Abstract
Entanglement buffers are systems that maintain high-quality entanglement, ensuring it is readily available for consumption when needed. We study the performance of a two-node buffer, where each node has one long-lived quantum memory for entanglement storage and multiple short-lived memories for generation. Freshly generated entanglement may be used to purify stored entanglement, which degrades over time. Stored entanglement may be removed due to consumption or failed purification. We derive analytical expressions for the entanglement availability and the average fidelity upon consumption. Our solutions are computationally efficient and provide fundamental bounds to the performance of purification-based entanglement buffers. We also show that purification must be performed as frequently as possible to maximise the average fidelity of entanglement upon consumption, even if this often leads to the loss of high-quality entanglement due to purification failures. Moreover, we obtain heuristics for the design of good purification policies in practical systems.
Similar content being viewed by others
Data availability
No data is needed to reproduce our results, since all results in this manuscript are analytical. The code used to perform the analysis and generate all the plots shown in this paper can be found in the following GitHub repository: https://github.com/AlvaroGI/buffering-1GnB. This repository also includes a discrete-event simulator of a 1G$n$B system that we used to validate our analytical results.
Code availability
The code used to perform the analysis and generate all the plots shown in this paper can be found in the following GitHub repository: https://github.com/AlvaroGI/buffering-1GnB. This repository also includes a discrete-event simulator of a 1GnB system that we used to validate our analytical results.
References
Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).
Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Qian, K. et al. Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks. Phys. Rev. A 100, 042304 (2019).
England, D. G., Balaji, B. & Sussman, B. J. Quantum-enhanced standoff detection using correlated photon pairs. Phys. Rev. A 99, 023828 (2019).
Wu, B.-H., Guha, S. & Zhuang, Q. Entanglement-assisted multi-aperture pulse-compression radar for angle resolving detection. Quantum Sci. Tech. 8, 035016 (2023).
Brassard, G., Broadbent, A. & Tapp, A. Quantum pseudo-telepathy. Found. Phys. 35, 1877–1907 (2005).
Broadbent, A. & Tapp, A. Can quantum mechanics help distributed computing?. ACM SIGACT News 39, 67–76 (2008).
Chakraborty, K., Rozpedek, F., Dahlberg, A. & Wehner, S. Distributed routing in a quantum internet. arXiv preprint arXiv:1907.11630 (2019).
Ghaderibaneh, M., Gupta, H., Ramakrishnan, C. & Luo, E. Pre-distribution of entanglements in quantum networks. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 426–436 (IEEE, 2022).
Pouryousef, S., Panigrahy, N. K. & Towsley, D. A quantum overlay network for efficient entanglement distribution. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications, 1–10 (IEEE, 2023).
Iñesta, ÁG. & Wehner, S. Performance metrics for the continuous distribution of entanglement in multiuser quantum networks. Phys. Rev. A 108, 052615 (2023).
Askarani, M. F., Chakraborty, K. & Do Amaral, G. C. Entanglement distribution in multi-platform buffered-router-assisted frequency-multiplexed automated repeater chains. New J. Phys. 23, 063078 (2021).
Davies, B., Iñesta, ÁG. & Wehner, S. Entanglement buffering with two quantum memories. Quantum 8, 1458 (2024).
Elsayed, K. S., KhudaBukhsh, W. R. & Rizk, A. On the fidelity distribution of purified link-level entanglements. In ICC 2024-IEEE International Conference on Communications, 485–490 (IEEE, 2024).
Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).
Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996).
Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999).
Yan, P.-S., Zhou, L., Zhong, W. & Sheng, Y.-B. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron. 66, 250301 (2023).
Haldar, S. et al. Reducing classical communication costs in multiplexed quantum repeaters using hardware-aware quasi-local policies. Commun. Phys. 8, 132 (2025).
Victora, M. et al. Entanglement purification on quantum networks. Phys. Rev. Res. 5, 033171 (2023).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).
