Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Entanglement buffering with multiple quantum memories
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Entanglement buffering with multiple quantum memories

  • Álvaro G. Iñesta1,2,3 na1,
  • Bethany Davies1,2,3 na1,
  • Sounak Kar1,2,3 &
  • …
  • Stephanie Wehner1,2,3 

npj Quantum Information , Article number:  (2026) Cite this article

  • 150 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computer science
  • Quantum physics

Abstract

Entanglement buffers are systems that maintain high-quality entanglement, ensuring it is readily available for consumption when needed. We study the performance of a two-node buffer, where each node has one long-lived quantum memory for entanglement storage and multiple short-lived memories for generation. Freshly generated entanglement may be used to purify stored entanglement, which degrades over time. Stored entanglement may be removed due to consumption or failed purification. We derive analytical expressions for the entanglement availability and the average fidelity upon consumption. Our solutions are computationally efficient and provide fundamental bounds to the performance of purification-based entanglement buffers. We also show that purification must be performed as frequently as possible to maximise the average fidelity of entanglement upon consumption, even if this often leads to the loss of high-quality entanglement due to purification failures. Moreover, we obtain heuristics for the design of good purification policies in practical systems.

Similar content being viewed by others

Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs

Article Open access 06 May 2023

Heralded entanglement distribution between two absorptive quantum memories

Article 02 June 2021

Purification scheduling control for throughput maximization in quantum networks

Article Open access 18 September 2024

Data availability

No data is needed to reproduce our results, since all results in this manuscript are analytical. The code used to perform the analysis and generate all the plots shown in this paper can be found in the following GitHub repository: https://github.com/AlvaroGI/buffering-1GnB. This repository also includes a discrete-event simulator of a 1G$n$B system that we used to validate our analytical results.

Code availability

The code used to perform the analysis and generate all the plots shown in this paper can be found in the following GitHub repository: https://github.com/AlvaroGI/buffering-1GnB. This repository also includes a discrete-event simulator of a 1GnB system that we used to validate our analytical results.

References

  1. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Google Scholar 

  2. Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992).

    Google Scholar 

  3. Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).

    Google Scholar 

  4. Qian, K. et al. Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. Phys. Rev. A 100, 042304 (2019).

    Google Scholar 

  5. England, D. G., Balaji, B. & Sussman, B. J. Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A 99, 023828 (2019).

    Google Scholar 

  6. Wu, B.-H., Guha, S. & Zhuang, Q. Entanglement-assisted multi-aperture pulse-compression radar for angle resolving detection. Quantum Sci. Tech. 8, 035016 (2023).

    Google Scholar 

  7. Brassard, G., Broadbent, A. & Tapp, A. Quantum pseudo-telepathy. Found. Phys. 35, 1877–1907 (2005).

    Google Scholar 

  8. Broadbent, A. & Tapp, A. Can quantum mechanics help distributed computing?. ACM SIGACT News 39, 67–76 (2008).

    Google Scholar 

  9. Chakraborty, K., Rozpedek, F., Dahlberg, A. & Wehner, S. Distributed routing in a quantum internet. arXiv preprint arXiv:1907.11630 (2019).

  10. Ghaderibaneh, M., Gupta, H., Ramakrishnan, C. & Luo, E. Pre-distribution of entanglements in quantum networks. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 426–436 (IEEE, 2022).

  11. Pouryousef, S., Panigrahy, N. K. & Towsley, D. A quantum overlay network for efficient entanglement distribution. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications, 1–10 (IEEE, 2023).

  12. Iñesta, ÁG. & Wehner, S. Performance metrics for the continuous distribution of entanglement in multiuser quantum networks. Phys. Rev. A 108, 052615 (2023).

    Google Scholar 

  13. Askarani, M. F., Chakraborty, K. & Do Amaral, G. C. Entanglement distribution in multi-platform buffered-router-assisted frequency-multiplexed automated repeater chains. New J. Phys. 23, 063078 (2021).

    Google Scholar 

  14. Davies, B., Iñesta, ÁG. & Wehner, S. Entanglement buffering with two quantum memories. Quantum 8, 1458 (2024).

    Google Scholar 

  15. Elsayed, K. S., KhudaBukhsh, W. R. & Rizk, A. On the fidelity distribution of purified link-level entanglements. In ICC 2024-IEEE International Conference on Communications, 485–490 (IEEE, 2024).

  16. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

    Google Scholar 

  17. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996).

    Google Scholar 

  18. Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999).

    Google Scholar 

  19. Yan, P.-S., Zhou, L., Zhong, W. & Sheng, Y.-B. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron. 66, 250301 (2023).

    Google Scholar 

  20. Haldar, S. et al. Reducing classical communication costs in multiplexed quantum repeaters using hardware-aware quasi-local policies. Commun. Phys. 8, 132 (2025).

    Google Scholar 

  21. Victora, M. et al. Entanglement purification on quantum networks. Phys. Rev. Res. 5, 033171 (2023).

    Google Scholar 

  22. Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    Google Scholar 

  23. Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

    Google Scholar 

  24. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Google Scholar 

  25. Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Google Scholar 

  26. Chen, K. C. et al. Zero-added-loss entangled-photon multiplexing for ground-and space-based quantum networks. Phys. Rev. Appl. 19, 054029 (2023).

    Google Scholar 

  27. Mower, J. & Englund, D. Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011).

    Google Scholar 

  28. Krutyanskiy, V., Canteri, M., Meraner, M., Krcmarsky, V. & Lanyon, B. Multimode ion-photon entanglement over 101 kilometers. PRX Quantum 5, 020308 (2024).

