey pN 1N »} with covering number

4nDr
Né‘(XD) < (4n ha 6)
€

for any MPO p € XD.

(49)
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