Chen, K. C. et al. Zero-added-loss entangled-photon multiplexing for ground-and space-based quantum networks. Phys. Rev. Appl. 19, 054029 (2023).
Mower, J. & Englund, D. Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 84, 052326 (2011).
Krutyanskiy, V., Canteri, M., Meraner, M., Krcmarsky, V. & Lanyon, B. Multimode ion-photon entanglement over 101 kilometers. PRX Quantum 5, 020308 (2024).
Collins, O., Jenkins, S., Kuzmich, A. & Kennedy, T. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).
Munro, W., Harrison, K., Stephens, A., Devitt, S. & Nemoto, K. From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792–796 (2010).
van Dam, S. B., Humphreys, P. C., Rozpedek, F., Wehner, S. & Hanson, R. Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Sci. Tech. 2, 034002 (2017).
Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).
Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Zhou, Y. et al. Long-lived quantum memory enabling atom-photon entanglement over 101 km of telecom fiber. PRX Quantum 5, 020307 (2024).
Jansen, S., Goodenough, K., de Bone, S., Gijswijt, D. & Elkouss, D. Enumerating all bilocal Clifford distillation protocols through symmetry reduction. Quantum 6, 715 (2022).
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996).
Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999).
Benjamin, S. C., Browne, D. E., Fitzsimons, J. & Morton, J. J. Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006).
Rozpedek, F. et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Phys. Rev. A 99, 052330 (2019).
Lee, Y., Bersin, E., Dahlberg, A., Wehner, S. & Englund, D. A quantum router architecture for high-fidelity entanglement flows in quantum networks. npj Quantum Inf. 8, 75 (2022).
Campbell, E. T. & Benjamin, S. C. Measurement-based entanglement under conditions of extreme photon loss. Phys. Rev. Lett. 101, 130502 (2008).
Jones, C., Kim, D., Rakher, M. T., Kwiat, P. G. & Ladd, T. D. Design and analysis of communication protocols for quantum repeater networks. New J. Phys. 18, 083015 (2016).
Dehaene, J., Van den Nest, M., De Moor, B. & Verstraete, F. Local permutations of products of bell states and entanglement distillation. Phys. Rev. A 67, 022310 (2003).
Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381 (2007).
Ruan, L., Kirby, B. T., Brodsky, M. & Win, M. Z. Efficient entanglement distillation for quantum channels with polarization mode dispersion. Phys. Rev. A 103, 032425 (2021).
Van Meter, R., Ladd, T. D., Munro, W. J. & Nemoto, K. System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 17, 1002–1013 (2008).
Rozpedek, F. et al. Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018).
Krastanov, S., Albert, V. V. & Jiang, L. Optimized entanglement purification. Quantum 3, 123 (2019).
Marler, R. T. & Arora, J. S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004).
Zhou, L., Zhong, W. & Sheng, Y.-B. Purification of the residual entanglement. Optics Express 28, 2291–2301 (2020).
Sheng, Y.-B. & Deng, F.-G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
Werner, R. F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989).
Acknowledgements
We thank S. Jansen, C. Cicconetti, P. Kaku, and J. van Dam for discussions and feedback. Á.G.I. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience programme. B.D. acknowledges financial support from a KNAW Ammodo Award (S.W.). S.W. acknowledges support from an NWO VICI grant.
Author information
Authors and Affiliations
Contributions
B.D. and Á.G.I. conceived and defined the project. B.D. and S.K. proved Theorems 1 and 2. Á.G.I. and B.D. proved Propositions 1 and 2. Á.G.I. carried out the analysis from “Monotonic performance” and “Discussion”, and coded the discrete-event simulation (used to validate analytical results). Á.G.I. and B.D. wrote this manuscript. S.W. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Iñesta, Á.G., Davies, B., Kar, S. et al. Entanglement buffering with multiple quantum memories. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-025-01161-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41534-025-01161-3