    Google Scholar 

  29. Collins, O., Jenkins, S., Kuzmich, A. & Kennedy, T. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Google Scholar 

  30. Munro, W., Harrison, K., Stephens, A., Devitt, S. & Nemoto, K. From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792–796 (2010).

    Google Scholar 

  31. van Dam, S. B., Humphreys, P. C., Rozpedek, F., Wehner, S. & Hanson, R. Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Sci. Tech. 2, 034002 (2017).

    Google Scholar 

  32. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Google Scholar 

  33. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Google Scholar 

  34. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Google Scholar 

  35. Zhou, Y. et al. Long-lived quantum memory enabling atom-photon entanglement over 101 km of telecom fiber. PRX Quantum 5, 020307 (2024).

    Google Scholar 

  36. Jansen, S., Goodenough, K., de Bone, S., Gijswijt, D. & Elkouss, D. Enumerating all bilocal Clifford distillation protocols through symmetry reduction. Quantum 6, 715 (2022).

    Google Scholar 

  37. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996).

    Google Scholar 

  38. Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999).

    Google Scholar 

  39. Benjamin, S. C., Browne, D. E., Fitzsimons, J. & Morton, J. J. Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006).

    Google Scholar 

  40. Rozpedek, F. et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Phys. Rev. A 99, 052330 (2019).

    Google Scholar 

  41. Lee, Y., Bersin, E., Dahlberg, A., Wehner, S. & Englund, D. A quantum router architecture for high-fidelity entanglement flows in quantum networks. npj Quantum Inf. 8, 75 (2022).

    Google Scholar 

  42. Campbell, E. T. & Benjamin, S. C. Measurement-based entanglement under conditions of extreme photon loss. Phys. Rev. Lett. 101, 130502 (2008).

    Google Scholar 

  43. Jones, C., Kim, D., Rakher, M. T., Kwiat, P. G. & Ladd, T. D. Design and analysis of communication protocols for quantum repeater networks. New J. Phys. 18, 083015 (2016).

    Google Scholar 

  44. Dehaene, J., Van den Nest, M., De Moor, B. & Verstraete, F. Local permutations of products of bell states and entanglement distillation. Phys. Rev. A 67, 022310 (2003).

    Google Scholar 

  45. Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381 (2007).

    Google Scholar 

  46. Ruan, L., Kirby, B. T., Brodsky, M. & Win, M. Z. Efficient entanglement distillation for quantum channels with polarization mode dispersion. Phys. Rev. A 103, 032425 (2021).

    Google Scholar 

  47. Van Meter, R., Ladd, T. D., Munro, W. J. & Nemoto, K. System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 17, 1002–1013 (2008).

    Google Scholar 

  48. Rozpedek, F. et al. Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018).

    Google Scholar 

  49. Krastanov, S., Albert, V. V. & Jiang, L. Optimized entanglement purification. Quantum 3, 123 (2019).

    Google Scholar 

  50. Marler, R. T. & Arora, J. S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004).

    Google Scholar 

  51. Zhou, L., Zhong, W. & Sheng, Y.-B. Purification of the residual entanglement. Optics Express 28, 2291–2301 (2020).

    Google Scholar 

  52. Sheng, Y.-B. & Deng, F.-G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010).

    Google Scholar 

  53. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Google Scholar 

  54. Werner, R. F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).

    Google Scholar 

Download references

Acknowledgements

We thank S. Jansen, C. Cicconetti, P. Kaku, and J. van Dam for discussions and feedback. Á.G.I. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience programme. B.D. acknowledges financial support from a KNAW Ammodo Award (S.W.). S.W. acknowledges support from an NWO VICI grant.

Author information

Author notes
  1. These authors contributed equally: Álvaro G. Iñesta, Bethany Davies.

Authors and Affiliations

  1. QuTech, Delft University of Technology, Delft, South Holland, The Netherlands

    Álvaro G. Iñesta, Bethany Davies, Sounak Kar & Stephanie Wehner

  2. EEMCS, Quantum Computer Science, Delft University of Technology, Delft, South Holland, The Netherlands

    Álvaro G. Iñesta, Bethany Davies, Sounak Kar & Stephanie Wehner

  3. Kavli Institute of Nanoscience, Delft University of Technology, Delft, South Holland, The Netherlands

    Álvaro G. Iñesta, Bethany Davies, Sounak Kar & Stephanie Wehner

Authors
  1. Álvaro G. Iñesta
    View author publications

    Search author on:PubMed Google Scholar

  2. Bethany Davies
    View author publications

    Search author on:PubMed Google Scholar

  3. Sounak Kar
    View author publications

    Search author on:PubMed Google Scholar

  4. Stephanie Wehner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.D. and Á.G.I. conceived and defined the project. B.D. and S.K. proved Theorems 1 and 2. Á.G.I. and B.D. proved Propositions 1 and 2. Á.G.I. carried out the analysis from “Monotonic performance” and “Discussion”, and coded the discrete-event simulation (used to validate analytical results). Á.G.I. and B.D. wrote this manuscript. S.W. supervised the project.

Corresponding author

Correspondence to Bethany Davies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iñesta, Á.G., Davies, B., Kar, S. et al. Entanglement buffering with multiple quantum memories. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-025-01161-3

Download citation

  • Received: 22 April 2025

  • Accepted: 04 December 2025

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41534-025-01161-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics